牛奶子果实成熟过程中类胡萝卜素组成及代谢酶基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄红素(lycopene)是一种链式类胡萝卜素,脂溶性胡萝卜素的异构体,具有11个共轭双键和2个非共轭双键。由于其共轭双键的独特分子结构,番茄红素在猝灭单线态氧、消除自由基等方面具有较高的活性。大量研究表明,番茄红素具有一定的防治人类某些慢性疾病和心血管疾病的作用。近期的研究发现,即使低浓度的番茄红素也可以有效的抑制结肠癌细胞的生长。由于番茄红素在维持人类健康方面的重要作用,人们对富含番茄红素的食品和营养品的需求急剧增长。因而,番茄红素新种质资源的挖掘、开发,利用遗传育种方法特别是采用转基因手段调控番茄红素的合成,选育番茄红素含量高的番茄品种或其它经济作物,扩大番茄红素的来源具有十分重要的意义。
     美国科学家发现,牛奶子(Elaeagnus umbellate Thunb.)浆果中番茄红素含量相当于普通番茄的18倍,最新研究显示高达75 mg/100 g鲜重。参与番茄红素生物合成的酶,多数通过基因工程的手段克隆出了相应的基因,并成功通过遗传工程技术提高了番茄、马铃薯中番茄红素的含量。但是,有关牛奶子果实中大量番茄红素积累机制的研究还是空白。为此,我们首次分离得到7个牛奶子类胡萝卜素合成基因——Ggps、Psy、Pds、Zds、Lcy-b、Lcy-e、Bch和两个内参基因——Gapdh、Actin。为深入研究牛奶子果实中类胡萝卜素合成基因与番茄红素积累的关系,我们运用实时定量PCR和RT-PCR技术对基因的表达情况进行分析。结论如下:
     ①牛奶子果实中大量番茄红素的积累是类胡萝卜素代谢途径各基因协同作用的结果。上游4个番茄红素合成基因——Ggps、Psy、Pds和Zds的上调,下游番茄红素代谢基因——Lcy-b和Bch的下调,尤其是Lcy-e基因的沉默可能在番茄红素大量积累中起重要作用。
     ②牛奶子果实成熟过程中,尽管叶黄素合成途径中番茄红素环化酶基因Lcy-e沉默,叶黄素(包括α-胡萝卜素)却存在相当的含量,原因可能是Lcy-e基因在牛奶子果实发育早期表达而产生大量的叶黄素,然后随着果实的增大叶黄素的单位含量逐渐下降。
     ③Pds基因开放阅读框(ORF)为1749 bp,编码582个氨基酸、分子量约65.2 kD、等电点约8.12的蛋白质,牛奶子Pds基因全长DNA序列不含任何内含子。系统发育分析说明牛奶子与杏属亲缘关系较近。
     ④牛奶子类胡萝卜素合成基因Pds与Psy均是单拷贝的。
Lycopene, a red linear carotenoid and an isomer of fat-soluble carotene with 11 conjugated double-bonds and two non-conjugated double-bonds, is the most potent antioxidant from plant sources and exhibits the highest physical quenching rate constant with singlet oxygen. Lycopene could reduce the risk of chronic diseases such as cardiovascular diseases and different forms of cancer, and inhibite the growth of human colon cancer cells even at low concentration. Due to the important role of lycopene in human health, consumer demand for lycopene-rich food and nutraceutical products is growing. Therefore, the development for new idioplasm resources of lycopene was very significant. Heredity breeding, especially regulating lycopene biosynthesis and modifying tomato variety or other industrial crops to rich source of lycopene with transgenic method is useful.
     By far the most promising is autumn olive fruit, in which the lycopene is about 17 times higher than that of tomato, and reaches up about 75 mg/100 g fresh weight. The pathway of carotenoid biosynthesis in higher plants is illustrated. Carotenoid biosynthesis and its regulation have been studied in various plant species. But little is still known about the molecular mechanism of lycopene biosynthesis in autumn olive fruit. In this case, we cloned seven carotenogenic genes Ggps, Psy, Pds, Zds, Lcy-b, Lcy-e, Bch, and two control genes Gapdh and Actin from autumn olive. All of these carotenogenic genes were evaluated at transcript level in order to determine which of them played a major role in massive lycopene accumulation during fruit ripening. Characterization of the full-length Pds was also studied. The results are as follows:
     ①The lycopene accumulation in autumn olive fruit was highly regulated by the coordination of the expression among carotenogenic genes. The massive lycopene accumulation in autumn olive fruit was concomitant with the up-regulation of upstream genes of lycopene synthesis (Ggps, Psy, Pds and Zds), and down-regulation of downstream genes (Lcy-b and Bch), and in particular with the silence of Lcy-e throughout fruit ripening.
     ②The formation of lutein was feasible before stage A. The level of lutein decreased progressively from stage A to stage D probably due to a dilution effect caused by the enlargement of the fruit. This theory can be used to explain the presence of lutein though Lcy-e is silent.
     ③The full-length cDNA of Pds contains an ORF of 1749 bp encoding a polypeptide of 582 amino acids, and was not interrupted by any intron. In silico analysis of the predicted amino acid sequence showed a pI of 8.12 and molecular mass of 65.2 kD.
     ④The genomic DNA of autumn olive contains a single copy of Pds and Psy.
引文
[1]惠伯棣.类胡萝卜素化学及生物化学[M].北京:中国轻工业出版社,2005,1-20,98-149.
    [2]Niyogi K K.Photoprotection revisited:genetic and molecular approaches[J].Annual Review of Plant Biology,1999,50:391-417.
    [3]王玉萍,刘庆昌,翟红.植物类胡萝卜素生物合成相关基因的表达调控及其在植物基因工程中的应用[J].分子植物育种,2006,4(1):103-110.
    [4]Rock C D,Zeevaart J A D.The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis[J].Proceedings of the National Academy of Sciences USA,1991,88:7496-7499.
    [5]Klaui H,Bauernfeind J C.Carotenoids as food color.In carotenoids as clorants and vitamin A precusors[M].New York:Academic Press,1981,48-317.
    [6]Matsuno T.Xanthophylls as precursors of retinoids[J].Pure and Applied Chemistry,1991,63:81-88.
    [7]Bartley G E,Scolnik P A.Plant carotenoids:Pigments for photoprotection,visual attraction and human health[J].Plant Cell,1995,7:1027-1038.
    [8]Giovannucci E,Ascherio A,Rimm E B,et al.Intake of carotenoids and retino in relation to risk of prostate cancer[J].Journal of the National Cancer Institute,1995,87:1767-1776.
    [9]Miki W.Biological functions and activities of animal carotenoids[J].Pure and Applied Chemistry,1991,63:141-146.
    [10]Bendiah A.Beta-carotene and the immune response[J].Proceedings of the Nutrition Society,1991,50:263-274.
    [11]Jyocouchi H,Hill J,Tomita Y,et al.Studies of immunomodulating actions of carotenoids.I:Effects of β-carotene and astaxanthin on murine lymphocyte functions and cell surface marker expression in in vivo culture system[J].Nutrition and Cancer, 1991,6:93-105.
    [12]Ye X,Al-Babili S,Kloti A,et al.Engineering proitamin A(β-carotene) biosynthetic pathway into(carotenoid-free) rice endosperm[J].Science,2000,287:303-305.
    [13]Diretto G,Al-Babili S,Tavazza R,et al.Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway[J].PLoS ONE,2007,2(4):e350.
    [14]浙江植物志编辑委员会.浙江植物志第四卷[M].浙江科学技术出版社,1993,7.
    [15]贾黎明.固氮树种与非固氮树种混交林研究现状[J].世界林业研究,1998,(1):20-26.
    [16]姜长阳,宁淑香.牛奶子的组织培养及植株再生[J].植物生理学通讯,2001,37(1):41-42.
    [17]陈新.川渝地区胡颓子属药用植物资源研究[J].成都中医药大学学报,2001,24(2):40-42.
    [18]杨昌煦,熊济华.重庆胡颓子植物种质资源与利用研究[J].西南农业大学学报,2002,24(1):26-30.
    [19]Fordham I M,Clevidence B,Wiley E,et al.Fruit of autumn olive:a rich source of lycopene[J].HortScience,2001,36:1136-1137.
    [20]胡丰林.中国胡颓子属植物利用价值的初步分析[J].生物学杂志,1996,13(4):30-32.
    [21]Fordham I M,Zimmerman R H,Black B L,et al.Autumn olive:a potential alternative crop[J].Acta Horticulturae,2003,626:429-431.
    [22]Santos J B,Nienhuis J,Skroch P,et al.Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L.genotypes[J].Theoretical and Applied Genetics,1994,87:909-915.
    [23]Kresovich S,Williams J G K,McFerson J R.Characterization of genetic identities and relationships of Brassica oleracea L.via a random amplified polymorphic DNA assay[J].Theoretical and Applied Genetics,1992,85:190-196.
    [24]晁无疾,张恩让,赵玉模.秦巴山区野生胡颓子属植物资源及研究[J].中国野生植物,1990,(4):16.
    [25]彭国全,季梦成.江西胡颓子属植物资源及开发利用研究[J].江西农业大学学报, 2004,26(1):63-67.
    [26]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1983,25(2):6-59.
    [27]郭新伦,王长春,胡海涛,等.浙江省野生牛奶子资源调查[J].浙江师范大学学报,2008,31:399-342.
    [28]Koornneef M,Van Eden J,Hanhart C J,et al.Linkage map of Arabidopsis thaliana[J]..Journal of Heredity,1983,74:265-272.
    [29]Norris S R,Barrette T R,DellaPenna D.Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation[J].Plant Cell,1995,7:2139-2149.
    [30]Hunter,C P.Shrinking the black box of RNAi[J].Current Biology 2000,10:137-140.
    [31]Rick C M,Thompson A E,Brauer O.Genetics and development of an unstable chlorophyll deficiency in Lycopersicon esculentum[J].American Journal of Botany,1989,46:1-11.
    [32]Fray R G,Grierson D.Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing,complementation and co-suppression[J].Plant Molecular Biology,1993,22:589-602.
    [33]Ronen G,Cohen M,Zami D,et al.Regulation of carotenoid biosynthesis during tomato fruit development:expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant delat[J].Plant Journal,1999,17:341-351.
    [34]Rajendran L,Ravishankar G A,Venkataraman L V,et al.Anthocyanin production in callus cultures of Daucus carota as influenced by nutrient stress and osmoticum[J].Biotechnology Letters,1992,14:707-712.
    [35]Robertson D S.Survey of the albino and white-endosperm mutants of maize[J].Journal of Heredity,1995,66:67-74.
    [36]Buckner B,San-Miguel P,Janick-Buckne D,et al.The YI gene codes for phytoene synthase[J].Genetics,1996,143:479-488.
    [37]Brown C R,Edwards C G,Yang C P,et al.Orange flesh trait in potato:inheritance and carotenoid content[J].Journal of the American Society for Horticultural Science, 1993,118:145-150.
    [38] Pecker I, Gabbay R, Cunningham F X, et al. Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening[J]. Plant Molecular Biology, 1996,30: 807-819.
    [39] Humphries S E, Widjaja F. A simple method for separating cells of Microcystis aeruginosa for counting[J]. British Phycology Journal, 1979,14: 313.
    [40] Yoshida A, Okamura S, Sugano N, et al. Effect of phosphate concentration on growth and carotenoid synthesis of carrot cells in suspension culture[J]. Evolutionary Control in Biology (Tokyo), 1995,13:47-53.
    [41] Albrecht M, Sandman G. Light-stimulated carotenoid biosynthesis during transformation of maize etioplasts is regulated by indreased activity of isopentenyl pyrophosphate isomerase[J]. Plant Physiology, 1994, 105: 529-534.
    [42] Giuliano G, Bartley G E, Scolnik P A. Regulation of carotenoid biosynthesis during tomato development[J]. Plant Cell, 1993, 5: 379-387.
    [43] Lintig J, Welsch R, Bonk M, et al. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings[J]. Plant Journal, 1997,12:625-634.
    [44] Sarry J E, Montillet J L, Sauvaire Y, et al. The protective function of the xanthophylls cycle in photosynthesis[J]. FEBS Letter, 1994, 353: 147-150.
    [45] Dogbo O, Laferriere A, d'Harlingue A, et al. Carotenoid biosynthesis: Isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene [J]. Proceedings of the National Academy of Sciences USA, 1988, 85: 7054-7058.
    [46] Jeffery D, Smith C, Goodenough P, et al. Ethylene-independent and ethylene- dependent biochemical changes in ripening tomatoes [J]. Plant Physiology, 1984, 74: 32-38.
    [47] Scolnik P A, Bartley G E. Nucleotide sequence of zeta-carotene desaturase (Accession No. U38550) from Arabidopsis (PGR95-111)[J]. Plant Physiology, 1995, 108: 1499.
    [48] Theologis A, Oeller P W, Wong L M, et al. Use of a tomato mutant constructed with reverse gentics to study fruit ripening, a complex developmental process[J]. Developmental Genetics, 1993,14(4): 282-295.
    [49] Steward I, Wheaton T A. Carotenoids in citrus: Their accumulation induced by ethylene[J]. Journal of Agricultural and Food Chemistry, 1982, 20: 448-449.
    [50] Smith M A L, Madhavi D, Fang Y, et al. Continuous cell culture and product recovery from wild Vaccinium Pahalae germplasm[J]. Journal of Plant Physiology (Germany), 1997,150:462-466.
    [51] Turnbull A, Galpin I J, Smith J L, et al. Comparison of the onion plant (Allimn cepa) and onion tissue culture. IV. Effect of shoot and root morphogenesis on flavour precursor synthesis in onion tissue[J]. New Phytologist, 1981, 87: 257-268.
    [52] Karvouni Z, John I, Taylor J E, et al. Isolation and characterization of a melon cDNA clone encoding phytoene synthase[J]. Plant Molecular Biology, 1995, 27: 1153-1162.
    [53] Shewmaker C K, Sheehy J A, Daley M, et al. Seed specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects[J]. Plant Journal, 1999, 20: 401-412.
    [54] Misawa N, Satomi Y, Kondo K, et al. Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level[J]. Journal of Bacteriology, 1995,177: 6575-6584.
    [55] Romer S, Fraser P D, Kiano J W, et al. Elevation of the provitamin A content of transgenic tomato plants[J]. Nature Biotechnology, 2000,18: 666-669.
    [56] Rosati C, Aquilani R, Dhamrapuri S, et al. Metabolic engineering of beta-carotene and lycopene content in tomato fruit[J]. Plant Journal, 2000,24: 413-419.
    [57] Harker M, Hirschberg J. Molecular biology of carotenoid biosynthesis in photosynthetic organisms[J]. Methods in Enzymology, 1998,297: 244-263.
    [58] Biddington N L. The influence of ethylene in plant tissue culture[J]. Plant Growth Regulation, 1992,11: 173-187.
    [59] Devasagayam T P A, Werner T, Ippendorf H, et al. Synthetic carotenoids, novel polyene polyketones and new cap sorubin isomers as efficient quenchers of singlet molecular oxygen[J]. Photochemistry and Photobiology, 1992, 55: 511-514.
    [60] Minorsky P V. The hot and the classic[J]. Plant Physiology, 2003,132: 1779-1780. 技,2007,(9):227-231.
    [62]Blum A,Monir M,Wirsansky I,et al.The beneficial effects of tomatoes[J].European Journal of Internal Medicine,2005,16:402-404.
    [63]李京,惠伯棣.秋橄榄果实中番茄红素含量与几何异构体组成分析[J].食品工业科技,2006,27(10):64-65.
    [64]Schaub P,Al-Babili S,Drake R,et al.Why is golden rice golden(yellow) instead of red?[J].Plant Physiology,2005,138:441-450.
    [65]Fraser P D,Romer S,Shipton C A,et al.Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner[J].Proceedings of the National Academy of Sciences USA,2002,99:1092-1097.
    [66]Schneiderbauer A,Sandermarm H Jr,Ernst D.Isolation of functional RNA from plant tissues rich in phenolic compounds[J].Anal Biochemistry,1991,197:91-95.
    [67]Graham G C.A method for extraction of total RNA from Pinus radiata and other conifers[J].Plant Molecular Biology Reporter,1993,11:32-37.
    [68]Lewinsohn E,Steele C L,Croteau R.Simple isolation of functional RNA from woody stems of gymnosperms[J].Plant Molecular Biology Reporter,1994,12:20-25.
    [69]Hunter D A,Reid M S.A simple and rapid method for isolating high quality RNA from flower petals[J].Acta Horticulturae,2001,543:147-152.
    [70]Bahlonl M,Bnrkanl G.An improved method for the isolation of total RNA from spruce tissues[J].Plant Molecular Biology Reporter,1993,11:211-215.
    [71]李宏,王新力.植物组织RNA提取的难点及对策[J].生物技术通报,1999,1:36-39.
    [72]Xu C J,Fraser P D,Wang W J,et al.Differences in the carotenoid content of ordinary citrus and lycopene-accumulating mutants[J].Journal of Agricultural and Food Chemistry,2006,54:5474-5481.
    [73]高红岩,梅晓宏,苏夜阳,等.番茄红素及其生物合成途径的研究[J].食品科技,2005,8:42-45.
    [74]Sandmann G.Genetic manipulation of carotenoid biosynthesis:strategies,problems and achievements[J].Trends in Plaut Science,2001,6(1):14-17.
    [75]萨姆布鲁克J,拉塞尔D W.分子克隆实验指南[M].黄培堂,译.北京:科学出版社,2003,1688-1692.
    [76]王飞.甘薯类胡萝卜素合成酶基因Pds全长cDNA的克隆[J].安徽理工大学学报,2007,27(1):55-58.
    [77]Malinen E,Kassinen A,Rinttila T,et al.Comparison of real-time PCR with SYBR Green I or 5'-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria[J].Microbiology,2003,149:269-277.
    [78]Bramley P M.Regulation of carotenoid formation during tomato fruit ripening and development[J].Journal of Experimental Botany,2002,53:2107-2113.
    [79]Diretto G,Tavazza R,Welseh R,et al.Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase[J].BMC Plant Biology,2006,6:13.
    [80]Li L,Paolillo D J,Parthasarathy M V,et al.A novel gene mutation that confers abnormal pattems of beta-carotene accumulation in cauliflower(Brassica oleracea var.botrytis)[J].Plant Journal,2001,26:59-67.
    [81]Ikoma Y,Komatsu A,Kita M,et al.Expression of a phytoene synthase gene and characteristic carotenoid accumulation during citrus fruit development[J].Physiologia Plantarum,2001,111:232-238.
    [82]Kita M,Komatsu A,Omura M,et al.Cloning and expression of CitPdsl,a gene encoding phytoene desaturase in citrus[J].Bioscience Biotechnology and Biochemistry,2001,65:1424-1428.
    [83]Liu Q,Xu J,Liu Y Z,et al.A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit(Citrus sinensis L.Osbeck)[J].Journal of Experimental Botany,2007,58:4161-4171.
    [84]朱跃辉,姜建国,林庆生.盐藻八氢番茄红素脱氢酶cDNA的分离及序列分析[J].食品与发酵工业,2005,31(9):21-23.
    [85]Kato M,Ikoma Y,Matsumoto H,et al.Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit[J].Plant Physiology,2004,134:824-830.
    [86]Corona V,Aracri B,Kosturkova G,et al.Regulation of a carotenoid biosynthesis gene promoter during plant development[J].Plant Journal,1996,9:505-512.
    [87]Friedlander T P,Regier J C,Mitter C.Phylogenetic information content of five nuclear gene sequences in animals:initial assessment of character sets from concordance and divergence studies[J].Systematic Biology,1994,43:511-525.
    [88]季静,山村三郎,西原昌宏,等.通过转基因提高β-胡萝卜素生物合成量[J].中国生物化学与分子生物学报.2004,20(4):440-444.
    [89]Matthews P D,Luo R B,Wurtze E T.Maize phytoene desaturase and δ-carotene desaturase catalyse a poly-Z desaturation pathway:implications for genetic engineering of carotenoid content among cereal crops[J].Journal of Experimental Botany,2003,54:2215-2230.
    [90]Bartley G E,Viitanen P V,Pecker I,et al.Molecular cloning and expression in photosynthetic bacteria of a soybean eDNA coding for phytoene desaturase,an enzyme of the carotenoid biosynthesis pathway[J].Proceedings of the National Academy of Sciences USA,1991,88:6532-6536.
    [91]Tao N G,Hu Z Y,Liu Q,et al.Expression of phytoene synthase gene(Psy) is enhanced during fruit ripening of Cara Cara navel orange(Citrus sinensis Osbeck)[J].Plant Cell Reporter,2007,26:837-843.
    [92]Cunningham J F X,Pogson B,Sun Z,et al.Functional analysis of the β and ε lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation[J].Plant Cell,1996,8:1613-1626.
    [93]赵倩,赖凡,于静娟,等.谷子类胡萝卜素生物合成途径中番茄红素β-环化酶基因的克隆[J].中国农业大学学报,2004,9(1):1-6.
    [94]Popovsky S,Paran I.Molecular genetics of the y locus in pepper:its relation to capsanthin-capsorubin synthase and to fruit color[J].Theoretical and Applied Genetics,2000,101:86-89.
    [95]Lang Y Q,Yanagawa S,Sasanuma T,et al.Orange fruit color in Capsicum due to deletion of capsanthin-capsorubin synthesis gene[J].Breeding Science,2004,54:33-39.
    [96]Maqbool S B,Christou P.Multiple traits of agronomic importance in transgenic indica rice plants:analysis of transgene integration pattems,expression levels and stability[J].Molecular Breeding,1999,5:471-480.
    [97]Kohli A,Fu X,Twyman R,et al.Transgene integration,organization and expression[J].Rice Genetics Newsletter,1999,16:135-138.
    [98]张德春,夏志辉,赵显峰等.水稻单拷贝Xa21近等转基因系的培育与抗性分析[J].生物工程学报,2004,20:839-842.
    [99]马兰,黄原.单拷贝核基因在昆虫分子系统学中的应用[J].昆虫知识,2006,43(1):6-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700