固废堆场终场土质覆盖层中水分运移规律及调控方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固废堆场终场覆盖系统担负着减少雨水下渗以减少渗滤液产量和防止堆场中有害气体无组织释放的重任,土质覆盖层(Alternative Earthen Final Cover)由天然非胀缩土料组成、具有良好的耐久性,其造价及后期维护费用远低于传统复合型覆盖层,是进行填埋场终场覆盖的理想结构型式。目前我国许多城市的固体废弃物填埋场已经达到或接近使用年限,面临封场覆盖问题;土质覆盖层中水分的运移规律和调控方法也尚未明确,因而开展对土质覆盖层的研究具有重要的现实意义和理论意义。
     本文以国家自然科学基金面上项目“湿润气候区土质覆盖层-大气水分传递机理及控制方法”(50878194)为依托,通过数值模拟、模型试验、解析法等手段系统研究了固体废弃物填埋场土质覆盖层内的水分运移规律,探讨了覆盖层内水分的调控方法。本文所做的主要工作和相应的研究成果如下:
     (1)采用Gitirana(2005)的降雨入渗-产流边界处理方式,研究了湿润气候区降雨雨型对土质覆盖层地表入渗量的影响。研究结果表明,在日降雨量和初始条件相同时,对非均匀雨型,雨强峰值出现越早则其总入渗量越大;在部分工况下,前锋型(A1)的地表入渗量会大于均匀雨型;短历时强降雨的入渗量明显较全天降雨的雨型小;在研究湿润气候区长期气候条件下土质覆盖层服役性能时若不采用实时气象资料则均匀雨型和前锋型(A1)雨型是最保守的设计雨型。
     (2)基于非饱和渗流控制方程,采用指数方程描述非饱和土体的土水特征曲线和渗透系数随含水量的变化,建立降雨入渗条件下无限长斜坡内水分运移模型并求得解析解,将解析结果与数值模拟结果进行对比验证了解析解的正确性,通过此解析解分析了土性参数、前后期雨强及坡度等因素对覆盖层内水分运移和存储规律的影响。最后,利用从解析解得到的基质吸力剖面分析了土质覆盖层在降雨条件下的稳定性变化。研究表明土质覆盖层饱和渗透系数越小,则湿润锋前进速度越慢,入渗水分易滞留在表层;减饱和系数越大,则表层含水量变化大,入渗影响深度浅;持水能力越强则相同时间内湿润锋影响深度越浅;对于毛细阻滞型覆盖层,细粒层中的含水量和基质吸力变化大,而粗细粒层界面以下的粗粒层中含水量变化很小。
     (3)自制由模型槽、降雨模拟装置、侧向排水与深层渗漏收集及量测装置、基质吸力和动态图像采集系统组成的模型试验装置,研究了湿润气候区强降雨条件下毛细阻滞覆盖层与大气间的水分传递规律及强降雨条件下设置非饱和导排层(Unsaturated Drainage Layer, UDL)时毛细阻滞覆盖层的性状,通过数值手段对试验结果进行了模拟研究。研究结果表明,在湿润气候区的强降雨条件下覆盖层表面的地表径流占到降雨总量的69%-77%,砂土非饱和导排层可以很好地发挥侧向排水作用疏干覆盖层内的水分,表层粉土饱和渗透系数越小则侧向导排量与深层渗漏量之比越大。
     (4)建立综合考虑填埋体和终场土质覆盖层的数值模型,研究了湿润气候区长期持续降雨天气下降雨雨强、降雨分配模式、UDL层厚度、粉土层厚度和渗透系数、覆盖层坡度等对覆盖层侧向导排(Lateral Diversion)能力的影响规律。研究结果表明,UDL层可大大提高普通毛细阻滞覆盖层侧向导排能力,减少滞水现象的出现;UDL层厚度只影响早期降雨时的侧向导排长度,但对持续大量降雨时的最终导排长度影响不大;覆盖层坡度越陡则越容易疏干边坡上部特别是UDL层中的水分。最后为在土质覆盖层设计中科学合理利用倾斜毛细阻滞覆盖层的侧向排水效应提出了优化建议。
     (5)采用基于非等温多孔介质中水热耦合运移控制方程的数值软件,考虑外界气候条件、地表土体蒸发、植被蒸腾对根系生长区水分的提取作用,建立土质覆盖层-植被-大气相互作用数值模型,针对我国湿润、半湿润和半干旱地区典型城市长期实测气象条件,系统分析了不同结构型式土质覆盖层的响应,最后针对我国不同气候区终场土质覆盖层的设计提出了建议。
The principal goal of landfill final cover is to prevent or control infiltration of precipitation, thereby reducing leachate production, and to control the emission of landfill gas into the atmosphere. The alternative earthen final covers (AEFCs) are constructed with relatively non-plastic soils with greater durability and lower cost and it requires relatively lower post-closure maintenance than conventional covers, so AEFCs are good choices for the landfill final closure. At present, many landfills in China are close to its service life, so they need a final cover. Therefore, it is of practical significance to study the performance of AEFCs.
     The research works in this paper are based on the general project "Study on the water transport between landfill earthen final cover and atmosphere and its controlling method in humid areas" funded by National Science Foundation of China. Numerical simulations, model tests and analytical methods were carried out to study the issues. The main research works and conclusions are as follow.
     (1) The influence of rainfall patterns on the infiltration into landfill earthen final cover was investigated based on the infiltration-runoff boundary conditions proposed by Gitirana (2005). The results show that as the peak rainfall intensity occurs earlier, the cumulative infiltration will be larger for the non-uniform pattern under the same daily precipitation; the cumulative infiltration of advanced pattern (A1) will be larger than the uniform pattern under certain conditions; the cumulative infiltration of rainstorms will be less than the rainfall pattern with 24 hours duration; not only the uniform pattern but also the advanced pattern (A1) should be taken into account in the study of long term performance of AEFCs in humid areas.
     (2) An analytical solution for water movement in an infinite slope was presented on the basis of the governing equation for unsaturated flow. To obtain the analytical solution, it is assumed that both the soil-water characteristic curve and permeability function can be described with exponential functions. The analytical results were compared with the results obtained from the numerical simulation, which shows that the analytical solution is reasonable. The influence of soil properties and antecedent rainfall and subsequent rainfall intensity on the water movement and storage were investigated. The results show that the less the saturated permeability, the shallower the wetting front; the lager the desaturation coefficient, the shallower the wetting front; the larger the water storage capacity (θs-θr), the shallower the wetting front; for the capillary barrier, the volumetric water content and matric suction in the fine-grained layer changes greatly, but the volumetric water content profile in the lower layer almost remains at the initial value.
     (3) The model test system comprised of model tank, rainfall simulator, water collection and measurement system and monitoring system was developed. The water transport between capillary barrier and atmosphere and the performance of capillary barrier with unsaturated drainage layers under high rainfall intensity were investigated through the model test. The results show that runoff occupies 69%~77% of the total precipitation. The UDL can drain the water from AEFCs through lateral diversion. The lower the saturated permeability of surface layer, the lateral diversion will be more dominant than the deep percolation.
     (4) Numerical models combined the landfill earthen final covers with wasted disposal were developed. The influence of rainfall intensity, the thickness of the UDL, the thickness and saturated permeability of surface layer, the inclination of the cover on the diversion length were investigated through numerical simulations. The results show that the UDL can increase the diversion length of the common capillary barrier and reduce the occurrence of perched water. The thickness of the UDL can influence the diversion length in the initial stage of rainfall, but it can not increase the final diversion length of AEFCs subjected to continuous high rainfall. The steeper the cover slope, the more water will be drained from the cover, especially in the UDL. Some suggestions on the utilization of lateral diversion capacity of inclined capillary barriers were proposed to optimize the cover design.
     (5) The numerical model that can describe the interactions between landfill earthen final cover-vegetation-atmosphere was developed. The model based on the non-isothermal flow equation considering the thermal moisture coupling takes the meteorological condition, the evaporation from the ground surface and the transpiration of the vegetation into account. The performance of AEFCs in humid, sub-humid, semi-arid areas in China was investigated. Some suggestions for the AEFCs design in China are given based on the numerical simulations.
引文
Abichou T. Assessment of Alternative Earthen Final Covers for Florida Landfills [R]. Florida Center for Solid and Hazardous Waste Management, University of Florida, Report #03-05,2003, pp.107.
    Albright W H, Benson C H, Gee G W, et al. Field Performance of a Compacted Clay Landfill Final Cover at a Humid Site [J]. J Geotech. Geoenviron. Eng.,2006, 132(11):1393-1403.
    Albright W H, Benson C H, Gee G W, et al. Field water balance of landfill final covers [J]. Journal of Environmental Quality,2004,33:2317-2332.
    Albright W H. (2005) Field water balance of landfill final covers [D]. PhD Thesis, University of Nevada, Reno, USA.
    Albright W H., Gee G W, Wilson G V, Fayer M J. (2002). Alternative Cover Assessment Project:Phase I Report [R]. Division of Hydrologic Sciences, Desert Research Institute, University and Community College System of Nevada.
    Aubertin M, Cifuentes E, Apithy S A, Bussiere B, et al. Analyses of water diversion along inclined covers with capillary barrier effects [J]. Canadian Geotechnical Journal,2009,46:1146-1164.
    Aubertin M, Cifuentes E, Martin V, Apithy S, Bussiere B, Molson J, Chapuis R P, Maqsoud A. (2006) An investigation of factors that influence the water diversion capacity of inclined covers with capillary barrier effects. Unsaturated Soils 2006: Proceedings of the fourth International Conference on Unsaturated Soils, April 2-6,2006, Carefree, Arizona, G. A. Miller, C.E. Zapata, S.L. Houston, D.G. Fredlund (eds.). ASCE Geotechnical Special Publication, No.147, pp.613-624.
    Benson C H, Bohnhoff G L, Apiwantragoon P, Ogorzalek A S, Shackelford C D, and Albright W H. (2004). Comparison of model predictions and field data for an ET cover. Proc. Tailings and Mine Waste'04, Balkema, Leiden, The Netherlands, 137-142.
    Benson C H, Bohnhoff G L, Ogorzalek A S, Shackelford C D, Apiwantragoon P, and
    Albright W H. (2005). Field data and model predictions for an alternative cover. Waste containment and remediation, A. Alshawabkeh et al., eds., ASCE, Reston, Va.,1-12.
    Benson C H. (1999). Final Coves For Waste Containment Systems:A North American Perspective. XVII CONFERENCE OF GEOTECHNICS OF TORINO "Control and Management of Subsoil Pollutants". November 23-25,1999. Torino, Italy.
    Benson C H. (2007). Modeling Unsaturated Flow and Atmospheric Interactions. Theoretical and Numerical Unsaturated Soil Mechanics, Springer Berlin Heidelberg, pp:187-202.
    Bundesregierung,2000. Wismut, Perspektiven durch Sanierung (Wismut, perspectives due to remediation). Bundesministerium fur Wirtschaft und Technologie, Referat Offentlichkeitsarbeit, Berlin.
    Bundesregierung,2001. Abfallablagerungsverordnung. Bundesgesetzblatt I (10),305.
    Bundesregierung,2002. Verordnung uber Deponien und Langzeitlager. Bundesgesetzblatt I (52),2807.
    Bussiere B, Apithy S A, Aubertin M and Chapuis R P. Water diversion capacity of inclined capillry barriers [C]. Proceedings of 56th annual Canadian Geotechnical Conference, Winnipeg,9p. [CD-ROM].
    Bussiere B, Aubertin M, Chapuis R P. The behavior of inclined covers used as oxygen barriers. Can. Geotech. J.,2003,40(3):512-535.
    Chiu A C F, Zhu W, Chen X D. Rainfall infiltration pattern in unsaturated clayey silt [J]. Journal of Hydrologic Engineering, ASCE,2009,14(8),882-886.
    Cho S E, Lee S R. Evaluation of surficial stability for homogeneous slopes considering rainfall characteristics [J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(9):756-763
    Chu X, Mario M A. Determination of ponding condition and infiltration into layered soils under unsteady rainfall [J]. Journal of Hydrology,2005,313:195-207.
    Cifuentes E, Aubertin M, Chapuis R P, Molson J, Bussiere B. (2006) Analyses of the water diversion length of inclined, layered soil covers. Proceedings of the 59th Canadian geotechnical conference and the 7th joint CGS/IAH-CNC groundwater
    specialty conference, Sea to Sky Geotechnique, Vancouver, Canada,1-4 October, pp 1744-1749
    de Vries D A. Simultaneous transfer of heat and moisture in porous media. Transactions of the American Geophysical Union,1958,39(5):909-916.
    Dwyer S F.2003. Water balance measurements and computer simulations of landfill covers [D]. Ph.D. Thesis, The University of New Mexico, Albuquerque, New Mexico, USA.
    Dwyer S F. Alternative Landfill Covers Pass the Test [J]. Civil Engineering,1998, 68(9),30-52.
    Dwyer S F. Finding a better cover. Civil Engineering [J], ASCE, Reston, Virginia, USA,2001,71(1),58-63.
    Edlefsen N E, Anderson A B C,1943. Thermodynamics of soil moisture. Hilgardia 15: 2:pp.31-298.
    Fayer M J (2000). UNSAT-H Version 3.0:Unsaturated Soil Water and Heat Flow Model, Theory, User Manual, and Examples. PNNL Rep13249. Pacific Northwest Natl Lab, Richland, WA
    Fredlund D G, Morgenstern N R, Widger R A. The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal,1978,15(3):313-321.
    Fredlund D G, Rahardjo H. Soil mechanics for unsaturated soils [M]. John Wiley, New York,1993.
    Fredlund D G. Slope stability hazard management systems [J]. Journal of Zhejiang University Science A,2007,8(11):1695-1711
    Gardner W R.1958. Some steady state solutions of unsaturated moisture flow equations with applications to evaporation from a water table. Soil Sci. 85:228-232.
    GeoSlope International Ltd. (2004). Seepage modelling with SEEP/W, user's guide version 6.16. Geo-Slope International Ltd., Calgary, Alta.
    GeoSlope International Ltd. (2005). Vadose/W User's Manual, Version 1.10. Geo-Slope Ltd., Calgary, Alberta, Canada.
    Gitirana G, Fredlund M D, Fredlund D G. Numerical Modeling of Soil-Atmosphere
    Interaction for Unsaturated Surfaces. Fourth International Conference on Unsaturated Soils, April 2-5,2006, Carefree, AZ, USA
    Gitirana G, Fredlund M, Fredlund D G. (2005a) Infiltration-runoff boundary conditions in seepage analysis. In:Proc 58th Canadian Geotechnical Conf and 6th Joint IAH-CGS Conf, Saskatoon, SK, Canada. Vol 2, pp:516-523, September 18-21,2005
    Gitirana G. 2005b. Weather-Related Geo-Hazard Assessment Model for Railway Embankment Stability [D]. Ph.D. Thesis. University of Saskatchewan, Saskatoon, SK, Canada,411p.
    Green W H. and Ampt G A. (1911). Studies on soil physics. Part 1. The flow of air and water through soils [J]. Journal of Agricultural Science,1911,4(1):1-24.
    Gross B A. (2005).Water Balance Evaluations for Monitored Evapotranspirative Cover Systems at Three Sites in the Semi-Arid and Arid Southwest U.S. [D]. PhD thesis, The University of Texas at Austin.
    Hakonson T, et al. (1994). Hydrologic evaluation of four landfill cover designs at Hill Airforce Base [R], Utah. Rep. No. LAUR-93-4469, Dept. of Energy Mixed Waste Landfill Integrated Demonstration, Sandia National Laboratory, Livermore, Calif.
    Hauser V L, Weand B L & Gill M D. Natural covers for landfills and buried waste [J]. Journal of Environmental Engineering,2001,127,768-775.
    HDR Engineering Inc. Alternate Cover Design Report for Waste Management of Nebraska, Inc Douglas County Recycling and Disposal Facility,2000.
    Henken-Mellies U. (2009) Municipal Solid Wastes and Landfill Engineering. Presented at International Symposium on Geoenvironmental Engineering (ISGE 2009), Zhejiang University, Hangzhou.
    Hillel D.1998. Environmental Soil Physics [M]. Academic Press, San Diego, California.771 pp.
    Horton R E. (1940). An approach towards a physical interpretation of infiltration capacity [J]. Soil Sci. Soc. Am. Proc.,5,399-417.
    Iverson R M. Landslide triggering by rain infiltration [J].Water Resources Research, 2000,36(7):1897-1910
    Kampf M, Holfelder T, Montenegro H. Identification and parameterization of flow processes in artificial in capillary barriers [J]. Water Resource Research,2003,39 (10):SBH 2-1-SBH 2-9.
    Kampf M, Montenegro H.1998. Inspection and Numerical Simulation of Flow Processes in Capillary Barrier Cover Systems,
    Kampf M, Montenegro H. On the Performance of Capillary Barrier as Landfill Cover [J]. Hydrology & Earth System Sciences,1997, vol 4, pp.925-929.
    Khire M V, Benson C H. Field Data from a Capillary Barrier and Model Predictions with UNSAT-H [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999,125(6):518-527.
    Khire M, Benson C H, and Bosscher P. Capillary Barriers in Semi-Arid and Arid Climates:Design Variables and the Water Balance [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2000,126(8):695-708
    Khire M, Benson C H, Bosscher P. Water Balance Modeling of Final Covers [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1997,123(8): 744-754.
    Khire M, Benson C, Bosscher P, and Pliska P.1994. Field-scale comparison of capillary and resistive landfill covers in an arid climate.14th Annual American Geophysical Union Hydrology Days, Morel-Seytoux, H. J. (Ed), Colorado State University, Fort Collins, Colorado, April 5-8, Hydrology Days Publ.,57 Shelby Lane, Atherton, California 94027-3926,195-209.
    Koerner R M, Daniel DE.1997. Final covers for solid waste landfills and abandoned dumps [M]. ASCE Press, Reston, VA.
    Koerner R M, Soong T Y. Leachate in landfills:the stability issues [J]. Geotextiles and Geomembranes,2000,18(2):293-309.
    Mein R G., Larson C L. Modeling infiltration during a steady rain [J]. Water Resour Res.,1973,9(2):384-394
    Milly C P D. A simulation analysis of thermal effects on evaporation from soil [J].Water Resources Research,1984,20 (8):1087-1098.
    Milly P C D.1982. Moisture and heat transport in hysteretic, inhomogeneous porous media:A matric head based formulation and a numerical model [J]. Water Resources Research,18(3):489-498.
    Miyazaki T. Water flow in unsaturated soil in layered slopes [J]. J. Hydrol.,1988,102: 201-214.
    Morris C E, Stormont J C. Capillary barriers and subtitle D covers:estimating equivalency [J]. Journal of Environmental Engineering,1997,123(1),3-10
    Morris C E, Stormont J C. Evaluation of Numerical Simulations of Capillary Barrier Field Tests [J], Geotechnical and Geological Engineering,1998,16(3):201-213.
    Morris C E, Stormont J C. Parametric study of unsaturated drainage layers in a capillary barrier [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1999,125(12):1057-1065.
    Mualem Y. Hydraulic conductivity of unsaturated porous media:generalized macroscopic approach [J]. Water Res,1978,14(2):325-334.
    Ng C W W, Wang B, Tung Y K. Three-dimensional numerical investigations of groundwater responses in an unsaturated slope subjected to various rainfall patterns [J]. Canadian Geotechnical Journal,2001,38(5):1049-1062.
    Peng S, Jiang H L. A review on soil cover in waste and contaminant containment: design, monitoring, and modeling [J]. Front. Earth Sci. China,2009,3(3): 303-311
    Penman H L.1948. Natural Evapotranspiration from Open Water, Bare Soil and Grass [J]. Proceedings of the Royal Society, London, Serial A, (193):120-145.
    Philip J R, de Vries D A. Moisture movement in porous materials under temperature gradients [J]. Transactions-American Geophysical Union,1957,38(2):222-232.
    Pradel D, Raad G. Effect of permeability on surficial stability of homogeneous slopes [J]. Journal of Geotechnical and Geoenvironmental Engineering,1993,119 (2), 315-332.
    Qian X D, Koerner R M. and Gray D H. Geotechnical aspects of landfill design and construction [M]. Prentice-Hall, Inc, New Jersey,2002.
    Rahardjo H, Krisdani H, Leong E C. (2007). Application of Unsaturated Soil Mechanics in Capillary Barrier System. Proceedings of the 3rd Asian Conference
    on Unsaturated Soils, May,2007, Nanjing, China, pp.127-137.
    Reed J E. (1989) Some preliminary model studies of capillary barriers, US Geological Circular.1036,61-72.
    Richards L A.1931. Capillary Conduction of Liquids Through Porous Mediums. Physics, Vol.1.
    Rijtema P E. An analysis of actual evapotranspiration. Agric. Res. Rep. (1965), p.689 Pudoc, Wageningen.
    Roesler A C, Benson C H. and Albright W H.2002. Field Hydrology and Model Predictions for Final Covers in the Alternative Assessment Program-2002. Geo-Engineering Report No.02-08, University of Wisconsin, Madison, WI.279 pp.
    Ross B.1990. The diversion capacity of capillary barriers [J]. Water Resour. Res. 26(10), pp.2625-2629.
    Sadek S, Ghanimeh S, El-Fadel M. Predicted performance of clay-barrier landfill covers in arid and semi-arid environments [J]. Waste Management,2007,27: 572-583.
    Scanlon B R, Christman M, Reedy R C, and Gross B.2002a. Intercode comparisons for simulating water balance in an engineered cover. In 2001 International Containment and Remediation Technology Conference, Orlando, Florida, Institute for International Cooperative Environmental Research, Florida State University, Paper ID. No.148. Available at http://www.iicer.fsu.edu,3p.
    Scanlon B R, Christman M, Reedy R C, Porro I, Simunek J, and Flerchinger G N. Intercode comparisons for simulating water balance of surficial sediments in semiarid regions [J], Water Resour. Res.,2002b,38(12):1323-1339.
    Scanlon B R, Reedy R C, Keese K E, et al. Evaluation of evapotranspirative covers for waste containment in arid and semiarid regions in the southwestern USA [J]. Vadose Zone Journal,2005,4:55-71.
    Schroeder P, Lloyd C, and Zappi P. (1994), The Hydrologic Evaluation of Landfill Performance (HELP) Model, User's Guide for Version 3.0, USEPA, Cincinnati, OH 45268, February 1994.
    Shackelford C D. (2005). Environmental issues in geotechnical engineering. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, vol.1, September 12-16,2005, Osaka, Japan. MillpressMill press Science Publishers, Rotterdam, The Netherlands, pp.95-122.
    Simunek J, Sejna M, van Genuchten M Th, (1999). The HYDRUS-2D Software Package for Simulating Two-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 2.0, US Salinity Laboratory, USDA, ARS, Riverside, CA, USA
    SoilVision Systems Ltd 2006. SVFlux User's Manual [M]. Saskatoon, Saskatchewan, Canada.
    SoilVision Systems Ltd.2009. SVFlux Theory Manual [M], Saskatoon, Saskatchewan, Canada.
    Srivastava R, Yeh T C J. Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils [J]. Water Resources Research,1991,27(5):753-762.
    Steenhuis T S, Parlange J Y, Kung K. Comment on "The diversion capacity of capillary barriers" by Benjamin Ross [J]. Water Resour Res,1991,27(8): 2155-2156.
    Stormont J C, Anderson C E. Capillary Barrier Effect from Underlying Coarse Soil Layer [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999,125(8):641-648.
    Stormont J C, Morris C E. Method to Estimate Water Storage Capacity of Capillary Barriers [J], Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998,124(6):297-303.
    Stormont J C, Morris C E. Unsaturated drainage layers for diverting infiltrating water [J], Journal of Irrigation and Drainage Engineering, ASCE,1997,123(5): 364-367.
    Stormont J C.1995. The performance of two capillary barriers during constant infiltration. Landfill Closures (Geotechnical Special Publication No.53), Dunn, R. J. and Singh, U. P. (Eds), ASCE, Reston, Virginia, USA,77-92.
    Stormont J C. The effectiveness of two capillary barriers on a 10% slope [J], Geotechnical and Geological Engineering,1996,14:243-267.
    Suter G W., Luxmoore R J, Smith E D. Compacted soil barriers at abandoned landfill sites are likely to fail in the long term [J]. J. Environ. Qual.,1993,22 (2), 217-226.
    Swanson D A, Barbour S L, Wilson G W, O'Kane M. Soil-atmosphere modelling of an engineered soil cover for acid generating mine waste in a humid, alpine climate [J]. Canadian Geotechnical Journal,2003,40(2):276-292.
    Tami D, Rahardjo H, Leong E C, and Fredlund D G. A physical model for sloping capillary barriers [J]. Geotechnical Testing Journal, ASTM,2004c,27(2):pp. 173-183.
    Tami D, Rahardjo H, Leong E C, Fredlund D G. Design and laboratory verification of physical model of sloping capillary barrier [J], Can Geotech J,2004a,41 (9):814-830.
    Tami D.2004b. Mechanism of sloping capillary barriers under high rainfall conditions [D]. PhD thesis, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
    Tsai T L, Yang J C. Modeling of rainfall-triggered shallow landslide [J]. Environmental Geology,2006,50(4):525-534
    Tsai T L. The influence of rainstorm pattern on shallow landslide [J]. Environ Geol., 2008,53:1563-1569.
    Unsaturated Soils Group (2000). SoilCover User's Manual, Saskatchewan:Saskatoon
    US EPA. The Resource Conservation and Recovery Act [S]. Available from the web site:http://www.epa.gov/rcraonline/
    van Genuchten M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Sci Am J,1980,44(5):892-898.
    Viessman W J, Lewis G L (1996) Introduction to hydrology,4th edn. Harper Collins College Publishers, New York
    Walter M T, Kim J S, Steenhuis T S, et al. Funneled flow mechanisms in sloping layered soil:Laboratory investigation. Water Resour. Res.,2000,36(4):841-849.
    Warrick A W, Wierenga P J, Pan L. Downward water flow through sloping layers in the vadose zone:analytical solutions for diversions [J]. J Hydrol,1997, 192:321-337.
    Williams P J.1982. The surface of the earth, an introduction to geotechnical science [M]. New York:Longman Inc.
    Wilson G W, Fredlund D G, Barbour S L. The effect of soil suction on evaporative fluxes from soil surfaces [J]. Canadian Geotechnical Journal,1997,34(4): 145-155.
    Wilson G W.1990. Soil Evaporative Fluxes for Geotechnical Engineering Problems. Ph.D. Thesis, University of Saskatchewan, Saskatoon, Canada
    Winkler W. (1999), Thickness of Monolithic Covers in Arid and Semi-Arid Climates, MS Thesis, University of Wisconsin, Madison, Wisconsin, USA.
    Xue J F, Gavin K. Effect of Rainfall Intensity on Infiltration into Partly Saturated Slopes [J]. Geotech Geol Eng,2008,26:199-209.
    Yang H, Rahardjo H, Leong E C, et al. A study of Infiltration on Three Sand Capillary Barriers [J]. Can. Geotech. J.2004,41:629-643
    Zhan L T, Ng C W W. Analytical analysis of rainfall infiltration mechanism in unsaturated soils [J]. International Journal of Geomechanics,2004,4(4): 273-284.
    Zornberg J G, Lafountain L, Caldwell J A. Analysis and design of evapotranspirative cover for hazardous waste landfill [J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(5):427-438
    北京市水务局.北京市实施《21世纪初期(2001—2005)首都水资源可持续利用规划》计划[R],2000.
    雷志栋.土壤水动力学[M].清华大学出版社,北京:1988.
    李世奎.中国农业气候资源和农业气候区划[M].北京:科学出版社,1988.
    李颖.城市生活垃圾卫生填埋场设计指南[M].北京:中国环境科学出版社,2005
    刘川顺,赵慧,罗继武.垃圾填埋腾发覆盖系统渗沥控制试验和数值模拟[J].环境科学,2009,30(1):289-296.
    刘贤赵,康绍忠.降雨入渗和产流问题研究的若干进展及评述[J].水土保持通报,1999,19:57-62.
    陆海军,栾茂田,张金利.垃圾填埋场ET封顶的系统水量平衡数值分析[J].大连理工大学学报,2009a,49(6):913-918.
    陆海军,栾茂田,张金利.垃圾填埋场传统封顶和ET封顶的比较研究[J].岩土力学,2009b,30(2):509-514.
    石栋鑫.(1989).台湾地区台风雨降雨型态之分析研究[D].中央大学土木工程研究所硕士论文。
    王康,刘川顺,王富庆,唐友生.腾发覆盖垃圾填埋场覆盖层机理试验研究及结构分析[J].环境科学,2007,28(10):2307-2314.
    武淑英.北京市房山区水资源综合管理规划研究[D].北京:中国农业大学,2007.
    小林弘明,小泽一喜,川端淳一等.Capillary barrier effect on landfill site top-cover.鹿岛技术研究所年报,第52号,2004.
    谢海建.成层介质污染物的运移机理及衬垫系统防污性能研究[D].杭州:浙江大学,2008.
    张文杰,邱战洪,朱成仁,彭光磊.长三角地区填埋场ET封顶系统的性能评价[J].岩土工程学报,2009,31(3):384-389.
    张文杰.城市生活垃圾填埋场中水分运移规律研究[D].杭州:浙江大学,2007.
    张文杰.填埋场腾发封顶系统中的水分运移分析[J].岩石力学与工程学报,2008,27(Supp.2):3367-3373.
    张文贤,张展羽,王康.蒸散覆盖垃圾填埋场研究进展[J].地下水,2009,31(5):147-153.
    赵慧,刘川顺,王伟,范岳.垃圾填埋场腾发覆盖系统控制渗滤效果的研究[J].中国给水排水,2008,24(9):86-89.
    中华人民共和国建设部(CJJ 17-2004).生活垃圾卫生填埋技术规范[S].北京:中国建筑工业出版社,2004.
    中华人民共和国水利部(SL237-1999).土工试验规程[S].北京:中国水利水电出版社,1999.
    朱伟,程南军,陈学东,赵仲辉.浅谈非饱和渗流的几个基本问题[J].岩土工程 学报,2006a,28(2):235-240.
    朱伟,陈学东,钟小春.降雨入渗规律的实测与分析[J].岩土力学,2006b,27(11):1873-1879.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700