大豆尿黑酸叶绿醇转移酶(HPT)基因的分离与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
维生素E又称生育酚,是仅由光合生物合成的一类脂溶性的强抗氧化剂,为人体所必需的维生素之一,它可以清除生物体内的活性氧和自由基。因此,食用维生素E可以增强机体免疫功能,具有防衰老、防癌、减缓多种恶性疾病(白内障、神经紊乱、心血管疾病等)及润肤美容的作用。但是,在植物当中生育酚的含量又普遍较低,因此,采用基因工程技术手段提高植物当中的生育酚的含量成为目前营养基因组学研究的热点。
     大豆尿黑酸叶绿醇转移酶处于维生素E生物合成途径的关键一步,它的作用是催化叶绿醇焦磷酸(phytyl-PP)与尿黑酸(HGA)缩合生成生育酚的前体。随着维生素E代谢途径的阐明以及相关基因的克隆,人们开始通过分子生物学技术研究如何提高植物中α-生育酚的含量。为探索利用基因工程手段提高总生育酚含量,本研究采用RT-PCR技术,从大豆中分离了尿黑酸叶绿醇转移酶的全长cDNA序列,该cDNA序列全长1200bp。为了进一步研究该基因的功能,我们得到了以下结果:
     1.提取大豆总RNA,利用RT-PCR技术,从大豆中分离了大豆尿黑酸叶绿醇转移酶(HPT)的全长cDNA序列。
     2.构建了大豆基因的植物表达载体pBI121-HPT,通过真空渗透法转化拟南芥,获得转基因植株35株,PCR检测阳性率是51.2%。通过自交和抗性筛选标记获得了转基因纯系植株。
     3.利用HPLC测定转基因植株的总生育酚含量,结果显示,转基因植株的总生育酚含量普遍高于野生型植株,提高3-6倍。
Vitamin E, commonly known as Tocopherols, is a class of lipid-soluble antioxidants synthesized only by plants and other photosynthetic organisms. Tocopherols are essential components of the human diet because they perform numerous critical functions including quenching and scavenging various reactive oxygen species and free radicals. Because of these and other activities, dietary tocopherols are thought to play an important role in improving immune function and in limiting the incidence and progression of several degenerative human diseases including certain types of cancer, cataracts, neurological disorders, and cardiovascular disease. The yield of tocopherol in the plant is commonly low, so enhancing the yield of tocopherol in the plant with gene engineering means will become a research hotspot in the field of nutrition genomics.
     Homogengtisate phytyltranferase (HPT), one of the key enzymes in tocopherol biosynthetic pathway in plants, catalyzing condensation of PDP and HGA in the first set of tocopherol biosynthesis.With understanding biosynthetic pathway of vitamin E and being isolated correlated gene, it is focus on how to increaseα-tocopherols level by molecular biotechnology. To explore how to enhanceα-tocopherols level and identify the function of homogengtisate phytyltranferase in Soybean, the full-length cDNA of HPT, 1200bp length was obtained from Sobean by RT-PCR. The present research employs a transgenic approach to further analyze the function of HPT.
     The results obtained through the present research are as follows:
     1. The total RNA was extracted from Soybean and the full-length cDNA of HPT gene was isolated by RT-PCR
     2. A recombinant vector pBI121-HPT was constructed for HPT gene expression in plant and was transformed into the genome of Arabidopsis via agro-bacterium mediated transformation by vacuum infiltration. 35 kanamycin-resistant plants were obtained and 51.2% of them are PCR positive. Homozygous HPT gene transgenic line were obtained and were used as the material in the later analysis.
     3. Theα-tocopherols was analysised by HPLC, in leaves, HPT overexpression resulted in a 3-6 fold increase relative to wild type.
引文
1 Brigelius-FlohЁR , Traber MG. Vitamin E: Function and metabolism. The FAS EB J , 1999 ,13 :1145~1155
    2 Fukuzawa K, Gebicky JM ,Oxidation of _-tocopherol in micelles and liposomes by the hydroxyl, perhydroxyl, and superoxide free radicals. Arch Biochem Biophys ,1983,226: 242–251
    3 Fryer, M.J. The antioxidant effects of thylakoid vitamin E(a-tocopherol). Plant Cell Environ. 1992,15, 381–392.
    4 Traber, M.G. and Sies, H. Vitamin E in humans: demand and delivery. Annu. Rev. Nutr. 1996,16, 321–347.
    5 Pryor WA .Vitamin E and heart disease: basic science to clinical intervention trials. Free Radic Biol Med.2000,28: 141–164
    6 Traber, M.G. and Sies, H. Vitamin E in humans: demand and delivery. Annu. Rev. Nutr. 1996, 16, 321-347.
    7 BramLey PM, Elmadfa I, Kafatos A, Kelly FJ, Manios Y, Roxborough HE,Schuch W, Sheehy PJA, Wagner KH .Vitamin E. J Sci Food Agric.2000,80: 913–938 .
    8 Yamauchi, R., and Matsushita, S. Light induced lipid peroxidation in isolated chloroplasts from spinach leaves and role of alpha-tocopherol vitamin E. Agric. Biol. Chem.1979, 43:2157-2161.
    9 Fryer MJ.Evidence for the photoprotective effects of vitamin E. Photochem Photobiol .1993,58: 304–31
    10尤新.天然维生素E的生理功能和开发前景分析.中国食品添加剂,2000,3:30-32
    11 Pongracz G, Weiser H, Matzinger D,Tocopherols—natural antioxidants. Fett Wiss Technol ,1995,97:90–104
    12 Sheppard AJ, Pennington JA, Weihrauch JL ,Analysis and distribution of Vitamin E in vegetable oils and foods. In: Packer L, Fuchs J (eds) Vitamin E in health and disease. Marcel Dekker, New York, pp 1993,9–31
    13 Tyamagondlu V., Identification and characterization of an Arabidopsis homogentisate phytyltransferase paralog, planta,2006, 223: 1134–1144
    14 Grusak MA, DellaPenna D ,Improving the nutrient composition of plants to enhance human nutritionand health. Annu Rev Plant Physiol Plant Mol Biol,1999, 50: 133–161
    15 Okada K, Saito T, Nakagawa T, et al. Five geranylgeranyl diphosphate synthase expressed in different organs are localized into three subcellular compatments in Arabidopsis. Plant Physiol, 2000,122(4):1045-1056.
    16 Kamal2Eldin A , Appelqvist LA. The chemistry and antioxidantproperties of tocopherols and tocotrienols. L ipi ds , 1996 ,31 : 671~701
    17 Soll J, Douce R, Schultz G. Joyard J, Localization and synthesis of Prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch Biochen Biophys,1985,238(1):290-299
    18 Soll J, Douce R, Schulta G.Site of Biosynthesis ofα-tocopherol in spinach chloroplasts. FEBS Lett, 1980,112(2):243-246
    19 National Research Council ( U. S. ) , Food and Nutrition Board. NAS2NRC Recommended Dietary Allowances. 10th ed. Washington , DC: National Academy Press , 1989. 284
    20 Peter Dormann. Functional diversity of tocochromanols in plants. Planta. 2007,225.269-276
    21 Tangney CC. Vitamin E and cardiovascular disease. Nutr Today ,1997 ,32 :13~22
    22 Lichtenthaler, H.K., Prenzel, U., Douce, R. and Joyard, J. (1981)Localization of prenylquinones in the envelope of spinach chloroplasts. Biochim. Biophys. Acta 641, 99–105.
    23欧阳青,蔡文启.天然维生素E的生物合成途径.植物生理学通讯, 2003,39(5):501-507.
    24黄筱声.天然维生素E与人体健康.粮食与油脂,2001 ,9 :35~36
    25 Collakova E, DellaPenna D,Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis thaliana. Plant Physiol.2003, 131: 632–642
    26 Shintani DK, Cheng Z, DellaPenna D ,The role of 2-methyl-6-phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC6803. FEBS Lett.2002, 511: 1–5
    27 Norris, S.R., Shen, X. and DellaPenna, D. Complementation of the Arabidopsis pds1 mutation with the gene encoding phydroxyphenylpyruvate dioxygenase. Plant Physiol.1998, 117, 1317–1323.
    28 Garcia, I., Rodgers, M., Pepin, R., Hsieh, T.F. and Matringe, M. Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxy-genase from Arabidopsis In transgenic tobacco. Plant Physiol.1999, 119, 1507–1516.
    29 Dahnhardt, D., Falk, J., Appel, J., van der Kooij, T.A.W., Schulz-Friedrich, R. and Krupinska, K. The hydroxyphenylpyruvate dioxygenase from Synechocystis sp. PCC 6803 is not required for plastoquinone biosynthesis. FEBS Lett. 2002,523, 177–181.
    30 Collakova, E. and DellaPenna, D. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol.2001, 127, 1113–1124.
    31 Savidge, B., Weiss, J.D., Wong, Y.H., Lassner, M.W., Mitsky, T.A., Shewmaker, C.K., Post-Beittenmiller, D. and Valentin, H.E. Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol. 2002,129, 321–332.
    32 Porfirova, S., Bergmu¨ller, E., Tropf, S., Lemke, R. and Do¨rmann, P. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc. Natl. Acad. Sci. USA 99, 2002,12495–12500.
    33 Marshall, P.S., Morris, S.R. and Threlfall, D.R. Biosynthesis of tocopherols: a re-examination of the biosynthesis and metabolism of 2-methyl-6-phytyl-1,4-benzoquinol. Phytochemistry 1985,24, 1705–1711.
    34 Sitthithaworn W, Kojima N, Viroonchatapan E, et al. Geranylgeranyl diphosphate synthase from Scoparia dulcis and Croton sublyratus. Plastid localization and conversion to a farnesyl diphosphate synthase by mutagenesis. Chem Pharm Bull(Tokyo), 2001,49(2):197-202.
    35 Stocker, A., Fretz, H., Frick, H., Ruttimann, A. and Woggon, W.D. The substrate specificity of tocopherol cyclase. Bioorg. Med. Chem. 4, 1996,1129–1134.
    36 Cheng, Z., Sattler, S., Maeda, H., Sakuragi, Y., Braant, D.A. and DellaPenna, D. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell ,2003,15, 2343–2356.
    37 Stocker, A., Ruttimann, A. and Woggon, W.D. Identification of the tocopherol cyclase in the blue-green algae Anabaena variabilis Kutzing (cyanobacteria). Helv. Chim. Acta ,1993,76, 1729–1738.
    38 Stocker, A., Netscher, T., Ruttimann, A., Muller, R.K., Schneider, H., Todaro, L.J., Derungs, G. and Woggon, W.D. The reaction mechanism of chromanol ring formation catalyzed by tocopherol cyclase from Anabaena variabilis Kutzing (cyanobacteria). Helv. Chim. Acta ,1994,77, 1721–1737.
    39 Sattler, S.E., Cahoon, E.B., Coughlan, S.J. and DellaPenna, D. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol. 2003,132, 2184–2195.
    40 Shintani, D. and DellaPenna, D, Elevating the vitamin E content of plants through metabolic engineering. Science,1998,282: 2098–2100.
    41 Kaneko, T. et al., Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions, DNA Res, 1996, 3:109~136.
    42欧阳青,樊春涛,孙卉,等.结球甘蓝γ-生育酚甲基转移酶cDNA的克隆、分析及其异源表达酶蛋白的功能研究.自然科学进展,2003,13(7): 709~715
    43 Van Eenennaam, A. L., Kim Lincoln, Timothy P. Durrett, Henry E. Valentin, Christine K. Shewmaker, Greg M. Thorne, Jian Jiang, Susan R. Norris, and Robert L. Last. Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell.2003, 15: 3007-3019
    44 Ricciarelli, R., Zingg, J.M. and Azzi, A. Vitamin E: protective role of a Janus molecule. FASEB J. 2001,15, 2314–2325.
    45 Chan, S.S., Monteiro, H.P., Schindler, F., Stern, A. and Junqueira, V.B.C. a-Tocopherol modulates tyrosine phosphorylation in human neutrophils by inhibition of protein kinase C activity and activation of tyrosine phosphatases. Free Radic. Res.2001,35, 843–856.
    46 Yamauchi, J., Iwamoto, T., Kida, S., Masushige, S., Yamada, K. and Esashi, T. Tocopherol-associated protein is a liganddependent transcriptional activator. Biochem. Biophys. Res. Commun. ,2001,285, 295–299
    47 Munne′-Bosch, S. and Falk, J. New insights into the function of tocopherols in plants. Planta ,2004,218, 323–326.
    48 Azzi, A., Ricciarelli, R. and Zingg, J.M. ,Non-antioxidant molecular functions of a-tocopherol (vitamin E). FEBS Lett.2002, 519, 8–10.
    49 Sergi Munne-Bosch, The role ofα-tocophherol in plant stress tolerance, Journal of Plant Physiology, 2005,162,743-748
    50 Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 2004;55:373–99.
    51 Asada K. The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol ,1999;50:601–39.
    52 Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol .1993;125:27–58.
    53 Fahrenholzt SR, Doleiden FH, Tozzolo AM, Lamola AA. On the quenching of singlet oxygen by a-tocopherol. Photochem Photobiol 1974;20:505–9.
    54 Munne′-Bosch S, Alegre L. The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 2002a;21: 31–57.
    55 An Eenennaam AL, Li G, Venkatramesh M, Levering C et al., Elevation of seed tocopherol levels using plant-based transcription factors targeted to an endogenous locus Metabolic Engineering, 2004, 102: 101–108
    56 Eva Collakova and Dean Dellapenna, The Role of Homogentisate Phytyltransferase and Other Tocopherol Pathway Enzymes in the Regulation of Tocopherol Synthesis during Abiotic Stress. Plant Physiology, 2003, Vol, 133, pp. 930-940.
    57 Ohto C, Ishida C, Nakane H, et al. A thermophilic cyanobacterium Synechococcus elongates has three different Class I preyltransferase genes. Plant Mol Biol, 1999,40(2):307-321.
    58 Keller Y, Bouvier F, D’Harlingue A. Metabolic compartmentation of plastid prenylipid bioysnthesis-evidence for the involvement of a multifunctional geranylgeranyl reductase. Eur. J. Biochem, 1998,251:413-417
    59 Norris SR, Shen XH, DellaPenna D. Complementation of the Arabidopsis pdsl mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiol, 1998, 117(4):1317-1323.
    60 Garcia I, Rodgers M, Pepin, et al. Characterization and subcellular compartmentation of recombinant
    4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco. Plant Physiol, 1999, 119(4):1507-1516.
    61 Zambryske P. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regulation capacity . EMBO,1983, (2): 2143-2150
    62闫新浦.转基因植物.科学出版社,2003
    63张献龙,唐克轩.植物生物技术.科学出版社,2003.
    64吴乃虎.基因工程原理(下).科学出版社2003
    65王关林,方宏筠.植物基因工程.北京:科学出版社, 2002.
    66 Stanton B, Gelvin. Agrobacterium-Mediated Plant Transformation: the Biology behind the "Gene-Jockeying" Tool. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2003, 67 (1): 16-37.
    67 De Groot M. J. A, Burdock P, Hooykaas P. J. J, Beijersbergen A. G. M. Nature Biotechnol, 1998, 16: 839-842
    68 Kunik T, Terra T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V. Proc. Natl. Acad. Sci. USA, 2001, 98: 1871-1876.
    69李卫,郭光沁,郑国.根癌农杆菌介导遗传转化研究的若干新进展.科学通报, 2000, 45(8):798-807.
    70 Bechtold N, Ellis J, et al. In Planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. 1993,316:1194-1199.
    71华志华,黄大年.转基因植物中外源基因的遗传学行为.植物学报,1999,41(1): 1-5.
    72 Christou P. Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica, 1995, 85:13-27
    73许新萍,卫剑文.基因枪转化籼稻的影响因素.中山大学学报自然科学版, 1998, 37(1):88-92.
    74刘金元,时香玉,陈晓等.利用基因枪技术转化小麦.玉米的研究.山东农业科学, 1999,2: 5-8.
    75董云洲,段胜军,赵连元等.用基因枪转化花粉获得转基因谷子和玉米.中国农业科学, 1999,32(2):9-13
    76曹植仪.拟南芥.高等教育出版社, 2004,45-66.
    77 Meyerowitz EM, Pruit RE. Arabidopsis thaliana and plant molecular genetics. Science, 1985, 229:1214-1218
    78 Winklhofer-Roob, B.M. et al. Effects of vitamin E and carotenoid status on oxidative stress in health and disease. Evidence obtained from human intervention studies. Mol. Aspects Med. 2003, 24, 391–402
    79初立业,邵宏波,曲德业.拟南芥的核基因组研究,生命科学, 1994, 6 (4 ): 16-18
    80 Cho EA, Lee CA, Kim YS, Baek SH, de los Reyes BG, Yun SJ. Expression of gamma-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.). Mol Cells. 2005 Feb 28;19(1):16-22
    81巩振辉, Milner JJ,何玉科.拟南芥基因转移新方法一真空渗人法的研究.西北植物学报, 1996,16(3):277-283.
    82 Clough SJ, Bent A. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
    83 Richard C, Granier C, Inze D, et al. Analysis of cell division parameters and cell cycle gene expression during the cultivation of Arabidopsis thaliana cell suspensions. Journal of Experimental Botany, 2001, 52(361):1625-1633.
    84 Forreiter C, kirschner M, Nover L. Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo. The Plant Cell, 1997, 9 :2171-2181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700