光学元件激光预处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大功率激光系统对光学元件的抗激光损伤能力提出了苛刻的要求,激光预处理能清除元件表面杂质,减少亚表面缺陷数量,提升激光损伤阈值。本课题研究目的就是为了建立激光预处理工艺的主体流程,重点确定紫外激光预处理和CO2激光预处理的工艺参数,主要包括:
     1. HF酸刻蚀工艺研究。通过酸刻蚀处理,去除掉元件表面的抛光磨料(CeO2等)和亚表面缺陷(SSD),对较深的点状缺陷和划痕起到钝化作用。实验发现,用质量分数为1%的HF溶液对熔石英表面进行刻蚀,10 min后发现其损伤阈值从6.13 J/cm2提升到6.93 J/cm2。更长时间的刻蚀也能增加阈值,但是对表面粗糙度和面形的影响不可忽略。
     2.紫外激光预处理工艺参数研究。采用低于光学元件零损伤阈值(Fth0)的激光能量对元件表面进行辐照,可以对元件表面的杂质与污染进行清除,同时提前引爆低阈值点,消除电子缺陷。实验发现,紫外激光预处理虽然对刻蚀后的熔石英阈值提升不太明显,过度的处理甚至会降低损伤阈值(预处理能量密度小于零损伤阈值的60%时,阈值提升约10%,预处理能量密度超过80%后,阈值迅速下降)。但在预处理工艺中是一个不可缺少的流程,紫外激光预处理提前暴露表面缺陷,减少了系统运行的风险,并为后续的缺陷修复工作做好准备。
     3. CO2激光预处理。CO2激光预处理是整个预处理流程的核心,波长10.6μm的CO2激光照射元件表面,致使表面局部急剧加热而出现熔化、流动和蒸发,熔融物在表面的流动使得亚表面的微缺陷愈合,达到提高损伤阈值的效果。本文通过控制CO2光斑的大小及能量密度,光斑在样品上的移动路径,达到不同缺陷的预处理目的。对于尺寸小于20μm的缺陷,可以通过直径4 mm的大光斑、全口径扫描的方式得到较好的修复。缺陷点尺寸大于20μm且小于80μm时,可以用直径约700μm的光斑在缺陷点上固定位置辐照,持续150-200 ms的激光辐照能够使得缺陷愈合。尺寸为80μm-500μm的缺陷,采用2 mm-4 mm的大光斑进行单点修复。实际工作中,经常遇到同一样品上集中大小不同缺陷的情形,这就需要结合扫描与固定点辐照两种方式。总而言之,针对不同大小的缺陷分布,可以采用多种修复方式相结合的办法达到目的。
     4.对CO2激光预处理后的烧蚀和应力进行初步探索,通过改变预处理作用方式和后续的退火工艺来尽力消除预处理所引入的负面影响。从实际使用的角度出发,离线的热退火工艺更加方便。CO2激光预处理后的样品,经过700-800℃,约3小时的退火处理后,残余应力得到很好的释放。退火气氛研究发现,在空气中退火,并对样品加以保护以防止污染的发生,可以得到令人满意的处理效果。
Laser damage resistant performance for optics is very important in high power laser systems, and laser conditioning technology can improve laser induced damage threshold (LIDT) by cleaning contamination on optical surfaces and reducing the sub-surface defects (SSD). In this thesis, UV and CO2 laser conditioning technology is introduced as well as acid etching and thermal annealing process.
     1. HF acid etching: Acid etching can remove both surface polishing materials (CeO2, etc.) and SSD, and also passivate the scratches and deep crater defects in the sub-surface. The LIDT increases from 6.13 J/cm2 to 6.93 J/cm2 when the 1% HF (wt.%) solution is used to etch the surface of fused silica for 10 minutes. If the etching time is longer, the threshold would be higher, but the negative effects on the optical surface roughness and wavefront can not be ignored.
     2. UV laser conditioning: Using laser with fluence below zero damage thresholds (Fth0) to irradiate the fused silica surface, the impurities and contaminations can be removed, and meanwhile the low-threshold initiators and electronic defects can be eliminated. It is found that the threshold of acid-etched fused silica can not be improved significantly through UV laser conditioning. Laser conditioning at high fluence even reduces the damage threshold (if the conditioning fluence is less than 60% of Fth0, the threshold approximately increases 10%. If more than 80%, the threshold decreases rapidly). However, UV laser conditioning is an essential process, because low fluence UV laser irradiation could expose surface defects, reduce the risk of system operation, and prepare for the subsequent CO2 laser conditioning.
     3. CO2 laser conditioning: CO2 laser conditioning is the most important process. CO2 laser (10.6μm) irradiation can result in local surface heating rapidly followed by melting, flowing and evaporation. The flow of molten material on the surface can heal the sub-surface micro-defects and improved the laser damage resistance. In this work, the CO2 laser spot size, laser fluence, and laser spot moving path, are controlled to treat different defects. For the smaller defects (< 20μm), a big laser spot with the diameter of 4 mm combined with full-aperture scanning could well repair such defects. If defects are larger (20μm-80μm), a laser spot with the diameter of 700μm fixed on the defect position and sustained 150-200 ms can heal these defects. If the defect size is 80μm-500μm, the laser spot used for repair can be 2 mm-4 mm. In practical work, each sample usually has many defects with different sizes, which requires a combination of scanning and fixed-point radiation. In a word, defects with different size distributions can be repaired, using a variety of ways to achieve the healing purpose.
     4. Ablation and residual stress resulted from CO2 laser conditioning are investigated. Different treating protocol and annealing process are tried to eliminate the negative effects of CO2 laser conditioning. Given the research condition, off-line thermal annealing is more convenient. The fused silica samples, repaired by CO2 laser, annealed in air for 3h at temperature 700-800℃, can release residual stress. For the CO2 laser conditioned fused silica samples, annealing in air atmosphere and preventing from contamination can obtain good performance.
引文
[1] Savkina E V. The first ruby laser of Theordore Maiman. Elektrosvyaz, 2003, 1(6):53-54
    [2] Andrew H R. Theodore harold Maiman and the inventor of laser. Proceeding of SPIE-The International Society for Optical Engineering, 2008, 7138(2008):22-24
    [3] Hecht J. Beam the race to make the laser. Optics and Photonics News, 2005, 16(7):24-29
    [4] Hecht J. Lessons learned for the laser from theory to practice. Proceeding of SPIE-The International Society for Optical Engineering, San Diego. CA, United states, 2008, 6720(1):67200-67201
    [5] Wood G L, Merkle L D, Mark D, et al. Path toward a high energy solid - state laser. Proceeding of SPIE - The international Society for Optical Engineering, 2004, 5414(1):69-84
    [6] Raphaela W, Wilhelm W. 40 Years: laser - A new light for medicine. SPIE - The International Society for Optical Engineering, 2001, 4606(1):1-6
    [7] Kashihara T, Kanai A. On the simulation models for evaluating the energy systems at an energy crisis. Denshi Gijutsu Sogo Kenkyusho Iho/Bulletin of the Electrotechnical Laboratory, 1986, 50(8):813-822
    [8] Baldwin P. Coal is the solution to the energy crisis. Turbomachinery International, 2005, 46(4):40-41
    [9] Kopylov I P. The energy crisis and water purification. Russian Electrical Engineering, 2005, 76(1):62-64
    [10] Suter L J. Progress on the National Ignition Facility (NIF) and ICF Target Physics, IEEE International Conference on Plasma Science, 2003, 2003(1):376
    [11] Moses E I. The National Ignition Facility (NIF): A path to fusion energy. Energy Conversion and Management, 2008, 49(7):1795-1802
    [12] Demange P, Negres R A, Carr C W, et al. Laser-induced defect reactions governing damage initiation in DKDP crystals. Optics Express, 2006, 14(12):5313-5328
    [13] Li Y, Wang M L. Zhang J. Damaging evaluation of high-energy laser weapon to ballistic missile. Infrared and Laser Engineering, 2006, 35(5):588-592
    [14] Lin C. Research status and prospect of chemical laser weapon in the United States (part one).Jiguang Jishu/Laser Technology, 1993, 17(1):31-35
    [15] Gagliano J M, Wyman C L. Beam redistribution system enabling high energy laser weapon lethality testing. Collection of Thechnical Papers - U. S. Air Force T and E Days: Transforming the T and E Enterprise, 2005, 2005(1):434-453
    [16] David B. Lasers for spaceborne communications. Photonics Spectra, 1989, 23(2):22-24
    [17] James M A, Jay E L. Laser-based communication system. Transactions of the American Society of Agricultural Engineers, 1989, 32(1):298-303
    [18] Temple P A, Lowdermilk H W, Milam D. Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm, Apply Optics, 1982, 21(18):3249-3255
    [19]黄进,赵松楠,吕海兵,等.利用1064nm激光预处理提高pickoff镜损伤阈值.强激光与粒子束, 2007, 19(1):728-731
    [20]黄进,吕海兵,叶琳,等.利用CO2激光预处理提高熔石英基片的损伤阈值.中国激光, 2007, 34(1):723-727
    [21] DeMange P, Negres R A, Carr C W, et al. Laser - induced damage in DKDP crystals under simultaneous exposure to laser harmonics. SPIE - the International Society for Optical Engineering, United States, Boulder, CO, United States, 2005, 59911
    [22] Adams J J, Bruere J R, Bolourchi M, et al. Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler - cut KH2PO4, SPIE - International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, Boulder, CO, United States, 2005, 59911
    [23] Raymond M B, Bernie M P, Jim A B, et al. CO2-laser polishing for reduction of 351-nm surface damage initiation in fused silica. SPIE, The International Society for Optical Engineering, Boulder, CO, United States, 2002, 4679(1):34-39
    [24] Mike R, Jim D, Walt S, et al. Laser conditioning study of KDP on the optical sciences laser suing large area beams. The International Society for Optical Engineering, Boulder, CO, United States, 1997, 3244(1):51-63
    [25] Stolz C J, Sheehan L M, Maricle S M, et al. Study of laser conditioning methods of hafnia silica multilayer mirrors. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3578(1):144-153
    [26] Suratwala T, Wong L, Miller P, et al. Sub-surface mechanical damage distributions during grinding of fused silica. Journal of Non-Crystalline Solids, 2006, 352(52-54):5601-5617
    [27] Wang Z, Wu Y L, Dai Y F, et al. Detection of subsurface damage and material removal mechanism in optical polishing process. Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2009, 31(2):107-111
    [28] Suratwala T, Steele R, Feit M D, et al. Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing. Journal of Non Crystalline Solids, 2008, 354(18):2023-2037
    [29] Hamza A V. Engineered defects for investigation of laser-induced damage of fused silica at 355 nm. The International Society for Optical Engineering, Boulder, CO, United States, 2002, 2002(1):96-107
    [30]田东斌,祖小涛,袁晓东,等.熔石英亚表面划痕激光诱导损伤阈值实验研究.强激光与粒子束, 2007, 19(9):1574-1550
    [31]陈宁,张清华,许乔,等. K9基片的亚表面损伤探测及化学腐蚀处理技术研究.强激光与粒子束, 2005, 17(9):1289-1293
    [32] Li Z Y, Cheng L, Li C F, et al. Increase of laser-damage resistance of optical materials by chemical treatment. Acta Optica Sinica, 1999, 19(6):856-859
    [33] Juergen B and Achim B. ISO 11254: an international standard for the determination of the laser-induced damage threshold. Proceedings of SPIE - The International Society for Optical Engineering, 1994, 2114(1):703-713
    [34] Xu S Z, Lv H B, Tian D B, et al. Effects of acid-etching depth on 355 nm laser-induced damage threshold of fused silica. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2008, 20(5):760-764
    [35] Robert C. Effects of polishing materials on the laser damage threshold of optical coatings. Publ by Int Soc for Optical Engineering, Boulder, CO, USA, 1991, 1441(1):381-389
    [36] Kamimura T, Akamatsu S, Yamamoto M, et al. Enhancement of surface-damage resistance by removing a subsurface damage in fused silica. SPIE, Boulder, CO, United states, 2004, 5273(1):244-249
    [37] Feit M D and Rubenchik A M. Influence of subsurface cracks on laser induced surface damage. International Society for Optical Engineering, Bellingham, WA 98227-0010, United States, Boulder, CO, United States, 2004, 5273(1):264-272
    [38] Kimura W D, Kim G H, Balick B. UV laser cleaning of astronomical mirror samples. Publ. by IEEE, Anaheim, CA, USA, 1994, 8(1):424-425
    [39] Osiecki R A and Magee T J. Ultraviolet laser cleaning of mirrored surfaces. Publ. by Int. Soc.for Optical Engineering, San Diego, CA, USA, 1990, 1329(1):127-133
    [40]陈飞,孟少贤.光学材料破坏机理.物理学进展, 1998, 18(2):187-206
    [41] Joseph A M, Bernie P, Don G, et al. Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics. SPIE, Boulder, CO, United States, 2002, 4679(1):56-68
    [42] Kim B Min, Feit M D, Alexander M R, et al. Analysis of stress waves generated in water using ultrashort laser pulses. Proceedings of SPIE - The International Society for Optical Engineering, 2000, 3914(1):177-182
    [43] Hayden J S, Marker A J, Suratwala T I, et al. tensile layer generation during thermal annealing of phosphate glass. Journal of Non-Crystalline Solids, 2000, 263(1):228-239
    [44] Feit M D, Rubenchik A M, Boley C D, et al. Development of a Process Model for CO2 Laser Mitigation of Damage Growth in Fused Silica. International Society for Optical Engineering, Bellingham, WA 98227-0010, Boulder, CO, United States, 2004, 2004(1):145-154
    [45] Schreiber T, Schultz H, Schmidt, et al. Stress-induced birefringence in large-mode-area micro-structured optical fibers. Optics Express, 2005, 13(10)3637:3646
    [46] Primak W. stress relaxation of vitreous silica on irradiation. Journal of Applied Physics, 1982, 53(11):7331-7342
    [47] Raymond M B, Bernie M P, James A B, et al. Localized CO2 laser treatment for mitigation of 351 nm damge growth on fused silica. The International Society for Optical Engineering, Boulder, CO, United States, 2002, 4679(1):40-47
    [48] Bass I L, Guss G M, Hackel R P, et al. Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser. SPIE, Boulder, CO, United States, 2005, 59911
    [49] During A, Bouchut P, Jean G C, et al. Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam. SPIE, Boulder, CO, United states, 2007, 6403
    [50] Wang M, Zhou J Z, Huang S, et al. Research status and application of laser cleaning. Zhongguo Jiguang/Chinese Journal of Lasers, 2009, 36(1):174-177
    [51] Guignard F, Autric M L, Baudinaud V. Temperature and residual stress evolution in CO2-laser-irradiated glass. SPIE, 1998, 3343(1):534-545
    [52] Xiao Y M, Bass M. Thermal stress limitations to laser fire polishing of glasses. Applied Optics, 1983, 22(18):2933-2936
    [53] Fu X Y, Kong M D, Ma P, et al. Deposition of HfO2/SiO2 antireflective and high reflective optical thin film by plasma-ion assisted deposition. Optical Technique, 1998, 1(3):91-93
    [54] Gibson D R, Waugh A R, Nasikkar P S, et al. Application of closed field magnetron sputtering deposition in thin film photovoltaics Walls. Proceedings of SPIE - The International Society for Optical Engineering, 2009, 7409
    [55] Feil H, Kools J S C, Dieleman J. Molecular-dynamics simulations of laser-ablation and ion-assisted thin film deposition. Materials Research Society Symposium Proceedings, 1993, 285(1):75-80
    [56] Ma X M, Yang X T, Wang C, et al. ZnO thin film grown on glass by metal-organic chemical vapor deposition. 2008 2th IEEE International Nano electronics Conference, 2008, 2008(1):833-835
    [57] Wang W T, Li G, Pu M H, et al. Chemical solution deposition of YBCO thin film by different polymer additives, Physica C: Super conductivity and its Applications, 2008, 468(15-20):1563-1566
    [58] Zhang Y P, Xu H, Ling N, et al. Influence of YbF3 deposition rate on surface defect density of infrared laser thin film. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2005, 17(7):1019-1022
    [59] Qiu F M , Zhu Z J, Li D, et al. Defect statistical model of pulse laser-induced damage to thin-film and spot size effect. Jiguang Yu Hongwai/Laser and Infrared, 1997, 27(5):267-269
    [60] Wu, S G, Xia Z L , Shao J D, et al. Laser induced defect damage on optical thin film. Proceedings of SPIE - The International Society for Optical Engineering, 2007, 6279(2):1142-1144
    [61] Watakabe H, Tsunoda Y, Andoh N, et al. Characterization and control of defect states of polycrystalline silicon thin film transistor fabricated by laser crystallization. Journal of Non-Crystalline Solids, 2002, 299-302(1): 1321-1325
    [62] Vignoli S, Meaudre R, Meaudre M, et al. Kinetics of defect creation by pulsed laser illumination in hydrogenated amorphous silicon films deposited from pure silane and from silane-helium mixtures. Journal of Non-Crystalline Solids, 1993, 164-66(10):191-194
    [63] DeShazer L G, Newman B E. Leung K M. Role of coating defects in laser-induced damage to thin films. National Bureau of Standards, Special Publication, 1973, 1(1):114-123
    [64] Mark R K and Robert C. Role of defects in laser damage of multilayer coatings. Proceedings of SPIE - The International Society for Optical Engineering, 1994, 2114(1):640-649
    [65] Dijon J, Poiroux T, Desrumaux C. Nano absorbing centers: A key point in the laser damage of thin films, SPIE, Boulder, CO, United States, 1997, 2966(1):315-325
    [66] Wolfe C R, Kozlowski M R, Campbell J H, et al. laser conditioning of optical thin films. Publ. by Natl. Inst. of Standards & Technology, Gaithersburg, MD, USA, Boulder, CO, USA, 1990, 801(1):360-375
    [67] Brauns B, Schaefer D, Wolf R, et al. Effect of the substrate preparation with CO2 laser radiation on the laser resistance of optical layers. Thin Solid Films, 1986, 138(2):157-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700