基于管网动态模型的城市集中供热系统参数预测及运行优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集中供热在国内的发展非常迅速,无论是供热规模、供热半径还是供热管网型式,都发生了巨大的变化。为了进一步提高集中供热系统的能源利用率,更好地发挥其节能减排的特点,本文提出了一种基于管网动态模型的城市集中供热系统运行参数预测及优化运行方法,并对其进行了系统的研究,验证了所提出的动态模型与算法的有效性与准确性。结果表明,该方法对推动集中供热系统运行调节与优化控制技术的发展,促进城市集中供热系统运行管理水平的提高具有指导意义。
     首先,基于网络图论及基尔霍夫定律,建立了集中供热管网水力模型,采用改进平方根法进行求解。针对水泵扬程取定值与采用拟合公式两种管网定压方式,对模拟一次管网进行了水力工况建模分析,结果表明初调节是保证管网水力平衡的重要前提。
     其次,根据能量守恒方程,推导出热水供热管道热力工况动态模型。针对该双曲型方程,采用特征线法建立其特征线方程。然后采用逆步进法、一阶泰勒级数展开及向前显式差分格式,沿特征线建立该方程对应的有限差分方程;提出采用最小二乘法拟合出不同管径、不同保温材料的供热管道散热损失与供水温度的线性方程,以便热力工况动态模型调用;基于以上内容,分别推导出单独考虑管道散热效应的热力模型,称为“散热模型”,以及同时考虑散热与蓄热的热力模型,称为“蓄热模型”。
     然后,分别建立了模拟一次管网的“散热模型”与“蓄热模型”。采用散热模型对某工况进行模拟,分析了不同误差限、不同空间步长以及不同初值对模拟结果的影响。为了保证差分格式的收敛,采用各计算节点两次迭代温度差与当前时间步长的比值,即温度梯度代替温度差,作为判断程序是否收敛的条件,效果良好;分别采用散热模型与蓄热模型对2种不同运行工况进行模拟,发现由于管网散热,导致远端用户入口温度降低,进一步加剧了远端用户与近端用户的热力失调,增加了管网运行调节的难度。蓄热效应使得管网在任何扰动下,趋于稳定的延迟时间增大,从而对确定管网进行调节的最佳时间产生重要影响。因此,建议在需要着重考虑管网稳定延迟时间时,采用蓄热模型;对于一般情况,应首先选用模型相对简单、收敛快的散热模型。
     针对集中供热管网节点泄露故障,采用模拟管网对3种不同泄露工况的流量与压力分布进行了仿真,即泄露点在供水管、泄露点在回水管以及供水管两点泄露,并对不同泄漏量进行了比较;针对第一种泄露工况进行了热力工况动态模拟,总结了管网泄漏时各点压力、流量及温度的变化规律,为管网泄露故障及泄露点位置的诊断提供相应的参考。
     建立了包含一、二次管网的间接连接联合管网动态模型。该模型包括1个一次模拟管网、10个二级换热站及二次网,每个二次管网包含10个,共计100个建筑用户(采用散热器模型整体描述)。采用该联合管网模型,对热计量下,用户自主调节阀门,控制室内温度情况进行模拟,模型良好地反映了用户处自主调节对室内温度、用户负荷以及一二次网运行工况的影响;选取某城市集中供热系统部分管网,采用散热模型建模。然后选择其中6个换热站半小时内的一次侧供水温度与供水压力监测数据平均值作为验证数据,与模型仿真数据进行比较。结果发现,除了1个小区换热站供水温度与供水压力相对误差超过3%以外,其余5个站的相对误差均在2%范围以内,验证了本文所提出的模型及算法的有效性与准确性。
     针对集中供热系统质量并调运行优化问题,提出建立以供热系统运行能耗费用最低为优化目标,以供水温度和供水流量为变量的集中供热系统一次网运行能耗费用方程。然后,根据非线性规划理论,应用一般约束乘子法将约束问题变为无约束问题,采用共轭梯度法,结合线性搜索,建立了该优化模型的求解算法及流程。最后,针对某城市集中供热系统一次网,将提出的非线性规划方法与逐步长搜索法相比较,结果证明该方法效率更高,结果更准确;应用本文提出的运行优化方法指导管网质量并调,与传统的质调节相比,节能效益明显,进一步验证了该方法的有效性。
District heating rapidly develops in China. Whether district heating scale, radius or pipe network type, all have greatly changed. In order to further improve energy efficiency of district heating system and better bring its characteristic of energy saving and environmental protection into play, an operational parameter prediction and optimized operation method of district heating system, which is based on pipe network dynamic model, is proposed in this paper. This method is systematically researched, and the effectiveness and accuracy of the proposed dynamic model and algorithm have been verified. The results show that the proposed method has guiding significance to promote development of operational adjustment and optimal control technology, and to improve operational management level in district heating system.
     Firstly, based on network graph theory and Kirchhoff s law, the hydraulic model of district heating network is established, and solved by improved square root method. Aiming to two different constant pressure forms, pump lift adopts fitting formula and constant value, the hydraulic model of a primary simulated network is established. The results show that initial adjustment is an important prerequisite to guarantee the pipe network hydraulic balance.
     Secondly, according to the energy conservation equation, the thermal dynamic model of hot water heating pipe is derived. This dynamic model is hyperbolic equation, so that the characteristics method can be used to establish its characteristic equation. Then its corresponding finite difference equation along the characteristic line is set up by the inverse step method, first-order Taylor series expansion and forward explicit difference scheme. Then the least squares method is proposed to fit linear equations of pipe heat loss and water supply temperature for different diameter and different insulation materials, then these fitting equations can be used by the thermal dynamic model. Through the above, the thermal model that considers heat dissipation individually is deduced and called "dissipation model". At the same time, the thermal model that both consider heat dissipation and heat accumulation is deduced and called "regenerative model"
     Then, the dissipation model and regenerative model of the primary simulated network are established respectively. Through simulating a working condition by the dissipation model, the influence on simulating result is analyzed from error limit, space step and initial value. In order to ensure the convergence of the differential format, the temperature difference, which is the difference of two neighbor iterative temperature values on each computing node, is substituted by the temperature gradient, which is the ratio of the above temperature difference with the current time step, to determine whether the program is convergence or not, and it is proved that the method is good. At the same time, two different operating conditions are respectively simulated by the dissipation model and the regenerative model. It is found that the pipeline heat dissipation leads to lower the entrance temperature of remote users, and to further exacerbate the thermal imbalance and adjustment difficulty of pipe network. The regenerative effect makes the delay time of network from any disturbance to stabilization increase, then it will affect when the operational strategy is adopted to adjust the pipe network. Therefore, the regenerative model is suggested to be used when the delay time of network stability is more important. Otherwise, the dissipation model will be firstly selected because of its relatively simple and fast convergence.
     Aiming to the node leak failure of district heating pipe network, The flow and pressure distribution of three different leak conditions are simulated by the simulated network, which is one leak point in the supply pipes, two leak points in the supply pipes and one leak point in the return pipes, different leakage have been compared either. Furthermore, the thermal dynamic of the first leak condition are simulated. Finally, the pressure, flow and temperature variation of each point on the pipe network is summarized when the node leak happens, and it could provide corresponding reference for diagnosis of pipe network leak failure and leak point position.
     A dynamic model of an indirect connection pipe network is established, and it includes a simulated primary network,10secondary heat exchanger stations and secondary networks which consist of100building users. Each building user is overall described by a radiator model. This model is used to simulate the case that users independently regulate valve to control indoor temperature when the method of heat metering is adopt. The results show that the model well reflects the influence on the indoor temperature, the user load and the operating conditions of the primary and secondary network from the user's independent regulation. Then, part of a real city heating pipe network is modeled by the dissipation model. And it is taken as validation data and compared with simulated data that the monitoring data average of primary supply water temperature and pressure in half an hour are collected from6selected heat exchanger stations. The results show that the relative errors of supply water temperature and pressure in5stations are all in the range of2%, in addition to one station whose relative error is more than3%. And the results verify validity and accuracy of the proposed model and algorithm in this paper.
     For the operational optimization problem of supply temperature and flow adjustment (known as "quality-quantity" regulation) in district heating system, an operational cost equation of primary network is set up, taking the supply water temperature and the water flux as variables. The optimization objective of this equation is to minimize operational cost. Then, based on the nonlinear programming theory, a constraint problem is translated into an unconstrained one by general constrained multiplier method, the conjugate gradient and linear search method are integrated together to solve the optimization problem. Finally, the presented method and the step-by-step method are respectively applied to a real urban district heating system. The result proves that the former is more effective and accurate than the later; the energy saving effect of quality-quantity regulation which is guided by the presented method is compared with the one of quality regulation, it proves that the former is prior to the later and further verifies effectiveness of the presented method.
引文
[1]江亿.我国供热节能中的问题和解决途径.暖通空调,2006,36(3):37-41.
    [2]唐卫.热力站自动监控系统基本思路与控制模式分析.区域供热,2001,(5):9-13.
    [3]Werner, Sven. District heating in Sweden 1948-1990. Fernwaerme International,1991,20(11): 8.
    [4]张沈生,孙晓兵,傅卓林.国外供暖方式现状与发展趋势.工业技术经济,2006,25(7):131-134.
    [5]邹平华.借鉴俄罗斯经验积极发展我国集中供热事业.暖通空调,2000,30(4):33-37.
    [6]韦新东,尹军,全贞花.日本集中供热(冷)系统的发展现状.吉林建筑工程学院学报,2001,(1):28-30.
    [7]石兆玉,王兆霖等.热网水力工况模拟分析及其在初调节中的应用.区域供热,1991(1):5-9.
    [8]石兆玉,赵红平,束际万.环形供热系统模拟水力计算.区域供热,1992(3):11-24.
    [9]秦绪忠,江亿.集中供热网的可及性分析。暖通空调,1999,29(1):2-7.
    [10]秦绪忠,江亿.基于遗传算法的环形供热网可及性分析.清华大学学报(自然科学版),1999,139(6):90-94.
    [11]秦绪忠,江亿。多热源并网供热的水力优化调度研究.暖通空调,2001,31(1):11-16.
    [12]李祥立,王晓霞,周志刚,邹平华.枝状供热管网水力工况模拟分析.煤气与热力,2004,24(10):554-557.
    [13]王晓霞,周志刚,邹平华.多热源多环空间热网水力工况模拟与分析方法.暖通空调,2004,34(11):131-135.
    [14]王晓霞,邹平华,周志刚.复杂空间热网的拓扑结构及水力过程仿真.系统仿真学报,2005,17(3):563-565,570.
    [15]王晓霞,邹平华.多热源环状空间热网拓扑结构研究.暖通空调,2009,39(2):1-4,
    [16]刘孟军,邹平华,何仲怡.管道阻抗的不确定性对热网水力工况计算的影响.暖通空调,2007,37(2):18-23.
    [17]周志刚,邹平华,谈和平,王继滨.基于遗传蚂蚁混合算法的热网阻力特性辨识.哈尔滨工业大学学报,2008,40(1]):1761-1765.
    [18]吕向阳,韩宪法,李川等.基于图论的环网模拟分析调节法应用分析.河北工程大学学报(自然科学版),2007,24(3):16-19.
    [19]Stevanovic, Vladimir D., Prica, Sanja, Maslovaric, Blazenka, Zivkovic, Branislav,Nikodijevic, Srdjan. Efficient numerical method for district heating system hydraulics. Energy Conversion and Management,2007,48(5):1536-1543.
    [20]Thorsen, Jan Ericl(Danfoss A/S), Boysen, Hermanl. Hydraulic balance in a district heating system. Euroheat and Power (English Edition),2007,4(4):36-41.
    [21]周继军.图形化热网水力工况模拟计算软件rh-heatnet区域供热,1996,(3):22-27.
    [22]芬兰WM-Data软件公司.热网水力平衡分析软件(FLOWRA32)说明手册.2005.
    [23]秦冰,江亿,付林等.集中供热系统热动态特性的测试研究.煤气与热力,2005,25(11):20-23.
    [24]秦冰,江亿,付林.热电联产热源供热量调节及室内温度的响应.煤气与热力,2006,26(8):53-58.
    [25]秦冰,江亿,付林等.热电联产电力调峰时供热系统的调节.煤气与热力,2006,26(2):51-55.
    [26]石兆玉.供热系统运行调节与控制.北京:清华大学出版社,1994.
    [27]付林.热电(冷)联供系统电力调峰运行模式的研究.北京:清华大学,1999.
    [28]O.P.Palsson, H.Madsen, H.T. Sogaard. Predictor-based optimal control of supply temperature in district heating systems. Control Engineering Practice.1993, (1):81-85.
    [29]Zhang Zhilong. Temperature Control Strategies for Radiant Floor Heating System, Concordia University,2001:16-84.
    [30]M.Zaheer-Uddin, R.V.Patel. The Design and Simulation of a Sub-Optimal Controller for Space Heating, ASHEAE Trans,1993,99 (1):554-564.
    [31]Chen Tingyao. A methodology for Thermal Analysis and Predictive Control of Building Envelope Heating Sytem, Corcordia University,1997:47-105.
    [32]Zheng Guorong. Dynamic Modeling and Global Optimal Operation of Multi-Zone Variable Air Volume HVAC Systems, Concordia University,1997:35-184.
    [33]Li, Lianzhong,Zaheeruddin, M. A control strategy for energy optimal operation of a direct district heating system. International Journal of Energy Research,2004,28(7):597-612.
    [34]Lianzhong, L., Zaheeruddin, M. Hybrid fuzzy logic control strategies for hot water district heating systems. Building Services Engineering Research and Technology,2007,28(1):35-53.
    [35]A.Benonysson. Dynamic Modeling and Operational Optimization of District Heating Systems. PhD Thesis at Laboratory of Heating and Air Conditioning, Technical University of Denmark.1991:42-87.
    [36]H.Zhao. Modeling and Operational Optimization of District Heating Systems. PHD Thesis at Laboratory of Heating and Air Conditioning, Technical University of Denmark.1995:30-41.
    [37]Irina Garielaitiene, Benny Bohm, Bengt Sunden. Modelling temperature dynamics of a district heating system in Naestved, Denmark-a case study.Energy Conversition and Management. 2007,(48):78-86.
    [38]Helge V. Larsen, Halldor Palsson, Benny Bohm, Hans F.Ravn. Aggregated dynamic simulation model of district heating networks.2002, (43):995-1019.
    [39]Loewen, A., Wigbels, M., Althaus, W., Augusiak, A., Renski, A. Structural simplification of complex DH-networks. Euroheat and Power/Fernwarme International,2001,30(5):42-44.
    [40]Loewen, A., Wigbels, M., Althaus, W., Augusiak, A.; Renski, A. Structural simplification of complex DH-networks-Part2. Euroheat and Power/Fernwarme International,2001,30(6):46-50.
    [41]Helge V. Larsen, Benny Bohm, Michael Wigbels. A comparison of aggregated models for simulation and operational optimization of district heating networks.2004, (45):1119-1139.
    [42]Gabrielaitiene, Irina, Bhm, Benny, Sunden, Bengt. Evaluation of approaches for modeling temperature wave propagation in district heating pipelines. Heat Transfer Engineering,2008, 29(1):45-56.
    [43]周学岭,姜永成,李峰.集中供热热网的热力工况模型.哈尔滨工业大学学报,2005,37(12):1683-1685.
    [44]王思莹,邹平华,周志刚,何钟怡.基于图论的直接连接热水供热系统热力工况计算模型.暖通空调,2011,41(8):106-109.
    [45]姜振家.直埋预制保温管热损失及工程造价研究分析.区域供热,1996,(2):9-12.
    [46]肖平华.直埋热力管道保温材料及热损失计算分析.江西能源,1999,(1):32-35.
    [47]杨良仲,张连钢,曹宝军,徐善忠.大直径热水直埋供热管道保温层厚度的计算.煤气与热力,2007.27(2):70-72.
    [48]孙玉宝,田贯三,王东,付林.济南市集中供热蒸汽管网热损失的调查及分析.区域供热,2006,(3):29-33,37.
    [49]张宇晨,田贯三,孙永海等.集中供热蒸汽热网与热水热网热损失率对比.煤气与热 力,2008,28(5):13-16.
    [50]Bohm, Benny. On transient heat losses from buried district heating pipes. International Journal of Energy Research,2000,24(15):1311-1334.
    [51]Bhm, Benny. Experimental determination of heat losses from buried district heating pipes in normal operation. Heat Transfer Engineering,2001,22(3):41-51.
    [52]Phetteplace, Gary. Measurement of heat losses from an operating district heating system. District heating international,1992,21 (3):5.
    [53]Engelmann, Karsten, Krimmling, Joern. Precalculating heat losses in district heating networks. Euroheat and Power International,1998,27(11):16-20.
    [54]雷翠红,邹平华.直接连接供热系统调节方式及能耗分析.煤气与热力,2008,28(10):36-39.
    [55]郑学晶,由世俊,姜南.二级网调峰集中供热系统运行调节方案.天津大学学报,2007,40(12):1511-1516.
    [56]周国兵,张于峰,田琦等.变流量间接供热系统的调节.暖通空调,2001,31(6):11-12.
    [57]石兆玉,蒋文忠.遗传算法在供热系统运行优化中的应用.电子科学学刊(增刊),1996,18:151-154.
    [58]薛宏文,张帆.供热运行中参数调节的优化.暖通空调,2001,31(2):86-88.
    [59]李安桂,何思凤,张新记等.多热源并网供热的调度研究—宝鸡市联网集中供热调节分析.暖通空调,2008,38(2):129-133.
    [60]Benonysson, Atli (Danfoss A/S), Bohm, Benny, Ravn, Hans F. Operational optimization in a district heating system. Energy Conversion and Management,1995,36(5):297-314.
    [61]Bojic, M. (Univ of Kragujevac), Trifunovic, N. Linear programming optimization of heat distribution in a district-heating system by valve adjustments and substation retrofit. Building and Environment,2000,35(2):151-159.
    [62]Bojic, M. (Masinski Fakultet), Trifunovic, N., Gustafsson, S.I. Mixed 0-1 sequential linear programming optimization of heat distribution in a district-heating system. Energy and Buildings, 2000,32(3):309-317.
    [63]Stock, Guenter (ProCom GmbH), Mertsch, Ralf. Operational optimization by means of BoFiT by example of an integrated district heating network. Euroheat & Power/Fernwarme International,1997,26(n):5.
    [64]Lucht, Von Michael, Pietschke, Bernd, Steiff, Artur. Mathematical methods for operational optimization of DH-systems applied in the software-system Bofit. Fernwaerme International/District Heating International,1995,24(1-2):5.
    [65]Indenbirken, Von Markus, Troester, Ludger, Steiff, Artur. Economical optimization of pump operation in district heating networks with Bofit. Fernwaerme International/District Heating International,1995,24(1-2):6.
    [66]Maass, Rolf; Schellong, Wolfgang. Computer aided optimization of the operation of a district heating network. Fernwaerme International/District Heating International,1993,22(7-8):336-346.
    [67]Sakawa, Masatoshi, Kato, Kosuke, Ushiro, Satoshi. Operational planning of district heating and cooling plants through genetic algorithms for mixed 0-1 linear programming. European Journal of Operational Research,2002,137(3):677-687.
    [68]Iversen, Steffen (7-Technologies A/S), Ougaard, Preben, Leppenthien, Jens Krogh. Dynamic temperature optimization-Providing instant results. Euroheat and Power (English Edition),2006, 3(2):46-49.
    [69]K.Larsson, Y.EL Mahgary. Urban District Heating Using Nuclear Heat:An Energy Model for Overall Optimization of a Nuclear Based District Heating System. International Atomic Energy Agency Vienna,1977:45-67.
    [70]李定凯,沈幼庭,冯俊凯.一般供热系统供热方式优化的数学模型与算法.工程热物理学报,1988,9(2):101-106.
    [71]王志国,马一太等.供热系统优化规划方法研究.暖通空调,2003,33(1):2-4.
    [72]朱家松,龚健雅,郑皓.遗传算法在管网优化设计中的应用.武汉大学学报(信息科学版),2003,28(3):363-367.
    [73]杨亚红,王瑛,曹辉.基于粒子群优化算法的环状管网优化设计.兰州理工大学学报,2007,33(1):136-138.
    [74]孙巍,楚纪正.基于粒子群优化算法的热网优化设计.煤气与热力,2008,28(7):14-17.
    [75]李祥立,邹平华.基于模拟退火算法的供热管网优化设计.暖通空调,2005,35(4):77-81.
    [76]范刚龙.供热管网设计计算模型优化研究.郑州大学学报(理学版),2005,37(3):61-63.
    [77]郑雪晶,由世俊,张欢,姜南.二级网燃气调峰集中供热系统优化设计.天津大学学报,2007,40(8):948-951.
    [78]Damiana. Optimal size and layout planning for district heating and cooling networks with distributed generation options. International Journal of Energy Sector Management, Operational Research Models and Methods in the Energy Sector,2008,2(3):385-419.
    [79]Feng, Xiaoping, Long, Weiding. Optimal design of pipe network of district cooling system based on genetic algorithm. Proceedings-2010 6th International Conference on Natural Computation, ICNC 2010,5:2415-2418.
    [80]李世武,苏莫明.热水管网布置的优化设计方法.煤气与热力,2003,23(5):271-275.
    [81]李世武,苏莫明.热网的热经济最优综合设计方法.化工学报,2002,53(8):842-846.
    [82]Ciano, C., Verda, V., Cali, M. Optimal extension of district heating systems through thermoeconomics. American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES, Proceedings of the ASME Advanced Energy Systems Division 2005, 2005,45:409-417.
    [83]郝有志,李德英.热负荷预测方法评析.建筑热能通风空调,2003,22(1):26-27.
    [84]顿雷,李巴津.城市集中供热网参数预测研究.微计算机信息,2007,23(30):38-39.
    [85]郝有志;李德英;郝斌.基于神经网络的供热计量系统热负荷短期预测.暖通空调,2003,33(6):105-107.
    [86]王东亚,张琳,赵国材.神经网络遗传算法在供热负荷预测中应用.辽宁工程技术大学学报(自然科学版),2005,24(z1):161-163.
    [87]Kato, Kosuke, Sakawa, Masatoshi, Ishimaru, Keiichi, Ushiro, Satoshi, Shibano, Toshihiro. Heat load prediction through recurrent neural network in district heating and cooling systems. IEEE International Conference on Systems, Man and Cybernetics,2008:1401-1406.
    [88]唐建峰,段常贵,吕文哲,侯双林.特征线法在燃气管道动态模拟中的应用.油气储运,2001,20(8):12-17.
    [89]卢开澄,卢华明.图论及其应用(第二版).北京:北京清华大学出版社,1995.
    [90]吴飞,崔彦枫,李祥立,邹平华.水泵性能曲线方程研究.暖通空调,2006,36(10):63-66.
    [91]姜军.计量供热系统水力失调原因分析及供热潜力的开发.天津:天津大学,2003:18-22.
    [92]石兆玉.再议供热系统的水力平衡.区域供热,2010,(1):4-8.
    [93]王昭俊,董立华,姜永成等.热计量变流量供热系统室外管网动态水力失调与控制.哈尔滨工业大学学报.2010,42(2):218-222.
    [94]蔡增基,龙天渝.流体力学泵与风机.北京:中国建筑工业出版社(第四版).1999.
    [95]付祥钊,王岳人,王元等.流体输配管网.北京:中国建筑工业出版社,2001:158-159.
    [96]王俊红,常全旺.浅谈供热系统的平衡调节.区域供热,2010(2):60-62.
    [97]王洋,田贯三,张明光.集中供热换热站优化配置及运行分析.山东建筑大学学报,2009,24(06):575-579.
    [98]唐玉峰,田茂诚,张冠敏,姜波.集中供热远程网络监控系统优化设计.山东大学学报(工学版),2009,39(05):153-158.
    [99]杨世铭,陶文铨.传热学.北京:高等教育出版社,1998.
    [100]E.R.索柯洛夫,热化与热力网.安英华,陈希博译(第五版).北京:中国建筑工业出版社,1988.
    [101]刑丽娟,杨世忠.调节阀特性及选择方法.煤矿机械,2007,28(5):164-167.
    [102]王二西,徐文红.电动调节阀在变流量供热系统中的应用.区域供热,2011,(2):61-63.
    [103]李岱森主编.简明供热设计手册.北京:中国建筑工业出版社,1998.
    [104]沈维道,蒋智敏,童钧耕等.工程热力学(第3版).北京:高等教育出版社,2000.
    [105]杨思文主编.高等工程热力学.北京:高等教育出版社,1988.
    [106]陆金甫,关治编著.偏微分方程数值解法(第2版).北京:清华大学出版社,2004.
    [107]B. Kvisgaard, S. Hadvig. Heat Loss from Pipelines in District Heating Systems. Teknisk Forlag, Copenhagen,1980:85-87.
    [108]S. E. Werner, The heat load in district heating systems. Dissertation, Chalmers Univ. of Technology, Gothenburg,1984:65-66.
    [109]王飞,张建伟编著.直埋供热管道工程设计.北京:中国建筑工业出版社,2007.
    [110]吕巍然,张军,刘旭辉.直埋式预制高温保温管道技术进展及问题分析.2003,(2):45-46.
    [111]北京市煤气热力工程设计院有限公司主编.城镇供热管网设计规范.北京:中国建筑工业出版社,2010.
    [112]贺平,孙纲.供热工程(第四版).北京:中国建筑工业出版社,2009.
    [113]动力管道设计手册编写组编,动力管道设计手册.北京:机械工业出版社,2006.
    [114]邹平华,雷翠红,王威.热网故障与提高热网可靠性的措施.暖通空调,2008,38(11):7-12.
    [115]雷翠红.供热管网泄露故障诊断的研究.哈尔滨:哈尔滨工业大学市政环境工程学院,2010:26-27.
    [116]陈开明.非线性规划.上海:复旦大学出版社,1991.
    [117]David G.L., Yinyu Ye. Linear and Nonlinear Programming(The Third Editon). Springer, 2008:1-3.
    [118]郭立军,何川.泵与风机(第三版).北京:中国电力出版社,2004.
    [119]席少霖.非线性最优化方法.北京:高等教育出版社,1992.
    [120]Mokhtar S.Bazaraa C.M.Shetty. Nonlinear Programming Theory and Algorithms. Mokhtar S.Bazaraa C.M.Shetty,1979.
    [121]Bazaraa M.S., Sherali H.D., Shetty C.M. Nonlinear Programming:Theory and Algorithhms. New York:John Wiley \& Sons Inc.1993.
    [122]吕颖慧,张红量,王水林Newton下山法的改进及其应用.地下空间与工程学报,2006,2(5):793-795.
    [123]粟塔山.最优化计算原理与算法程序设计.北京:国防科技大学出版社,2001:39-42.
    [124]李素文.非线性共轭梯度法的研究.南京:南京理工大学,2008:3-6.
    [125]李政.非线性规划中的两种罚函数.上海:上海大学,2007:29-32.
    [126]王庆峰.集中供热系统运行调节优化及热负荷预测方法研究.山东:山东大学,2010:45-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700