纳米微粒在化学发光和传感器中的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料有“21世纪最有前途的材料”之美誉,被认为是跨世纪材料研究领域的热点。纳米颗粒具有比表面积大、表面反应活性高、吸附能力强、催化效率高等特性,为化学发光和传感器的发展提供了新的研究途径。
     本论文首先综述了纳米微粒的特性、制备方法及在传感器和化学发光中的应用。在此基础上,选择纳米金和纳米银为模型金属纳米粒子。一方面,研究纳米微粒在化学发光中的应用,探讨其参与液相化学发光的行为规律和机理等,为寻找新的化学发光体系奠定了基础;另一方面,研究纳米微粒在传感器中的应用,将适体技术和纳米科技相结合,利用纳米微粒作为探针在分子识别领域对物质进行检测。本论文的主要研究内容如下:
     1.发现纳米金能够增强铈(IV)-亚硫酸钠-诺氟沙星化学发光体系。通过对化学发光谱图、荧光光谱、紫外可见吸收光谱和透射电镜图进行研究,提出化学发光体系可能的发光机理为:纳米金能促进自由基的形成,并且加速纳米金表面的电子转移速度。测定的诺氟沙星线性范围为7.9×10-7 ~ 1.9×10-5 mol·L-1,检出限为8.2×10-8 mol·L-1。此方法被成功应用于尿液检测。
     2.基于铽(III)能敏化铈(IV)和亚硫酸钠化学发光体系检测诺氟沙星,注入纳米银后,体系的发光信号增强,据此建立了一种检测诺氟沙星的新方法。在最优条件下,测定了诺氟沙星线性范围为2.0×10-7 ~ 4.0×10-5 mol·L-1,检测限为3.0×10-8 mol·L-1。对化学发光可能的机理进行了探讨。
     3.利用Hg2+的核酸适体修饰纳米金形成探针,建立了一种定量检测Hg2+离子的方法。Hg2+适体吸附在纳米金表面,使纳米金的稳定性增强,抑制氯化钠对纳米金的团聚作用。溶液中有Hg2+离子存在时,由于适体与纳米金的吸附作用小于适体与Hg2+离子的亲和作用,纳米金失去适体保护在氯化钠作用下发生团聚。溶液颜色由红变蓝,紫外可见光谱最大吸收峰由520 nm红移至620 nm。在最优条件下,吸光度的比值(A620/A520)与Hg2+离子浓度在5.0×10-9 ~ 7.2×10-7 mol·L-1范围内呈线性关系,检测限可达3.3×10-10 mol·L-1。研究了K+、Ca2+等常见离子的干扰,结果表明,该方法具有良好的选择性。
     4.提出了一种采用纳米银为探针检测Hg2+离子的新方法。利用适体保护纳米银,抑制碘化钾对纳米银的团聚现象;若Hg2+离子存在,适体与Hg2+离子结合,纳米银失去保护发生团聚,通过紫外可见吸收峰的比值A584/A398对Hg2+离子进行检测。Hg2+离子线性浓度范围为4.00×10-9 ~ 2.09×10-6 mol·L-1,其检出限为5.84×10-10 mol·L-1。该方法对Hg2+离子有特异性,测定了实际水样中的Hg2+离子,为环境监测和生物样品分析提供了有力的工具。
Nanoparticles, with their sizes in the range of l ~ 100 nm, are currently under intense investigation owing to their special properties. These materials exhibit size quantum effect, small size effect, surface effect, macroscopic quantum tunneling effect and dielectric confinement effect that differ from both their bulk material and the individual atoms from which they comprised. With these unique properties, nanoparticles are particularly attractive in the applications of chemiluminescence (CL) and sensor.
     In this dissertation, the physical and chemical properties of nanoparticles (NPs), the synthesis of nanoparticles and their applications in CL and sensor fields were reviewed. Furthermore, gold nanoparticles (gold NPs) and silver nanoparticles (AgNPs) are applied in liquid-phase CL system and the CL mechanism was thoroughly explored. Meanwhile, the sensors, constructed by the aptamer combining with nanoparticles, have been successfully used to detect mercury(II). The main research results are as follows:
     1. The CL system from the redox reaction of cerium(IV) and sodium sulfite enhanced by gold NPs is developed for the determination of norfloxacin (NFLX). CL profiles, UV-Visible spectra, fluorescence spectra, and transmission electron microscopy (TEM) studies are carried out before and after the CL reactions to investigate the CL enhancement mechanism. The mechanism is supposed to originate from the enhancer of gold NPs, which facilitates the radical generations and electron-transfer processes taking place on the surface of the gold NPs. Under the selected experimental conditions, a linear relationship was obtained between the CL intensity and the concentrations of NFLX in the range of 7.9×10-7 to 1.9×10-5 mol·L-1 and the detection limit was 8.2×10-8 mol·L-1. This method is successfully applied to the determination of NFLX in human urine. Chemiluminescence occurring on the surface of gold NPs presents a new view of the chemical reactivity and catalytic effect, which indicates that the proposed system is of great analytical potential.
     2. Chemiluminescence was elicited in the system cerium(IV)-sulphite-NFLX sensitized by Tb3+ in acidic condition, which was remarkably enhanced in the presence of AgNPs in this work. Based on these observations, a new flow-injection CL method was developed for the NFLX determination. The CL intensity is directly proportional to the concentration of NFLX in the range of 2.0×10-7 to 4.0×10-5 mol·L-1 with a detection limit of 3.0×10-8 mol·L-1. The possible CL mechanism of the system was further explored.
     3. A method for Hg2+ quantitative determination was developed which the Hg2+ aptamer was used to modify gold NPs. The aptamer was absorbed onto the gold NPs which the gold NPs’stability against salt-induced aggregation was reinforced. But this attraction was weaker than the affinity between the target (Hg2+) and the aptamer. Addition of salt resulted in aggregation of gold NPs that led to red-to-blue color change if the proper Hg2+ and aptamer both were put into the gold NPs solution. The maximum absorption wavelength would change from 520 to 620 nm. Before detecting Hg2+, the concentrations of sodium chloride and aptamer were optimized, and the appropriate pH was chosen. Under optimal conditions, the absorption ratio A620/A520 was proportional to the concentration of Hg2+ in the range of 5.0×10-9 to 7.2×10-7 mol·L-1 and the detection limit was 3.3×10-10 mol·L-1. Interferences from selected inorganic ions were investigated and the proposed method was simple and sensitive.
     4. For highly selective and sensitive detection of Hg2+, a new approach was presented by use of aptamer and AgNPs (Apt-AgNPs) probe. Most of colorimetric methods previously reported employed gold NPs as sensing elements. In this work, AgNPs binding aptamer were used to detect Hg2+ against KI-induced aggregation. In the absence of Hg2+, the aptamer could protect AgNPs from KI-induced aggregation, whereas in the presence of Hg2+, aptamer combined with Hg2+ and AgNPs aggregated. Under optimum conditions, the Apt-AgNPs probe exhibited a high selectivity toward Hg2+ in the range of 4.00×10?9 ~ 2.09×10?6 mol·L-1, with a detection limit of 5.84×10?10 mol·L-1. The synthesis and remarkable properties of AgNPs help to extend the development of the Apt-AgNPs probe detecting metal ions. The proposed method was successfully applied for Hg2+ detection in three real samples with satisfactory results.
引文
[1] Ping Y., Hdjipanayis G.C., Magnetic-properties of fine cobalt particles prepared by metal atom reduction[J], J. Appl. Phys., 1990, 67(9): 4502-4508
    [2] Hagfeldt A., Gratzel M., Light-induced redox reactions in nanocrystalline systems[J], Chem. Rev., 1995, 95(1): 49-68
    [3] Ball P., Garwin L., Science at the atomic scale[J], Nature, 1992, 355(6363): 761-768
    [4] Legget A.J., Chakravarty S., Dynamics of the dissipative two-state system[J], Rev. Mod. Phys., 1987, 59(1): 1-87
    [5] Su C.H., Wu P.L., Yeh C.S., Sonochemical synthesis of well-dispersed gold nanoparticles at the ice temperature[J], the Journal of Physical Chemistry, 2003, 107(51): 14240-14243
    [6] Watson K.J., Zhu J., Nguyen S.B.T., et.al, Hybrid nanoparticles with block copolymer shell structures[J], J. Am. Chem. Soc., 1999, 121(2): 462-463
    [7] Brust M., Fink J., Bethel D., et.al, Coordination and oxidation of vanadium(II) by 1,2-bis(2-sulfidophenylsulfanyl)ethane(2-)(S4): the structures of [V(S4)tmeda], the first example of vanadium(II)-sulfide coordination, and of [V3(μ-O)2(S2)4(tmeda)2](S2 = 1,2-benzenedithiolate(2-)] [J], Chem. Commun., 1995, 2:165-166
    [8] Hostetler M.J., Wingate J.E., Zhong C.J., et.al, Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size[J], Langmuir, 1998, 14(1): 17-30
    [9] Chen S., Muray R.W., Arenethiolate monolayer-protected gold clusters[J], Langmuir, 1999, 15(3): 682-689
    [10] Montalti M., Prodi L., Zacheroni N., et.al, Kinetics of place-exchange reactions of thiols on gold nanoparticles[J], Langmuir, 2003, 19(12): 5172-5174
    [11] Song Y., Muray R.W., Dynamics and extent of ligand exchange depend on electronic charge of metal nanoparticles[J], J. Am. Chem. Soc., 2002, 124(24): 7096-7102
    [12] Chen S., Huang K., Electrochemical and spectroscopic studies of nitrophenyl moieties immobilized on gold nanoparticles[J], Langmuir, 2000, 166(4): 2014-2018
    [13] Brown K.R., Fox A.P., Natan M.J., A stepwise electron-transfer relay mimicking the primary charge separation in bacterial photosynthetic reaction center[J], J. Am. Chem. Soc., 1996, 118(1): 155-168
    [14] Fitz-Gerald J., Pennycook S., Gao H., et. al, Synthesis and properties of nanofunctionalized particulate materials[J], Nanostructured materials, 1999, 12(5): 1167-1171
    [15]曹茂盛,超微颗粒制备科学与技术[M],哈尔滨:哈尔滨工业大学出版社,1996.
    [16] Sun L., Zhang Z., Dang H., A novel method for preparation of silver nanoparticles[J], Materials Letters, 2003, 57(24-25): 3874-3879
    [17] Esumi K., Hosoya T., Suzuki A., Formation of gold and silver nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine)dendrimers[J], Journal of Colloid and Interface Science, 2000, 226: 346-352
    [18] Zhou Y., Yu S.H., Wang C.Y., et.al, A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites[J], Advanced Materials, 1999, 11(10): 850-852
    [19]廖学红,李鑫,电化学制备纳米银[J],黄冈师范学院学报,2001, 21(5): 58-59
    [20]廖学红,朱俊杰,赵小宁等,纳米银的电化学合成[J],高等学校化学学报,2000, 12(21): 1837-1839
    [21] Rong M., Zhang M., Liu H., Synthesis of silver nanoparticles and their self-organization behavior in epoxy resin[J], Polymer, 1999, 40: 6169-6178
    [22] Kamen A.,Yoshimura T., Esumi K., Preparation of noble metal nanoparticles in supercritical carbon dioxide[J], Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 215(1-3): 181-189
    [23] Frederix P., Friedt J.M., Choi K.H., et.al, Biosensing based on light absorption of nanoscaled gold and silver particles[J], Analytical Chemistry, 2003, 75(24): 6894-6900
    [24] Shi Z.L., Neoh K.G., Kang E.T., Surface-grafted viologen for precipitation of silver nanoparticles and their combined bactericidal activities[J], Langmuir, 2004, 70(16): 6847-6852
    [25] Mei Y., Lu Y., Polzcr P., et.al, Catalytic activity of palladiumn anoparlicles encapsulated in spherical polyelectrolyte brushes and corc-shell microgels[J], Chemistry of Materials, 2007, 19(5): 1062-1069
    [26] Mei Y., Sharma G., La Y., et.al, High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes[J], Langmuir, 2005, 21(26): 12229-12234
    [27] Magdassi S., Grouchko M., Toker D., et.al, Ring stain effect at room temperature in silvern anoparticles yields high electrical conductivity[J], Langmuir, 2005, 21(23): 10264-10267
    [28]林金明,化学发光基础理论与应用[M],北京:化学工业出版社,2004. 54-67
    [29] Abbott R.W., Townshend A., Gill R., Flow injection–Fourier transform infrared spectrometric determination of paracetamol in pharmaceuticals[J], Analyst, 1996, 121(5): 635-639
    [30] Korenaga T., Zhou X., Okada K., et.al, Determination of chemical oxygen demand by a flow-injection method using cerium(IV) sulphate as oxidizing agent[J], Anal. Chim. Acta., 1993, 272 (2):237-244
    [31] Nie L.H., Zhao H.C., Wang X., et.al, Determination of lomefloxacin by terbium sensitized chemiluminescence method[J], Anal. Bioanal. Chem., 2002, 374(7-8): 1187-1190
    [32] Huang Y.M., Chen Z.H., Chemiluminescence of chlorpromazine hydrochloride based on cerium(IV) oxidation sensitized by rhodamine 6G[J], Talanta, 2002, 57(5): 953-959
    [33] Bowie A.R., Fielden PR., Lowe R.D., et.al, Sensitive determination of manganese using flow injection and chemiluminescent detection[J], Analyst, 1995, 120(8): 2119-2127
    [34] Gammelgaard B., Jons O., Nielson B., Simultaneous determination of chromium(III) and chromium(VI) in aqueous solutions by ion chromatography and chemiluminescence detection[J], Analyst, 1992, 117(3): 637-640
    [35] Cui H., Zhang Z.F., Shi M.J., Chemiluminescent reactions induced by gold nanoparticles[J], J. Phys. Chem. B, 2005, 109(8): 3099-3103
    [36] Zhang Z.F., Cui H., Lai C.Z., et.al, Gold manoparticle-catalyzedlumiol chemiluminescene and its analytical applications[J], Anal. Chem., 2005, 77(10): 3324-3329
    [37] Wang L., Yang P., Li Y.X., et.al, A flow injection chemiluminescence method for the determination of fluoroquinoline derivative using the reaction of luminol and hydrogen peroxide catalyzed by gold nanoparticles[J], Talanta, 2007, 72(3): 1066-1072
    [38] Cui H., Zhang Z.F., Shi M.J., Light emission of gold nanoparticles induced by the reaction of bis(2,4,6-trichehlorophenyl) oxalate and hydrogen peroxide[J], Anal. Chem., 2005, 77(19): 6402-6406
    [39] Zhang Z.F., Cui H., Shi M.J., Chemiluminescence accompanied by the reaction of gold nanparticles with potassium permanganate[J], Phys. Chem. Chem. Phys., 2006, 8(8): 1017-1021
    [40] Duan C.F., Cui H., Zhang Z.F., et.al, Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferriyanide chemiluminescence[J], J. Phys. Chem. C, 2007, 111(12): 4561-4566
    [41] McKie A., Samuel D., Cohen B., et.al, Development of a quantitative immuno-PCR assay and its use to detect mumps-specific IgG in serum[J], Journal of Immunological Methods, 2002, 261(122): 167-175
    [42] Thomas H., Dinshaw J., Adaptiver recognition by nucleic acid aptamers[J], Science, 2000, 287(5454): 820-821
    [43] Tombelli S., Minunni M., Mascini M., Analytical applications of aptamers[J], Biosensors and Bioelectronics, 2005, 20(12): 2424-2434
    [44] Hamula C.L.A., Gulhrie J.W., Zhang H.Q., et.al, Selection and analytical applications of aptamers[J], Trends in Analytical Chemistry, 2006, 25(7): 681-691
    [45]姚春艳,府伟灵,适配子技术在生物传感器中的应用[J],国际检验医学杂志,2006, 27(8): 707-708
    [46] Rupcich N., Chiuman W., Nutiu R., et.al, Quenching of fluorophore-labeled DNA oligonucleotides by divalent metal ions: implications for selection, design and applications of signaling aptamers and signaling deoxyribozymes[J], J. Am. Chem. Soc., 2006, 128(3): 780-790
    [47] Hofmann H.P., Limmer S., Hornung V., et.al, Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair[J], RNA, 1997, 3(11): 1289-1300
    [48] Haller A.A., Sarnow P., In vitro selection of a 7-methyl-guanosine binding RNA that inhibits translation of capped mRNA molecules, Proceedings of the National Academy of Science USA[J], 1997, 94(16): 8521-8526
    [49] Williams K.P., Liu X.H., Schumacher T.N.M., et.al, Bioactive and nuclease-resistant L-DNA ligand of vasopressin[J], Proceedings of the National Academy of Science USA, 1997, 94(21): 11285-11290
    [50] Kubik M.F., Stephens A.W., Schneider D., et.al, High-affinity RNA ligands to human alpha-thrombin[J], Nucleic Acids Research, 1994, 22(13): 2619-2626
    [51] Bock L.C., Griffin L.C., Latham J.A., et.al, Selection of single-stranded DNA molecules that bind and inhibit human thrombin[J], Nature, 1992, 355(6360): 564-566
    [52] Jellinek D., Lynott C.K., Rifkin D.B., et.al, High-affinity RNA ligands to basic fibroblast growth factor inhibit receptor binding[J], Proceedings of the National Academy of Science USA, 1993, 90(23): 11227-11231
    [53] Green L.S., Jellinek D., Jenison R., et.al, Inhibitory DNA ligands to platelet-derived growth factor B-chain[J], Biochemistry, 1996, 35(45): 14413-14424
    [54] Wiegand T.W., Williams P.B., Dreskin S.C., et.al, High-affinity oligonucleotide ligands to human IgE inhibit binding to Fcepsilon receptor I[J]. Journal of Immunology, 1996, 157(1): 221-230
    [55] Nazarenko I.A., Uhlenbeck O.C., Defining a smaller RN substrate for elongation factor Tu[J], Biochemistry, 1995, 34(8): 2545-2552
    [56] Lochrie M.A., Waugh S., Pratt D.G., et.al, In vitro selection of RNAs that bind to the human immunodeficiency virus type-1 Gag polyprotein[J], Nucleic Acids Research, 1997, 25(14): 2902-2910
    [57] Davis K.A., Lin Y., Abrams B., et.al, Staining of cell surface human CD4 with 2’-F-pyrimidine-containing RNA aptamers for flow cytometry[J], Nucleic Acids Research, 1998, 26(17): 3915-3924
    [58] Kraus E., Barclay A.N., Barclay A.N, Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit CD4+ T lymphocyte function[J], Journal of Immunology, 1998, 160(11): 5209-5212
    [59] Wallis M.G., Ahsen U.V., Schroeder R., et.al, A novel RNA motif for neomycin recognition[J], Chemistry & Biology, 1995, 2(8): 543-552
    [60] Clonis Y.D., Affinity chromatography matures as bioinformatic and combinatorial tools develop[J], Journal of Chromatography A, 2006, 1101(1-2): 1-24
    [61] Geiger A., Burgstaller P., von der Eltz H., et.al, RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity[J], Nucleic Acids Research, 1996, 24(6): 1029-1036
    [62] Famulok M., Molecular recognition of amino acids by RNA aptamers: an L-citrulline binding RNA motif and its evolution into an L-arginine binder[J], J. Am. Chem. Soc., 1994, 116(5): 1698-1706
    [63] Burgstaller P., Famulok M., Isolation of RNA aptamers forbiological cofactors by in vitro selection[J], Angewandte Chemie International Edition in English, 1994, 33(10): 1084-1087
    [64] Wallis M.G., Streicher B., Wank H., et.al, In vitro selection of a viomycin-binding RNA pseudoknot[J], Chemistry& Biology, 1997, 4(5): 357-366
    [65] Potyrailo R.A., Conrad R.C., Ellington A.D., et.al, Adapting selected nucleic acid ligands (aptamers) to biosensors[J], Analytical Chemistry, 1998, 70(16): 419-3425
    [66] Davis J.J., Tkac J., Laurenson S., et.al, Peptide aptamers in label-free protein detection: 1. Characterization of the immobilized scaffold[J], Analytical Chemistry, 2007, 79(3): 1089-1096
    [67] Cai H., Lee T.M.H., Hsing I.M., Label-free protein recognition using an aptamer-based labe-free protein recognition using an aptamer-based impedance measurement assay[J], Sensors and Actuators B, 2006, 114: 433-437
    [68] Murray C.B., Norris D.J., Bawendi M.G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites[J], J. Am. Chem. Soc., 1993, 115(19): 8706-8715
    [69] Feltin N., Pileni M.P., New Technique for Synthesizing Iron Ferrite Magnetic Nanosized Particles[J], Langmuir, 1997, 13(15): 3927-3933
    [70] Zhang J., Malicka J., Gryczynski I., et.al, Oligonucleotide displaced organic monolayer-protected silver nanoparticles and enhanced luminescence of their salted aggregates[J], Analytical Biochemistry, 2004, 330(1): 81-86
    [71] Su X., Chew F.T., Li S.F.Y., Design and application of piezoelectric quartz crystal-basedimmunoassay[J], Anal. Sci., 2000, 16(2): 107-114
    [72] Liu T., Tang J., Jiang L., The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity[J], Biochem. Biophys. Res. Commun., 2004, 313(1): 3-7
    [73] Wei Y., Cao C., Jin R.C., et.al, Nanoparticles with Rama Spectroscopic Fingerprints for DNA and RNA Detection[J], Science, 2002, 297(5586): 1536-1540
    [74] Li Y.X., Chen J.L., Zhu C.Q., et.al, Preparation and application of cysteine-capped ZnS nanoparticles as fluorescence probe in the determination of nucleic acids[J], Spectrochimica Acta Part A, 2004, 60(8-9): 1719-1724
    [75] S?fa?ík I., S?fa?íkorkováM., Use of magnetic techniques for the isolation of cells[J], J. Chromatogr. B. Biomed Sci. Appl., 1999, 722(1): 33-53
    [76] Chemla Y.R., Grossman H.L., Poon Y., et.al, Ultrasensitive magnetic biosensors for homogeneous immunoassay[J], Proc. Natl. Acad. Sci. USA, 2000,97(26):14268-14272
    [77] Cai H., Xu C., He P., et.al, Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA[J], J. Electroanal. Chem., 2001, 510(1-2): 78-85
    [78] Zhang B., Zhang Z.J., Wang B., et.al, Preparation of gold nano-arrayed electrode on silicon substrate and its electrochemical properties[J], Acta Chimi. Sin., 2001, 59: 1932-1936
    [79] Gonzalez-Garcia M.B., Fernandez-Sanchez C., Costa-Garcia A., Colloidal gold as an electrochemical label of streptavidin-biotin interaction[J], Biosens Bioelectron, 2000, 15(5-6): 315-321
    [80] Maxwell D., Taylor M.J., Nie S., Self-assembled nanoparticle probes for recognition and detection of biomolecules[J], J. Am. Chem. Soc., 2002, 124(32): 9606-9612
    [81] Mucic R.C., Mirkin C.A., Letsinger R.L., et.al, What controls the optical properties of DNA-linked gold nanoparticle assemblies[J], J. Am. Chem. Soc., 2000, 122(19): 4640-4650
    [82] Demers L.M., Mirkin C.A., Mucic R.C., A fluorescence-based method for determining the surface coverage and hybriaization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles[J], Anal. Chem., 2000, 72(22): 5535-5541
    [83] Stothoff J.J., Elghanian R., Mueie R.C., et.al, One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes[J], J. Am. Chem. Soc., 1998, 120(9): 1959-1964
    [84] Taton T.A., Mueie R.C., Mirkinand C.A., et.al, The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures[J], J. Am. Chem. Soc., 2000, 122(26): 6305-6306
    [85] Liu Z.H., Huang Z.Y., Cai R.X., Study of the fluorescence characteristics of norfloxacin in reversed micelles and application in analysis[J], Analyst, 2000, 125(8): 1477-1480
    [86] Chu P.S., Wang R.C., Chu H.F.V., Liquid chromatographic determination of fluoroquinolones in egg albumen and egg yolk of laying hens using fluorometric detection[J], J. Agric. Food Chem., 2002, 50(16): 4452-4455
    [87] Miao Y.H., Liu J.K., Hou F.J., et.al, Determination of adenosine disodium triphosphate (ATP) using norfloxacin-Tb3+ as a fluorescence probe by spectrofluorimetry[J], J. Lumin., 2006, 116(2): 67-72
    [88] Shervington L.A., Abba M., Hussain B.,et.al, The simultaneous separation and determination of five quinolone antibotics using isocratic reversed-phase HPLC: Application to stability studies on an ofloxacin tablet formulation[J], J. Pharm. Biomed. Anal., 2005, 39(3-4): 769-775
    [89] Fierens C., Hillaert S., Vanden Bossche W.J., Comparison of high-performance liquid chromatography and capillary zone electrophoresis for the determination of parabens in a cosmetic product[J], J. Pharm. Biomed. Anal., 2000, 22(4): 763-769
    [90] Du J.X., Li Y.H., Lu J.R., Chemiluminescence determination of fluoroquinolone antibiotics using a soluble manganese (IV)-sulphite system[J], Luminescence, 2005, 20(1): 30-35
    [91] Oca?a J.A., Barragán F.J., Callejón M., et.al, Application of lanthanide-sensitised chemiluminescence to the determination of levofloxacin, moxifloxacin and trovafloxacin in tablets[J], Microchimica Acta, 2004, 144(1-3): 207-213
    [92] Chen S.L., Liu Y., Zhao H.C., et.al, Determination of norfloxacin using a terbium-sensitized electrogenerated chemiluminescence method[J], Luminescene, 2006, 21(1): 20-25
    [93] Du J.X., Li Y.H., Lu J.R., Chemiluminescence during rice seed imbibition at different temperatures[J], Luminescence, 2006, 20(1): 31-35
    [94] Zhang X.H., Ouyang J., Zhai S.D., et.al, Flow-injection with enhanced chemiluminescence detection of ofloxacin in human plasma[J], Luminescence, 2005, 20(4-5): 362-369
    [95] Wang X., Zhao H., Nie L., et.al, Europium sensitized chemiluminescense determination of rufloxacin[J], Anal. Chim. Acta., 2001, 445(2): 169-175
    [96] Wallace W.T., Whetten R.L., Coadsorption of CO and O2 on Selected Gold Clusters: Evidence for Efficient Room-Temperature CO2 Generation[J], J. Am. Chem. Soc., 2002, 124(25): 7499-7505
    [97] Cui H., Zhang Z.F., Shi M.J., Chemiluminescent reactions induced by gold nanoparticles[J], J. Phys. Chem. B, 2005, 109(8): 3099-3103
    [98] Brown K.R., Fox A.P., Natan M.J., Eletrochemistry of cytochrome c at Au Colloid-Modified SnO2 Electrodes[J], J. Am. Chem. Soc.,1996, 118(5): 1154-1157
    [99] Wu Z.S., Jiang J.H., Li F., et.al, Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles[J], Anal. Biochem., 2006,353(1): 22-29
    [100]赵慧春,陆燕,易林,等,铽-妥舒沙星的敏化化学发光研究[J].分析试验室,2004, 23(1): 54-57
    [101] Stauff J., Jaeschke W., A chemiluminescence technique for measuring atmospheric trace concentrations of sulfur dioxide[J], Atoms. Environ., 1975, 9(11): 1038-1039
    [102] Takeuchi K., Ibusuki T., Determination of traces of hydrogensulfite by chemiluminescence with cerium(IV) sulfate as the reagent[J], Anal. Chim. Acta., 1985, 174: 359-363
    [103] Pearse R.W.B., Gaydon A.G., The Identification of Molecular Spectra, 4th Edition, London: Champman & Hall, 1976. 297-298
    [104] Cumberland S. L., Strouse, G. F. Analysis of the nature of oxyanion adsorption on gold nanomaterial surfaces[J], Langmuir, 2002, 18(1): 269-276
    [105] Freund P.L., Spiro M., Colloidal catalysis: the effect of sol size and concentration[J], J. Phys. Chem., 1985, 89(7): 1074-1077
    [106] Liu Z.H., Huang Z.Y., Cai R.X., Study of the fluorescence characteristics of norfloxacin in reversed micelles and application in analysis[J], Analyst, 2000, 125(8): 1477-1481
    [107] Samanidou V.F., Christodoulou E.A., Papadoyannis I.N., Direct determination of five fluoroquinolones in chicken whole blood and in veterinary drugs by HPLC[J], J. Sep. Sci., 2005, 28(4): 325-331
    [108] Ma H.Y., Zheng X.W., Zhang Z.J., Flow-injection electrogenerated chemiluminescence determination of fluoroquinolones based on its sensitizing effect[J], Langmuir, 2005, 20(4-5): 303-306
    [109] Xu Z.F., Liu L., Deng Q.Y., Molecularly imprinted polymers with bi-functional monomers of polymerizable cyclodextrin derivatives and 2-(Diethylamino)-ethyl methacrylate for recognition of norfloxacin in aqueous media[J], Chinese Chemical Letters, 2006, 17(5): 641-664
    [110] Guo J.Z., Cui H., Lucigenin chemiluminescence induced by noble metal nanoparticles in the presence of adsorbates[J], J. Phys. Chem. C, 2007, 111(33): 12254-12259
    [111]杨志洁,赵慧春,丁芬,等,银纳米敏化铽–诺氟沙星荧光和二级散射的研究与应用[J],光谱学与光谱分析,2007, 27(12): 2534-2537
    [112] Gutknecht J., Inorganic mercury (Hg2+) transport through lipid bilayer membranes[J], J. Membr. Biol., 1981, 61(1): 61-66
    [113] Patricia C.M., Eva R.T.,ángel M.R., et.al, Cold vapour atomic fluorescence determination of mercury in milk by slurry sampling using multicommutation[J], Anal. Chim. Acta., 2004, 506(2): 145-153
    [114] Habib B., Ali G., Determination of very low levels of dissolved mercury(II) and methylmercury in river waters by continuous flow with on-line UV decomposition and cold-vapor atomic fluorescence spectrometry after pre-concentration on a silica gel-2-mercaptobenzimidazol sorbent[J], Talanta, 2001, 55(6): 1141-1150
    [115] Hu S.W., Liu W.B., Huang Y.M., et.al, An assay for inorganic mercury(II) based on its post-catalytic enhancement effect on the potassium permanganate-luminol system[J], Luminescence, 2006, 21(4): 245-250
    [116] JoséLuis G., Lorenzo F., García Barrera T., Simultaneous determination of mercury and arsenic species in natural freshwater by liquid chromatography with on-line UV irradiation, generation of hydrides and cold vapor and tandem atomic fluorescence detection[J], J. Chromatogr. A, 2004, 1056(1-2): 139-144
    [117] Qvarnstr?m J., Lambertsson L., Havarinasab S., et.al, Determination of methylmercury, ethylmercury, and inorganic mercury in mouse tissues, following administration of thimerosal, by species-specific isotope dilution GC-Inductively Coupled Plasma-MS[J], Anal. Chem., 2003, 75(16): 4120-4124
    [118] Huang C.C., Chang H.T., Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles[J], Chem. Commun., 2007, 12: 1215-1217
    [119]张兴梅,石玉生,核酸适配子及其治疗应用[J],医学分子生物学杂志,2006, 3(5): 434-437
    [120]鲁群岷,刘忠芳,刘绍璞,金纳米微粒作探针共振瑞利散射法测定某些蒽环类抗癌药物[J],化学学报,2007, 65(9): 821-828
    [121]蒋治良,王娜,梁爱惠,免疫纳米金共振散射光谱探针检测痕量免疫球蛋白A[J],化学学报,2008, 66(9): 1047-1052
    [122] XiaoY., Piorek B.D., Plaxco K.W., et.al, A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement[J], J. Am. Chem. Soc., 2005, 127(51): 17990-17991
    [123] Le Floch F., Ho H.A., Leclerc M., Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer[J], Anal. Chem., 2006, 78(13): 4727-4731
    [124] Pavlov V., Shlyahovsky B., Willner I., Fluorescence detection of DNA by the catalytic activation of an aptamer/thrombin complex[J], J. Am. Chem. Soc., 2005, 127(18): 6522-6523
    [125] Li Y., Lee H.J., Corn R.M., Fabrication and characterization of RNA aptamer microarrays for the study of protein-aptamer interactions with SPR imaging[J], Nucleic Acids Res., 2006, 34(22): 6416-6424
    [126] Wei H., Li B.L., Li L., et.al, Electrochemically and photochemically active Palladium(II) heterotopic metallacalix[J], Chem. Commun., 2007, 36: 3735-3737
    [127] Wang L.H., Liu X.F., Hu X.F., et.al, Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers[J], Chem. Commun., 2006, 36: 3780-3782
    [128] Ono A., Togashi H., Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions[J], Angew. Chem. Int. Ed., 2004, 43(33): 4300-4302
    [129] Zhang S., Wu Y., Li H., Flow injection chemiluminescence determination of N-tetrahydrobenzothiazolyl imines[J], Analyst, 2000, 125: 753-757
    [130]莫志宏,余红伟,王红力,纳米金增效微重量法核酸检测的研究[J],分析化学研究简报,2006, 34(8): 1169-1171
    [131] Rothberg L.J., Li H.X., Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction[J], J. Am. Chem. Soc., 2004, 126(35): 10958-10961
    [132] Tasset D.M., Kubik M.F., Steiner W., Oligonucleotide inhibitors of human thrombin that bind distinct epitopes[J], J. Mol. Biol., 1997, 272(5): 688-698
    [133]彭剑淳,刘晓达,丁晓萍,等,可见光光谱法评价胶体金粒径及分布[J],军事医学科学院院刊,2000, 24(3): 211-212
    [134] Wang Q., Dionysiou D.D., Sorial G.A., et.al, Sources and remediation for mercury contamination in aquatic systems-a literature review[J], Environ. Pollut., 2004, 131(2): 323-336
    [135] Cathum S., Velicogna D., Obenauf A., et.al, Detoxification of mercury in the environment[J], Anal. Bioanal. Chem., 2005, 381(8): 1491-1498
    [136] Hu S.G., Liu W.B., Huang Y.M., et.al, An assay for inorganic mercury (II) based on its postcata;utic enhancement effect on the potassium permanganate-luminol system[J], Luminescnce, 2006, 21(5): 245-250
    [137] Chiang C.K., Huang C.C., Liu C.W., et.al, Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution[J], Anal. Chem., 2008, 80(10): 3716-3721
    [138] Huang C.B., Fan J.L., Peng X.J., et.al, Highly selective and sensitive twin-cyano-stilbene-based two-photon fluorescent probe for mercury (II) in aqueous solution with large two-photon absorption cross-section[J], J. Photoch. Photobio. A., 2008, 199(2-3): 144-149
    [139] Zeng D.X., Chen Y., A selective fluorescent probe for Hg2+ detection in aqueous solution[J], J. Photoch. Photobio. A, 2007, 186(2-3): 121-124
    [140] Krupp E.M., Milne B.F., Mestrot A., et.al, Investigation into mercury bound to biothiols: structural identification using ESI–ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and ESI-MS[J], Anal. Bioanal. Chem., 2008, 390(7): 1753-1764
    [141] Huang C.C., Chang H.T., Selective gold-nanoparticle-based“turn-on”fluorescent sensors for detection of mercury (II) in aqueous solution[J], Anal. Chem., 2006, 78(24): 8332-8338
    [142] Darbha G.K., Ray A., Ray P.C., Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish[J], ACS Nano., 2007, 1(3): 208-214
    [143] Li H., Zhang Y., Wang X., et.al, Calixarene capped quantum dots as luminescent probes for Hg2+ ions[J], Mater. Lett., 2007, 61(7): 1474-1477
    [144] Gao X.Y., Xing G.M., Yang Y.L., et.al, Detection of trace Hg2+ via induced circular dichroism of DNA wrapped around single-walled carbon nanotubes[J], J. Am. Chem. Soc., 2008, 130(29): 9190-9191
    [145] Lee J.S., Mirkin C.A., Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles[J], Anal. Chem., 2008, 80(17): 6805-6808
    [146] Li H.X., Rothberg L.J., Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction[J], J. Am. Chem. Soc., 2004, 126(35): 10958-10961
    [147] Chen S.J., Huang Y.F., Huang C.C., et.al, Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles[J], Biosens. Bioelectron., 2008, 23(11): 1749-1753
    [148] Wei H., Li B.L., Li J., et.al, Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes[J], Chem. Commun., 2007, 36: 3735-3737
    [149] Wang L.H., Liu X.F., Hu X.F., et.al, Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers[J], Chem. Commun., 2006, 36: 3780-3782
    [150] Liu J.W., Lu Y., A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles[J], J. Am. Chem. Soc., 2003, 125(22): 6642-6643
    [151] Huang C.C., Huang Y.F., Cao Z.H., et.al, Aptamer-modified gold Nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors[J], Anal. Chem., 2005, 77(17): 5735-5741
    [152] Lee J.S., Lytton-Jean A.K.R., Sarah J.H., et.al, Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties[J], Nano. Lett., 2007, 7(7): 2112-2115
    [153] Wei H., Chen C.G., Han B.Y., et.al, Enzyme colorimetric assay using unmodified silver nanoparticles[J], Anal. Chem., 2008, 80(18): 7051-7055
    [154] Tang Y.L., He F., Yu M.H., et.al, A reversible and highly selective fluorescent sensor for mercury(II) using poly(thiophene)s that contain thymine moieties[J], Macromol. Rapid. Commun., 2006, 27(6): 389-392
    [155] Creighton J.A., Blathchford C.G., Albrecht M.G., Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength[J], J. Chem. Soc. Faraday Trans., 1979, 75(2): 790-798
    [156] Guo J.Z., Cui H., Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence[J], J. Phys. Chem. C, 2007, 111(33):12254-12259
    [157] Zhao W.A., Chiuman W., Lam J.C.F., et.al, Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation[J], Chem. Commun., 2007, 36: 3729-3731
    [158] Li H., Rothberg L., DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles[J], Anal. Chem., 2004, 76(18): 5414-5417
    [159] Liu C.W., Hsieh Y.T., Huang C.C., et.al, Detection of mercury(II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles[J], Chem. Commun., 2008, 19: 2242-2244

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700