咪唑啉膦酰胺盐酸盐的合成及其缓蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要以由环烷酸和二乙烯三胺合成的油溶性咪唑啉中间体为原料,与三氯氧磷进一步合成水溶性的咪唑啉膦酰胺盐酸盐,确定适宜的合成条件。运用静态挂片失重法和电化学极化曲线法,对合成产物在HCl-H_2S-H_2O体系和模拟油田水中的缓蚀性能进行了研究。
     在咪唑啉膦酰胺盐酸盐的合成中,采用单因素多水平的方法,考察了反应物料的配比、反应温度、反应时间以及溶剂等因素对合成产物的影响,得出最佳的反应条件:咪唑啉与三氯氧磷的摩尔比为3:1,反应最高温度控制在200℃左右,反应时间约为6个小时,采用无水乙醇作溶剂。
     在HCl-H_2S-H_2O体系中的缓蚀性能研究表明:咪唑啉膦酰胺盐酸盐在该介质中对A3钢具有良好的保护作用,缓蚀效果随其浓度的增加而增大;其缓蚀性能随实验温度的升高而降低;随溶液中H_2S含量的增大而降低,但降低程度逐渐减小,最后几乎不变;但是其缓蚀率随实验时间的延长先增大后降低。
     在模拟油田水介质中的缓蚀性能研究表明:咪唑啉膦酰胺盐酸盐在该介质中具有最佳投加剂量,缓蚀效果随缓蚀剂浓度的增大先升高后有所降低;其缓蚀效果受介质的pH值影响较大,当溶液呈酸性时,缓蚀率大大提高,此时所需的缓蚀剂的剂量远远低于未调pH值时。并且当溶液pH值为5左右时,其缓蚀效果最好;同时,咪唑啉膦酰胺盐酸盐的缓蚀性能受介质中溶解氧影响也较大,去除溶解氧后其缓蚀率大太提高。
     电化学极化曲线结果表明:咪唑啉膦酰胺盐酸盐在HCl-H_2S-H_2O中是属于阳极型的混合缓蚀剂,主要抑制了碳钢溶解的阳极过程,同时对阴极反应也有抑制作用;而在模拟油田水中,咪唑啉膦酰胺盐酸盐是属于阴极型缓蚀剂。因此,咪唑啉膦酰胺盐酸盐是一种对碳钢腐蚀反应的阳极和阴极均有抑制作用的缓蚀剂。
The oil-soluble imidazoline was synthesized by using naphthenic acid and diethylen triamine as raw materials,then the water-soluble imidazoline phosphoronamide hydrochloride salt(IPAH) was synthesized from imidazoline and phosphorus oxychloride.Through researching on the step of synthesis,different reaction conditions to the influence of the result were investigated,and the optimum reaction condition was obtained.The corrosion inhibition effects of IPAH in HCl and H_2S solution and the simulated oil field water were investigated by static weight loss method and electrochemical polarization curves.
     During the synthesis of IPAH,the different factors such as the ratio of reactants(imidazoline to phoshpror oxychloride),reaction time,temperature and solvent effected on the synthesis were studied,and the optimum reaction condition was obtained through tests:the ratio of naphthenic imidazoline to phoshpror oxychloride is 3:1,the maximum temperature is about 200℃,the reaction time is about 6h,and the solvent is anhydrous ethanol.
     The researches on the inhibition performance of IPAH in HCl and H_2S solution show that: IPAH attains good inhibition on the corrosion of A3 carbon steel,and the inhibition effect is increasing as the concentration of IPAH increases.The corrosion inhibition performance of IPAH is worse as the experiment temperature rises.It's also decrease when the concentration of H_2S is increasing,but the affect is small,then doesn't change at last.Finally,the corrosion inhibition rate first increase and then decrease as the experiment time extends.
     The researches on the inhibition performance of IPAH in the simulated oil field water show that:IPAH has a optimum concentration in the media.And the inhibition performance is effected by the pH value of the solution.The corrosion inhibition is best when the pH value is 5.And it is effected by the oxygen in the solution.When the oxygen is eliminated,the corrosion inhibition is much better.
     The results obtained from electrochemical polarization curves show that:IPAH is a mixed inhibitor which mainly inhibites the solvent of the carbon steel in anode and also inhibites the cathodic process in HCl and H_2S solution.IPAH is an inhibitor which inhibites the cathodic process in the simulated oilfield water.Therefore,IPAH is an inhibitor which inhibites the anode and cathodic reaction of carbon steel corrosion.
引文
[1]沈长斌,薛钰芝.咪唑啉类缓蚀剂的结构特性及其缓蚀性能[J].大连铁道学院学报,2003,24(4):89-91.
    [2]张大全.一种高效环境友好性缓蚀剂的合成[J].中国科技成果,2003,(7):5-38.
    [3]张天胜.缓蚀剂[M].北京:化学工业出版社,2001,1-3.
    [4]张宝宏,丛文博,杨萍.金属电化学腐蚀与防护[M].北京:化学工业出版社,2008,164.
    [5]Kanwar,Sumet,Eaton,Paul.Solution and methods for inhibitiog corrosion[P].USP:5,902,515,1999.
    [6]黄魁元,郑家炎.缓蚀剂科技发掌历程的回顾与展望[M].化学工业出版社,1999,279-380.
    [7]Soeda,Koichi,Ichimura,Takao.Present state of corrosion inhibitors in Japan.Cement and Concrete Composites.2003,25(1):117-122.
    [8]陆柱,蔡兰坤,陈中兴,等.水处理药剂[M].北京:化学工业出版社,2002,115-116.
    [9]P.G.Fox,G.Lewis,P.J.Boden.Some chemical aspects of the corrosion inhibition on copper by benzotriazle.Corrosion Science.1979,19(10):457-467.
    [11]Shun-Cun Shi,Xue-Ye Wang,Ping-Gui Yi,ect.Influence of Alkyl group of imidazolineyl-quaternary-ammonium-salt on corrosion inhibition efficiency[J].Journal of Central South University of Technology,2006,13(4):393-398.
    [12]LAHODNY-SARCO.Corrosion inhibition in oil and gas production[C].6~(th)European sympoean symposium in corrosion inhibitors.LAHODNY-SARC O.Ferrara:university of Ferrara,1985:1313-1329.
    [13]Y.AL-Farkh,F.H.AL-Hajjar,H.S.AL-Shamli.Further experiments on the control of corrosion of mild steel crude oil distillation[J].Corrosion Science,1980,(20):1195-1201.
    [14]K.Van Gelder.Inhibition of CO_2 corrosion in wet-gas lines by continuous injection of a Glycol-Soluble Inhibitor[J].Environnment Treatment and Control,1989,MP:50-55.
    [15]方云.两性表面活性剂[M].北京:中国轻工业出版社,2001,242.
    [16]Xueyuan Zhang,Fengping Wang,Yufang.Study of the inhibition mechanism of imidazoline amide on CO_2 corrosion of Armco iron[J].Corrosion Science,2001,43(8):1417-1431.
    [17]郭祥峰,贾丽华.阳离子表面活性剂及应用[M].北京:化学工业出版社,2002.
    [18]钟振声,杨兆禧,匡科.阳离了咪唑啉表面活性剂的合成[J].精细化工,2000,17(2):690-692.
    [19]方浩.咪唑啉类缓蚀剂在弱酸体系内抑制H_2S对N80钢材腐蚀的研究[J].油田化学,1998,15(4):268.
    [20]丁著明.阴离子表面活性剂的合成及性能研究[J].表面活性剂工业,1985,(4):6.
    [21]丁著明.油田注水管线缓蚀剂筛选优化[J].表面活性剂工业,1986(3):8.
    [22]王任芳,陈云,许林,等.咪唑啉类缓蚀剂的合成及其缓蚀性能研究[J].石油化工腐蚀与防护,2006,23(1):39-41.
    [23]张光华,顾玲,卢凤纪.咪唑啉季铵盐表面活性剂的制备及其缓蚀性能的研究[J].陕西科技大学学报,2003,21(2):15-18.
    [24]郭睿,吴从华,左笑,等.一种复合型咪唑啉缓蚀剂[J].腐蚀与防护,2006,27(7):241-243.
    [25]颜红侠,张秋禹,马晓燕,等.盐酸酸洗咪唑啉型缓蚀剂IM的研究[J].应用化工,2001,23(3):21-23.
    [26]于建辉.新型咪唑啉酸洗缓蚀剂配方及其性能研究[D].大连:大连理工大学,2004.
    [27]张世超,白致名.具有多吸附中心的缓蚀剂的合成及其性能研究[J].腐蚀科学与防护术,2003,15(2):79.
    [28]杨怀玉,陈家坚.IMC系列缓蚀剂研究在我国油田的应用[J].精细化工信息,1985,(8):17.
    [29]张光华,杨建桥.双烷基咪唑啉季铵盐阳离子表面活性剂在酸洗液中对碳钢缓蚀作用的研究[J].日用化学品科学,2000,23(增刊2):60-62.
    [30]谢学军,龚洵洁,彭珂如.高参数大容量锅炉盐酸酸洗新型缓蚀剂的探讨与研究[J].化学清洗,1998,14(4):1-3.
    [31]邱广敏,赵修太,吕华华,等.常减压塔顶缓蚀剂配方优化[J].石油炼制与化工,2006,37(8):65-68.
    [32]陈家坚,曹殿珍,曹家绶,等.咪唑啉季铵盐在盐酸溶液中对碳钢腐蚀的电化学行为影响的研究[J].陕西化工,1988,(4):11-13.
    [33]张光华,李俊国,郭炎,等.三苯环咪唑啉季铵盐的合成与缓蚀性能研究[J].腐蚀科学与防护,2002,14(2):95-97.
    [34]石顺存,易平贵,周秀林,等.环烷基咪唑啉衍生物多功能水处理剂的研究[J].工业水处理 2005,25(1):29-32.
    [35]吕振波.原油中环烷酸对金属材料的腐蚀与防护研究[D].沈阳:东北大学,2005.
    [36]Robbions W K.Clallenges in the characterization of naphthenic acids in petroleum[J].Prepr Am Chem Soc,1998,43(1):137-140.
    [37]武文广,薛莹试.论我厂加工高酸值原油的技术措施[J].化工设备与管道,2003,40(3):52-56.
    [38]任晓光,宋永吉,任绍梅,等.高酸值原油环烷酸的结构组成[J].过程工程学报,2003,3(3):218-221.
    [39]徐心茹,李心堂,文建发,等.高酸度稠油的脱盐脱酸[J].华东理工大学学报,1999,25(4):337-359.
    [40]Derungs W A.Naphthenic acid corrosion-An old enemy of petroleum industry[J].Corrosion,1999,378-385.
    [41]Laszlo P.Field desorption mass spectrometry[M].Marcel Deckker,1990,119-207.
    [42]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2002,116-117.
    [43]MERICHEM C O.Naphthemic acid market US[J].Chem mark Pep,1990,283(17):42.
    [44]郑家燊.缓蚀剂的研究现状与应用[J].腐蚀与防护,1997,18(3):36-40.
    [45]石顺存,张红.高纯环烷酸的制备[J].湘潭矿业学院学报,2001,16(3):47-50.
    [46]朱岳麟.炼油设备副食与防护技术新进展[J].石油华工设备,2002,1(31):14-16.
    [47]Helle H P.Guideline for corrosion control in crude distillers[M].Holland:New plantation,1993:21-60.
    [48]Zetlemis M J.Naphthenic acid corrosion and its control[J].Corrosion,1996:218.
    [49]Kane R D,Cayard M S.Improve corrosion control in refining processes[J].Hydrocarbon Processing,1995,1(11):129-142.
    [50]洪山海.光谱解析在有机化学中的应用[M].北京:科学出版社,1980,33.
    [51]Scheppele,S E,Chung,K C.Int.J.Mass Spectrom[J].Ion Phys,1983,(49):143.
    [52]王兆辉,王大喜.咪唑啉化合物生成机理的量子化学研究[J].石油学报(石油加工),1999,15(6):57-62.
    [53]罗国民.咪唑啉季胺盐缓蚀作用研究[J].化工腐蚀与防护,1997,25(3):2-3.
    [54]吴宇峰,周坤坪,梁劲翌.咪唑啉季铵盐水溶性缓蚀剂NH-1的合成及其性能研究[J].精细石油化工,2001,(5):39-42.
    [55]石顺存.新型杀菌剂的制备方法及其性能测试[J].湖南化工,1999,29(3):27-28.
    [56]石顺存,易平贵,曹晨忠,等.新型离子液体的合成及其阳离子基团缓蚀性能[J].化工学报,2005,56(6):1112-1119.
    [57]朱驯,周秀芹.环烷基咪唑啉衍生物在硫酸介质中的缓蚀性能研究[J].应用化工,2006,35(1):51-53.
    [58]R.Donald,Austin,H.Jeffrey,Edwards.Method for 1,2-substituted Imidazoline compositions[P].USP5:214,155,1993.
    [59]Tucker,James Robinson.Process for preparing substitute imidazoline fabric conditioning Compounds[P].EPA0:375,029,1974.
    [60]Elseter,H..Charles,Gibs,J.Gabriel Process for making 1-hydroxyethyl-2-undecyl-2-imidazoline[P].USP4:161,604,1979.
    [61]E.John.Fatty imidazoline crosslinkers for poilyrethane,polyurethaneurea and polyurea Applications[P].USP5:541,338,1995.
    [62]A.Clarice.Owiti,Abdul,Q.Khan.Method and compositions for stabilizing fatty acid imidazoline solutions[P].USP5:530,137,1994.
    [63]B.Robert.Betaine derinatives of bis-imidazoline compounds[P].USP3:893,244,1973.
    [64]李邦.水溶性咪唑啉季铵盐型缓蚀剂的合成及性能评价[J].精细石油化工,2005(4):44-46.
    [65]顾望平,刘小辉.加工进口高硫原油腐蚀环境分析与防护[J].石油化工腐蚀与防护,1994,(2):56-60.
    [66]J.A.Martin,F.W.Balone.The existence of imidazoline corrosion inhibitors[J].National Association of Corrosion Engincers,1985,41(5):281-287.
    [67]WANG.shi-fa,Furuno,Takedshi,CHENG,zhi.Synthsisofl-hydroxyethy-2-alkyl-2-imidazoline and its derivative sulfonate amphoteric surfactant from tall oil fatty acid[J].Jounnal of wood Science,2003,49(4):371-376.
    [68]Phillips,M.Brinley,Lace,B.Robert.Manufacture of imidazoline compounds[P].USP4:212,983,1980.
    [69]朱淮武.有机分子结构波谱解析[M].北京:化学工业出版社,2005,253.
    [70]宋诗哲.腐蚀电化学研究方法[M].北京:化学工业出版社,1988,12-15.
    [71]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994,55-69.
    [72]曾涵,刘瑞泉,王吉德等.N-咪唑基乙酸乙酯的合成及其缓蚀性能[J].应用化学,2003.20(5):487-490.
    [73]赵昀.咪唑啉型缓蚀剂的合成及其缓蚀行为研究[D].北京:北京化工大学,2006
    [74]周欣,杨怀玉,蔡铎昌,等.低碳钢在富含H_2S乙醇胺溶液中的腐蚀及缓蚀剂抑制[J].中国腐蚀与防护学报,2005,25(2):79-82.
    [75]何耀春,王汪,黄步耕,等.咪唑啉衍生物MC、MP的合成及在油田回注水中的缓蚀阻垢作用[J].油田化学,1997,14(4):336-339.
    [76]S.Nesic,G.T.Solvi,S.SK.Jerve.Cpmparison of rotating Cylinder and loop methods for testing CO_2 corrosion inhibitiors[J].British Corrosion Jourmal,1997,34(4):269-276.
    [77]S.Ramalandran and V.Jovancicevic.Molecular modeling of the inhibitor of mild steel carbon dioxi de corrosion by imidazolines[J].Corrosion,1999,55(3):259-267.
    [78]Z.Jiashen and Z.Jingmao.Control of corrosion by inhibitors in drilling muds containing high concentration of H_2S[J].Corrosion,1993,49(3):170-174.
    [79]N.Pebere,M.Duprate,F.Dabosi.Corrosion inhibitor study of a carbon steel in acidic media containing hydrogen sulphide and organic surfactants[J].Journal of Appied Electrochemistry.1988,18:225-231.
    [80]F.Chaoyang and Z.Jianshen.Corrosin fatigue behavior of carbon steel in drilling fluids[J].Corrosion, 1998,54(8):651-656.
    [81]K.Aramaki.Preparation of protective films containing molybdate for self-heating of a scratched iron sufface[J].Corrosion,2000,56(9):901-909.
    [82]D.W.Deberry,A.R.Peyton,and W.S.Clark.Evaluation of corrosion inhibitors in SO_2 scrubber solutions.Corrosion-Nace.1984,40(5):50-256.
    [83]Stethante,Sxhauhoff,Degussa-huls AG.New corrosion inhibitors for high-temperature applications[J].Materials Performance,1999,(5):60-64.
    [84]Chatterjee P,Singh D D N.H_2S corrosion control of steel by using pyridine compounds[J].Anti-Corrosion Methods Materials,1991,38(1):4-10.
    [85]王业飞,由庆,赵福麟.一种新型咪唑啉复配缓蚀剂对A3钢在饱和盐水中的缓蚀性能[J].石油学报(石油加工),2006,22(3):74-78.
    [86]杜春安,赵修太,丘广敏,等.东辛油田污水缓蚀剂研究与评价[J].石油化工腐蚀与防护,2005,22(3):5-8.
    [87]由庆,王业飞,魏勇舟,等.咪唑啉型缓蚀剂的合成及其缓蚀机理的研究[J].腐蚀与防护,2006,27(3):122-125.
    [88]Edwards A et al.Mechanistic studies of the corrosion inhibitor oletic imidazoline[J].Corrosion Science,1994,36(2):315-325.
    [89]Tmompsou N E S,Redmore D,Nernardus A,et al.Imidazoline compounds containing sulfur and amino groups[P].USP:4622404,1986.
    [90]Jovancievic V,Olsom D L,Mishra B.et al.Inhibition of CO_2 corrosion of mild steel by imidazoline and their precursor[J].Corrosion,1999,55(5):449-455.
    [91]黄金营,郑家燊,魏红飚,等.含杂环双季胺盐的合成及其缓蚀性能的研究[J].腐蚀科学与防护技术,2004,16(5):272-275.
    [92]黄光团,甄库,陆柱.新型咪唑啉衍生物油田注水缓蚀剂的研究[J].腐蚀与防护,2004,25(2):50-52.
    [93]Bentiss F,Traisnel M,Gengembre L et al.Inhibition of acidic corrosion of mild steel by 3,5-diphenyl-4H-1,2,4-triazole [J].Applied Surface Science.2000,161(1-2):194-202.
    [94]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004,234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700