两性咪唑啉的合成及其缓蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环烷酸是石油化工的副产品,在我国产量达3万吨/a以上。但资源利用率低,开发潜力很大。对环烷酸咪唑啉两性化物作为缓蚀剂进行研究具有重大的意义。
     本论文以环烷酸和二乙烯三胺为原料合成的一种油溶性环烷基咪唑啉中间体分别与氯乙酸钠和丙烯酸进一步合成为两性咪唑啉,对二种不同的合成,考察了不同的反应条件对合成产物的影响,确定了适宜的合成条件如下:
     咪唑啉与氯乙酸钠反应的适宜条件是:咪唑啉与氯乙酸钠的摩尔比为1:4;反应温度80℃-90℃;pH8-10;反应时间与固含量相关为4h-13h。咪唑啉与丙烯酸反应的适宜条件是:咪唑啉:丙烯酸(摩尔比)=1:4;反应温度:110℃-140℃;反应2h;最后加入与丙烯酸等摩尔的NaOH溶液。
     初步对比了二种产物的缓蚀性能,选取乙酸基两性咪唑啉MC为代表,运用失重法研究了它在不同腐蚀条件下的缓蚀性能如下:
     在浓缩倍数k=1.5的循环冷却水中采用旋转挂片法得出:单独使用MC20mg/L时对碳钢的缓蚀率为99.5%,腐蚀率为0.0033mm/a,但有轻微点蚀;而转速越高缓蚀率也越高;MC与Zn~+或HEDP复配,可消除点蚀,碳钢的腐蚀率均低于0.076mm/a。在模拟油田水中采用静态挂片失重法得出:加入50mg/L的MC可使碳钢的缓蚀率达到94.7%,腐蚀率为0.029mm/a,但是有垢下点蚀产生;MC与HEDP复配,用量为100mg/L+20mg/L时无垢产生,缓蚀率为96.2%,碳钢的腐蚀率为0.021mm/a;将模拟油田水中pH调为6,MC用量为60mg/L时无垢产生缓蚀率为99.3%,碳钢的腐蚀率为0.011mm/a。在HCl-H_2S腐蚀液中采用静态挂片失重法得出:在(1000mg/L)HCl-(100mg/L)H_2S溶液中,缓蚀剂MC在80mg/L时达到饱和吸附,缓蚀率达到96.0%,碳钢的腐蚀率为3.3mm/a;用有机胺调节pH到7后可使碳钢的腐蚀率低到0.032mm/a,缓蚀率为99.96%。在100mg/L-500mg/L范围内,随着H_2S浓度的增加,碳钢的腐蚀率上升;加缓蚀剂MC且调pH到7后,当H_2S浓度≤200mg/L时碳钢的腐蚀率可以低于0.125mm/a。
Naphthenic acid is produced more than 30000t per year in China as a by-product in petrochemical industry. There are many things for us to do with it for such resource had not been made good use of, and it is very valuable to research naphthenic amphoteric imidazoline as a corrosion inhibitor.
     In this paper, two kinds of amphoteric imidazolines are synthesised by these reactions: One is imidazoline and sodium monochloroacetate; the other one is imidazoline and acrylic acid. This kind of imidazoline was synthesised by olic acid and diethylenetriamine (DETA). By the way, several factors that have important effect on the products have been researched, and the optimum reaction conditions have been obtained as follows:
     The optimum conditions of the reaction between imidazoline and sodium chloroacetic are: Reactants's molar ratio is n(imidazoline): n(sodium chloroacetic)=1:4; Reaction temperature is 80℃-90℃; pH8-10; reaction time is about 4h-13h,which is due to the ratio of reactant to water.
     The optimum conditions of the reaction between imidazoline and actylic acid are: Reactants's molar ratio is n(imidazoline): n(actylic acid)=l:4; Reaction temperature is 110℃-140℃; Reaction time is about 2h. Aqua NaOH was added as the same molar as actylic acid in the end.
     Amphoteric imidazoline acetic (MC) has a better inhibition efficiency than the other one in a senior corrsion test and its anticorrosion ability has been tested by weight loss method, and the results are as follows:
     Rotary coupon corrosion test is used in circulating cooling water, whose condensing multiple k=1.5. The corrosion inhibition efficiency is 99.5%, and the corrosion rate of carbon iron is 0.0033 mm/a when the concentration of MC is 20mg/L. The faster the water is running, the higher the corrosidon inhibition efficiency is. MC cooperated with Zn~+ or with HEDP can keep dot corrosion away and can make the corrosion rates below 0.076mm/a.
     Weight loss method is carried out in simulated oilfield water. The anticorrosion efficiency is 94.7% and corrosion rate is 0.029mm/a when adding MC of 50mg/L, but it could not keep away dot corrosion because of scale. Adding 100mg/L MC and 20mg/L HEDP can inhibit scale completely, and the corrosion inhibition efficiency is 96.2%,the corrosion rate is 0.021mm/a; Using H_2SO_4 or other acid to keep the water's pH at 6 and adding MC of 60mg/L can inhibit scale completely, and the corrosion inhibition efficiency is 99.3%,the corrosion rate is 0.011mm/a.
     Weight loss method is carried out in HCl-H_2S water. In such corrosive water of (1000mg/L) HCl-(100mg/L) H_2S, adding MC of no less than 80 mg/L, the corrosion inhibition efficiency is 96.0%, and the corrosion rate is 3.3mm/a, for when MC reaches full adsorption on iron surface. Adding MC and using organic amine to keep the corrosive water's pH at 7 can low down the corrosion rate to 0.032mm/a, and get the anticorrosion efficency of 99.96%. The corrosion rate of iron increases as the H_2S's concentration increasing in the rang of 100mg/L-500mg/L. Adding MC can lower the corrosion rate of iron less than 0.125mm/a if H_2S's concentration is no more than 200mg/L.
引文
[1]郭祥峰,贾丽华编著.阳离子表面活性剂及应用[M].北京:化学工业出版社,2002.313.
    [2]张天胜编.缓蚀剂[M].北京:化学工业出版社,2002.6.
    [3]何文深.松香基咪唑啉缓蚀剂的合成及其性能研究[D].南京:南京工业大学,20040430.
    [4]Gaidis,M.James.Chemistry of corrosion inhibitors[J].Cement and Concrete Composites.2004,26(3):181-189.
    [5]G.P.Brubaker,P.B.Phipps.Corrosion chemistry[M].Washington DC:American Chemical Societh,1979.288-300.
    [6]Williams,Brian.Corrosion inhibitors-The way forward[J].Concrete Engineering International,2003,7(2):24-26.
    [7]B.Donnelly,T.C.Downie.Study of the Inhibiting properties of Some Derivatives of Thiourea[J].Corrosion Science,1974,14:597-599.
    [8]N.C.Subramanyam and B.S.Sheshadrj.Thiourea and Substituted Thioureas as Corrosion Inhibitors for Aluminium in Sodium Nitrite Solution[J].Corrosion Science,1993,34(4):563-567.
    [9]J.C.Oung,S.K.Shin.Mitigating steel corrosionin cooling & control,water by molybdate-bascd inhibitor[J].Corrosion Prevention,1998,(2):156-199.
    [10]R.Youda,H.Nishihara.A SERS study on inhibition mechanisms ofbenzotriazole and its derivatives for copper corrosion in sulphate solutions[J].Corrosion Science,1988,28(1):87-96.
    [11]Y.P.Wu,G.D.Zhou,T.Notoya.A comparative study of the inhibitive effect of benzotrizolc and related compound on copper corrosion[J].Bulletin of Eletrochemistry,1994,10:439-442.
    [12]P.G.Fox,G.Lewis,P.J.Boden.Some chemical aspects of the corrosion inhibition on copper by bcnzotrizolc[J].Corrosion Science,1979,19(10):457-467.
    [13]郑家.缓蚀剂的研究现状及其应用[J].腐蚀与防护,1996,18(2):34-37.
    [14]Zheng jiaxin.The present situation of research and application of inhibitors in China[J].Corrosion & Protection,1997,18(3):132-136.
    [15]吕振波.原油中环烷酸对金属材料的腐蚀与防护研究[D].沈阳:东北大学博士学位论文,20050101.
    [16]Robbins W K.Challenges in the characterization of naphthenic acids in petroleum[J].Prepr Am Chem Soc,1998,43(1):137-140.
    [17]武文广,薛莹.试论我厂加工高酸原油的技术措施[J].化工设备与管道,2003,(3):52-56.
    [18]任晓光,宋永吉,任绍梅,等.高酸值原油环烷酸的结构组成[J].过程工程学报,2003,3(3):218-221.
    [19]徐心茹,李心堂,文建发,等,高酸度稠油的脱盐脱酸[J].华东理工大学学报,1999,25(4):337-359.
    [20]Derungs W A.Naphthenic acid corrosion-An old enemy of petroleum industry[J].Corrosion,1999,378-385.
    [21]Laszlo P.Field Desorption Mass Spectrometry[M].Marcel Deckker,1990.
    [22]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2002.116-117.
    [23]朱岳麟.炼油设备腐蚀与防护技术新进展[J].石油化工设备,2002,1(31):14-16.
    [24]Helle H P.Guideline for corrosion control in crude distillers[M].Holland:published by New plantation,1993.21-60.
    [25]Zetlmeis M J.Naphthenic Acid Corrosion and its control[J].Corrosion,96:218.
    [26]Kane R D,Cayard M S.Improve corrosion control in refining processes[J].Hydrocarbon Processing,1995,1(11):129-142.
    [27]Dzidic,Somerville,A C,Raia,J C.Anal.Chem,1988,60:1318.
    [28]Bush,K L,Unger,S E.Am,Chem,Soc,1982,104:1507.
    [29]洪山海.光谱解析在有机化学中的应用[M].北京:科学出版社,1980.33.
    [30]Scheppele,S E,Chung,K C.Int.J.Mass Spectrom[J].Ion Phys,1983,49:143.
    [31]方云.两性表面活性剂[M].北京:中国轻工业出版社,2001.501.
    [32]何文深.松香基咪唑啉缓蚀剂的合成及其性能研究[D].南京:南京工业大学硕士学位论文,20040430.
    [33]M.Seed,S k.A li.A srof,S.U.Ra hman.The cyclic hydroxylamines:A new class of corrosion inhibitor of carbon steel in acidic medium[J].Anti-Corrosion Method sand Materials,2003,30(3):201-207.
    [34]Zheng.jia xin.The present situation of research and application of inhibitors in China[J]. Corrosion&Protection,1997,18(3):132-136.
    [35]Y.Zhang.Influence of structure of hydroxyl-terminated maleopimaric acid.ester on thermal stability of rigid polyurethane foams[J].Appl Polym Sci,1995,58(10):1803-1809.
    [36]L.Sekine,Y.Hirakawa.Elect of 1-hydroxyethylidene-1,1-diphosphonic on the corrosion steel in 0.3%sodium chloride solution[J].Corrosion,1986,42(5):272-277.
    [37]G.N.Mu,T.P.Zhao.Efect of metallic cations on corrosion inhibition of onionic surfactant for mild steel[J].Corrosion,1996,52(11):853-856.
    [38]R.Martinez,J.Genesca.Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media[J].Journal of Electroanalytical Chemistry,2004,56(1):111-121.
    [39]S.Stoney,J.R.Simone.A new synthesis of 2-oxazolidinones[J].J Org Chem,1973,38:414-418.
    [40]K.Harold.Synthesis and spectral properties imidazolines of substituted imidazolines and imidazoolines[J].J Org Chem,1977,42:941-943.
    [41]S.Ta kano,K.Tanji.Structure analysis of imidazoline cationic surfactants[J].J Am Oil Chem Soc,1983,60:870-875.
    [42]Satoshi,Takano,Kazuro.Tsuji.Analysis of cationic and amphoteric surfactants[J].Oil Chem,Soc,1983,60:1808.
    [43]W.Melloh,M.Bloch.Ampholytic cycloimidinium suffactants[J].Soap,Cosmetics,Chemical Specialities,1972:87-89.
    [44]韩培丰,王谋智,韦荣.咪唑啉型两性表面活性剂合成中试研究[J].广州化工,1992,1:12-14
    [45]刘星,董海,马俊洋.咪唑啉衍生物在模拟油井套管中的缓蚀评价[J].河南化工,2002,3:19-20.
    [46]中国化工报.防腐可使我国每年减损1500亿[N].安全与健康,2006,(1):14.
    [47]石顺存,易平贵,周秀林.环烷基咪唑啉衍生物多功能水处理剂的研究[J].工业水处理,2005,25(1):29-32.
    [48]李振庭,刘瑞华.咪唑啉两性表面活性剂[J].表面活性剂工业,1990,(3):30-34.
    [49]傅送保.环烷基咪唑啉的合成及其缓蚀杀菌性能研究[J].精细化工中间体,2004,34(2):39-41.
    [50]张惠莲.常减压系统中环烷酸咪唑啉油溶性缓蚀剂的应用[J].广石化科技,1996,(4):53-57.
    [51]周晓东,孙道兴,王卫.月桂酸咪唑啉两性表面活性剂的合成及应用[J].精细石油化工进展, 2003,4(11):38-40.
    [52]李运玲.新一代咪唑啉两性表面活性剂[J].日用化学品科学,1996,4(89):143-144.
    [53]李明.新型咪唑啉两性表面活性剂的合成[J].楚雄师范学院学报,2002,17(3):71-72.
    [54]史真,李娜.烷基咪唑啉二羧酸盐的合成[J].西北大学学报,1994,24(3):219-221.
    [55]史真.乙酸基两性咪唑啉两性表面活性剂的合成与应用[J].陕西化工,1993,2:12-16.
    [56]刘星.功能大环化合物及两性咪唑啉表面活性剂[D].郑州:郑州大学硕士学位论文.2004.
    [57]陆光崇.两性表面活性剂--新一代咪唑啉[J].日用化学品科学,1996,3:95-96.
    [58]肖淦平.咪唑啉两性表面活性剂-HECMAI的研究[J].广东化工,1990,(4):14-16.
    [59]王军,刘文彬.咪唑啉型两性表面活性剂的合成[J].化学与粘合,1993,2:83-85.
    [60]张侠,李宗石.咪唑啉型两性表面活性剂的结构分析[J].沈阳化工学院学报,1992,6(1):41-45.
    [61]石顺存.环烷酸咪唑啉在水处理中的应用探讨[J].精细石油化工,1999,3(2):36-38.
    [62]程金玲,张威.两性咪唑啉及其衍生物[J].吉林石油化工,1992,(1):26-32.
    [63]康宏云,李善建.用花椒籽油和二亚乙基三胺合成咪唑啉衍生物及其缓蚀性能初探[J].精细石油化工,2004,9(5):33-35.
    [64]李树安,张铸勇.咪唑啉磺酸盐两性表面活性剂的合成[J].精细化工,1990,7(4,5):75-79.
    [65]栾寿亭,杨兴茂.氨基酸类咪唑啉两性表面活性剂的合成与应用[J].精细石油化工,1993,(4):37-39.
    [66]岳可芬,周春生,史真.新型咪唑啉两性表面活性剂的合成及性能测定[J].西北大学学报,2002,32(3):258-260.
    [67]张贵才,马涛,葛际江.咪唑啉硫酸酯盐两性表面活性剂用作缓蚀剂的研究[J].石油与天然气,2005,34(1):53-55.
    [68]李树安,黄超.咪唑啉型磷酸盐两性表面活性剂的合成[J].精细石油化工,1996,9(5):13-16.
    [69]王学东,贾丽华,宋波.咪唑啉磷酸盐两性表面活性剂[J].黑龙江日化,1998,2:2-3.
    [70]李振庭,刘瑞华.咪唑啉两性表面活性剂[J].表面活性剂工业,1990,(3):30-34.
    [71]DE04307709.
    [721EP0736521.
    [73]石顺存,张红.高纯环烷酸的制备[J].湘潭矿业学报学报,2001,(3)16:47-50.
    [74]方云.两性表面活性剂[M].北京:中国轻工业出版社,2001.255.
    [75]王玉萍,彭盘英,孙春霞.氯乙酸水解生产羟基乙酸的中控分析方法[J].南京师范大学学报,2002,2(3):76-78.
    [76]方云.两性表面活性剂[M].北京:中国轻工业出版社,2001.261.
    [77]郭祥峰,贾丽华编著.阳离子表面活性剂及应用[M].北京:化学工业出版社,2002.65.
    [78]石顺存,王学业,易平贵,等.咪唑啉季胺盐互变异构体稳定性研究[J].石油学报,2003,6(19):52-58.
    [79]唐俊.循环冷却水系统缓蚀阻垢剂的开发应用研究[D].上海:华东师范大学硕士学位论文,20050401.
    [80]王勤娜,施宝昌等.工业循环冷却水缓蚀阻垢剂的发展状况[J].化工进展,2001,(5):25-27.
    [81]周本省.工业水处理技术[M].北京,化学工业出版社,2002.
    [82]胡玉国.水处理缓蚀剂应用现状及发展方向[J].化工科技市场,2000,23(4):5-7.
    [83]HG/T2159-91,中华人民共和国化工行业标准-水处理剂缓蚀性能的测定-旋转挂片法[S].
    [84]张学元,杨春艳,王凤平.轮南油田水介质对A3钢腐蚀规律的研究[J].化工进展,1999,28(3):215-217.
    [85]赵建伟.陇东油田采出水系统腐蚀及防护研究[D].西安:西安建筑科技大学硕士论文,2003.
    [86]卢润才,纪春茂,丁锐,等.埕岛油田海水钻井液对钻具的腐蚀及其防护化工进展[J].油田化学,1998,1(15):10-12.
    [87]卢会霞,屈撑国,卜绍峰.中原油田注水腐蚀因素及控制研究[J].腐蚀与防护,2004,6(25):263-266.
    [88]李本高编著.现代工业水处理技术与应用[M].北京,中国石化出版社,2004.30-31.
    [89]张淑民编著.基础无机化学,(第三版)下册[M].兰州:兰州大学出版社,2003.55.
    [90]孙舫.江苏油田注水水质腐蚀因素及控制[J].油气田地面工程,1997,6(6).49-52.
    [91]循环冷却水处理[Z](湖南科技大学自编教材):121.
    [92]李强.中伊朗盆地大型酸化压裂工程实例[J].内江科技,2006,2:149.
    [93]孙铭勤,张贵才,葛际江,等.高温酸化助排剂HC2-1的研究[J].油气地质与采收率,2006,2(13):93-98.
    [94]王涛,张贵才.油田污水处理及酸化缓蚀剂的应用[J].石油化工腐蚀与防护,2006,23(1): 56-60.
    [95]宁朝辉.用于加工高硫原油的中和缓蚀剂的研究[D].北京:北京化工大学硕士学位论文,20030918.
    [96]中国石油化工设备管理协会设备防腐专业组.石油化工装置设备腐蚀与防护手册,第1版[M].北京:中国石化出版社,1996.78-92.
    [97]A.Groysman,N.Erdman.A study of corrosion of mild steel in mixtures of petroleum distillates and electrolytes[J],corrosion,2000,56(4):1266-1271.
    [98]王勤娜,施宝昌.常减压蒸馏塔顶H_2S协同腐蚀作用的研究[J].石油化工,1999,30(8):63-64.
    [99]王慧龙,刘宏芳,等.缓蚀剂在HCl-H_2S盐水体系中对碳钢的缓蚀作用[J].材料保护,2002,(35):15-16.
    [100]王延,周永红,宋湛谦.盐酸介质中脱氢松香基咪唑啉缓蚀剂对Q235钢缓蚀性研究[J].腐蚀与防护,1998,6(19):247-249.
    [101]孙蕾,曹楚南,林海潮.盐酸介质中苯扎溴铵在铁表面的吸附行为及其与肉桂醛的协同缓蚀作用[J].腐蚀科学与防护技术,1997,1(9):29-33.
    [102]张清,李全安,文九巴,等.CO_2/H_2S对油气管材的腐蚀规律及研究进展[J1.腐蚀与防护,2003,7(24):277-281.
    [103]郭红,何晓英,任远辉.H_2S对X70钢在弱酸性溶液中的腐蚀行为的影响[J].腐蚀科学与防护技术,2006,4(18):258-261.
    [104]卢基林.水解油茶饼粕制取酸洗缓蚀剂[J].湖南化工,1997,3(27):30-32.
    [105]王慧龙,韩秀丽,等.高级脂肪酰胺基烷基咪唑啉的合成及能动蚀研究[J].材料保护,2001,(22)3:62-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700