金配合物与手性布朗斯特酸不对称接力催化体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多催化剂不对称合成是新近发展起来的一类合成方法学。两种或两种以上在催化剂在共存于同一反应体系中,或相互协作公共促进反应的发生,或互不影响各自完成串联反应中的一步。应用这种策略不但能够实现传统单一催化剂无法完成的反应,而且能够减少溶剂的消耗、废物的排放,有效提高反应的原子经济性,在石油、天然气等化工原料日益减少的今天显得尤为重要。
     将金属催化剂与有机小分子催化剂组成协同或接力催化体系,可以发挥传统金属类催化剂的长处,弥补有机催化剂活化模式相对较少、所能作用的官能团有限等不足,该领域已逐渐受到各国化学家的关注。要成功地将多种催化剂结合到一个反应体系中,就必须要保证体系中各各种组分能够相互兼容,避免催化剂失活、底物分解等情况的发生。
     我们发现,金配合物能够与联萘酚衍生的手性磷酸很好地兼容。我们应用非手性金配合物和手性磷酸组成接力催化体系,从2-(2-丙炔基)苯胺一步高效合成了四氢喹啉。反应条件温和,反应进行迅速、彻底,有很高的产率和ee值。我们所提出的方法,不光为不对称合成四氢喹啉提供了较好的方法,还为金属/有机协同、接力催化循环设计提供了重要借鉴。
     同样使用非手性金配合物和手性磷酸组成接力催化体系,我们实现了炔醇环化串联与吖内酯的aldol-type反应,高收率、高对映选择性地合成了一类含有相邻两个季碳手性中心的化合物。该类化合物可以衍生为具有空间张力的氨基酸,可以应用于合成具有生理活性的强张力多肽类化合物。
     我们还研究了手性磷酸催化的1,5-苯并二氮杂卓类化合物的动态动力学还原反应,为手性1,3-二胺的合成提供了新的方法。
Multi-catalysts system have emerged as a powerful tool in organic chemistry today. In these systems, the combination of multi-catalysts in one system in cooperative and relay manner may enable new transformations through the simultaneous or sequential activation and reorganization of multiple chemical bonds by the metal catalysts and organocatalysts. This concept holds great potential for application to a broad scope of organic synthetic reactions.
     Here we introduce an unprecedented protocol which directly transformed 2-(2-propynyl)aniline derivatives into tetrahydroquinolines in one operation with excellent enantioselectivity under the relay catalysis of an achiral Au complex and a chiral phosphoric acid. This reaction was considered a consecutive catalytic process consisting of a Au-catalyzed intramolecular hydroamination of a C-C triple bond and a Br?nsted acid catalyzed enantioselective transferhydrogenation. This work not only provides a new entry to tetrahydroquinolines complementary to the known asymmetric hydrogenation reactions of quinolines but also suggests a powerful strategy applicable to the design of transformations beyond the scope of those afforded by either Au complexes or Br?nsted acids alone.
     Using a similar strategy, we established an asymmetric cyclization of alkynols triggered addition of azlactones catalyzed by a combined catalyst system consisting of a chiral gold phosphate and a phosphoric acid, which results in a new strategy to convert the linear carbon-carbon triple bond functionality to a quaternary stereogenic center. This process provides a unique entry to access conformationally restricted amino acid precursors bearing vicinal quaternary stereogenic senters in high levels of stereoselectivity. In addition, this work first demonstrated that the chiral gold phosphate is able to catalyze highly enantioselective addition of azlactones to enol ethers by using chiral anion to control the stereochemistry.
     we have disclosed a dynamic kinetic transfer hydrogenation of 2-methyl-2,4-diaryl-2,3-dihydrobenzo[b][1,4] diazepines using phosphoric acids as catalysts. This reaction provided a synthetic approach to access 1,3-diamines in high yields with good to high ee for the major diastereomers and high to excellent ee for minor diastereomers.
引文
[1] a) Trost, B. M., The Atom Economy - a Search for Synthetic Efficiency. Science 1991, 254, 1471-1477; b) Trost, B. M., Atom Economy - a Challenge for Organic-Synthesis - Homogeneous Catalysis Leads the Way. Angew Chem Int Edit 1995, 34, 259-281.
    [2] Wasilke, J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C., Concurrent tandem catalysis. Chem. Rev. 2005, 105, 1001-1020.
    [3] a) Nakajima, N.; Tanizawa, K.; Tanaka, H.; Soda, K., Enantioselective synthesis of various D-amino acids by a multi-enzyme system. J. Biotechnol. 1988, 8, 243-248; b) Bae, H.-S.; Hong, S.-P.; Lee, S.-G.; Kwak, M.-S.; Esaki, N.; Sung, M.-H., Application of a thermostable glutamate racemase from Bacillus sp. SK-1 for the production of -phenylalanine in a multi-enzyme system. J. Mol. Catal. B: Enzym. 2002, 17, 223-233.
    [4] Pàmies, O.; B(?)ckvall, J.-E., Combination of enzymes and metal catalysts. A powerful approach in asymmetric catalysis. Chem. Rev. 2003, 103, 3247-3262.
    [5] a) J(?)rgensen, K. A.; Monge, D.; Jensen, K. L.; Franke, P. T.; Lykke, L., Asymmetric One-Pot Sequential Organo- and Gold Catalysis for the Enantioselective Synthesis of Dihydropyrrole Derivatives. Chem. Eur. J. 2010, 16, 9478-9484; b) MacMillan, D. W. C.; Simmons, B.; Walji, A. M., Cycle-Specific Organocascade Catalysis: Application to Olefin Hydroamination, Hydro-oxidation, and Amino-oxidation, and to Natural Product Synthesis. Angew. Chem. Int. Ed. 2009, 48, 4349-4353.
    [6] Schmid, R. D.; Verger, R., Lipases: Interfacial enzymes with attractive applications. Angew. Chem. Int. Ed. 1998, 37, 1609-1633.
    [7] B(?)ckvall, J. E.; Edin, M.; Córdova, A., Tandem enantioselective organo- and biocatalysis: a direct entry for the synthesis of enantiomerically pure aldols. Tetrahedron Lett. 2004, 45, 7697-7701.
    [8] Xu, X.-Y.; Wang, Y.-Z.; Gong, L.-Z., Design of organocatalysts for asymmetric direct syn-aldol reactions. Org. Lett. 2007, 9, 4247-4249.
    [9] Gr(?)ger, H.; Baer, K.; Krausser, M.; Burda, E.; Hummel, W.; Berkessel, A., Sequential and Modular Synthesis of Chiral 1,3-Diols with Two Stereogenic Centers: Access to All Four Stereoisomers by Combination of Organo- and Biocatalysis. Angew. Chem. Int. Ed. 2009, 48, 9355-9358.
    [10] Moberg, C.; Wingstrand, E.; Laurell, A.; Fransson, L.; Hult, K., Minor Enantiomer Recycling: Metal Catalyst, Organocatalyst and Biocatalyst Working in Concert. Chem. Eur. J. 2009, 15, 12107-12113.
    [11] Eder, U.; Sauer, G.; Weichert, R., Total Synthesis of Optically Active Steroids .6. New Type of Asymmetric Cyclization to Optically Active Steroid Cd Partial Structures. Angew. Chem. Int. Ed. 1971, 10, 496.
    [12] Hajos, Z. G.; Parrish, D. R., Asymmetric Synthesis of Bicyclic Intermediates of Natural Product Chemistry. J. Org. Chem. 1974, 39, 1615-1621.
    [13] List, B.; Lerner, R. A.; Barbas, C. F., Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc. 2000, 122, 2395-2396.
    [14] MacMillan, D. W. C.; Ahrendt, K. A.; Borths, C. J., New strategies for organic catalysis: The first highly enantioselective organocatalytic Diels-Alder reaction. J. Am. Chem. Soc. 2000, 122, 4243-4244.
    [15] a) Shao, Z.; Zhang, H., Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis. Chem. Soc. Rev. 2009, 38, 2745; b) de Armas, P.; Tejedor, D.; García-Tellado, F., Asymmetric Alkynylation of Imines by Cooperative Hydrogen Bonding and Metal Catalysis. Angew. Chem. Int. Ed. 2010, 49, 1013-1016; c) Zhong, C.; Shi, X., When Organocatalysis Meets Transition-Metal Catalysis. Eur. J. Org. Chem. 2010, 2999-3025; d) Zhou, J., Recent Advances in Multicatalyst Promoted Asymmetric Tandem Reactions. Chemistry-an Asian Journal 2010, 5, 422-434; e) Rueping, M.; Koenigs, R. M.; Atodiresei, I., Unifying Metal and Bronsted Acid Catalysis-Concepts, Mechanisms, and Classifications. Chem. Eur. J. 2010, 16, 9350-9365.
    [16] a) Ooi, T.; Maruoka, K., Asymmetric organocatalysis of structurally well-defined chiral quaternary ammonium fluorides. Acc. Chem. Res. 2004, 37, 526-533; b) Maruoka, K.; Hashimoto, T., Recent development and application of chiral phase-transfer catalysts. Chem. Rev. 2007, 107, 5656-5682; c) Maruoka, K.; Ooi, T., Enantioselective amino acid synthesis by chiral phase-transfer catalysis. Chem. Rev. 2003, 103, 3013-3028.
    [17] Chen, G. S.; Deng, Y. J.; Gong, L. Z.; Mi, A. Q.; Cui, X.; Jiang, Y. Z.; Choi, M. C. K.; Chan, A. S. C., Palladium-catalyzed allylic alkylation of tert-butyl(diphylmethylene)-glycinate with simple allyl esters under chiral phase transfer conditions. Tetrahedron-Asymmetry 2001, 12, 1567-1571.
    [18] Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y., Chiral phosphine-free Pd-mediated asymmetric allylation of prochiral enolate with a chiral phase-transfer catalyst. Org. Lett. 2001, 3, 3329-3331.
    [19] a) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B., Asymmetric enamine catalysis. Chem. Rev. 2007, 107, 5471-5569; b) List, B., Enamine catalysis is a powerful strategy for the catalytic generation and use of carbanion equivalents. Acc. Chem. Res. 2004, 37, 548-557.
    [20] a) Lelais, G.; MacMillan, D. W. C., Modern strategies in organic catalysis: The advent and development of iminium activation. Aldrichimica Acta 2006, 39, 79-87; b) Erkkil , A.; Majander, I.; Pihko, P. M., Iminium catalysis. Chem. Rev. 2007, 107, 5416-5470.
    [21] Córdova, A.; Ibrahem, I., Direct catalytic intermolecular alpha-allylic alkylation of aldehydes by combination of transition-metal and organocatalysis. Angew. Chem. Int. Ed. 2006, 45, 1952-1956.
    [22] Saicic, R. N.; Bihelovic, F.; Matovic, R.; Vulovic, B., Organocatalyzed cyclizations of pi-allylpalladium complexes: A new method for the construction of five- and six-membered rings. Org. Lett. 2007, 9, 5063-5066.
    [23] Saicic, R. N.; Vulovic, B.; Bihelovic, F.; Matovic, R., Organocatalyzed Tsuji-Trost reaction: a new method for the closure of five- and six-membered rings. Tetrahedron 2009, 65, 10485-10494.
    [24] Fürstner, A.; Davies, P. W., Catalytic Carbophilic Activation: Catalysis by Platinum and GoldπAcids. Angew. Chem. Int. Ed. 2007, 46, 3410-3449.
    [25] a) Olah, G. A.; Clifford, P. R., Organometallic Chemistry .2. Direct Mercuration of Olefins to Stable Mercurinium Ions. J. Am. Chem. Soc. 1971, 93, 2320; b) Sakaki, S.; Maruta, K.; Ohkubo, K., Nucleophilic-Attack Upon Ethylene Coordinated to Mercury(Ii) - a Molecular-Orbital Study Concerning the Origin of the Acceleration by Hgii. J Chem Soc Dalton 1987, 361-368.
    [26] Duan, H.; Sengupta, S.; Petersen, J. L.; Akhmedov, N. G.; Shi, X., Triazole-Au(I) complexes: a new class of catalysts with improved thermal stability and reactivity for intermolecular alkyne hydroamination. J. Am. Chem. Soc. 2009, 131, 12100-12102.
    [27] Ding, Q.; Wu, J., Lewis acid- and organocatalyst-cocatalyzed multicomponent reactions of 2-alkynylbenzaldehydes, amines, and ketones. Org. Lett. 2007, 9, 4959-4962.
    [28] Binder, J. T.; Crone, B.; Haug, T. T.; Menz, H.; Kirsch, S. F., Direct carbocyclization of aldehydes with alkynes: combining gold catalysis with aminocatalysis. Org. Lett. 2008, 10, 1025-1028.
    [29] Yang, T.; Ferrali, A.; Campbell, L.; Dixon, D. J., Combination iminium, enamine and copper(I) cascade catalysis: a carboannulation for the synthesis of cyclopentenes. Chem. Commun. 2008, 2923-2925.
    [30] Jardine, F. H.; Rule, L.; Vohra, A. G., Chemistry of Copper(I) Complexes .1. Halogeno-Complexes. J. Chem. Soc. A 1970, 238.
    [31] Belot, S.; Vogt, K. A.; Besnard, C.; Krause, N.; Alexakis, A., Enantioselective One-Pot Organocatalytic Michael Addition/Gold-Catalyzed Tandem Acetalization/Cyclization. Angew. Chem. Int. Ed. 2009, 48, 8923-8926.
    [32] Zhao, G.-L.; Ullah, F.; Deiana, L.; Lin, S.; Zhang, Q.; Sun, J.; Ibrahem, I.; Dziedzic, P.; Córdova, A., Dynamic Kinetic Asymmetric Transformation (DYKAT) by Combined Amine- and Transition-Metal-Catalyzed Enantioselective Cycloisomerization. Chem. Eur. J. 2010, 16, 1585-1591.
    [33] He, J.; Yu, C. G.; Zhang, Y. N.; Zhang, S. L.; Wang, W., Highly enantioselective Michael-cyclization cascade promoted by synergistic asymmetric aminocatalysis and Lewis acid catalysis. Tetrahedron Lett. 2010, 51, 1742-1744.
    [34] J(?)rgensen, K. A.; Jensen, K. L.; Franke, P. T.; Arróniz, C.; Kobbelgaard, S., Enantioselective Synthesis of Cyclopentene Carbaldehydes by a Direct Multicatalytic Cascade Sequence: Carbocyclization of Aldehydes with Alkynes. Chem. Eur. J. 2010, 16, 1750-1753.
    [35] a) MacMillan, D. W. C.; Jang, H. Y.; Hong, J. B., Enantioselective organocatalytic singly occupied molecular orbital activation: The enantioselectiveα-enolation of aldehydes. J. Am. Chem. Soc. 2007, 129, 7004-7005; b) MacMillan, D. W. C.; Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K., Enantioselective organocatalysis using SOMO activation. Science 2007, 316, 582-585.
    [36] Sibi, M. P.; Hasegawa, M., Organocatalysis in radical chemistry. Enantioselectiveα-oxyamination of aldehydes. J. Am. Chem. Soc. 2007, 129, 4124-4125.
    [37] MacMillan, D. W. C.; Nicewicz, D. A., Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes. Science 2008,322, 77-80.
    [38] MacMillan, D. W. C.; Nagib, D. A.; Scott, M. E., Enantioselectiveα-Trifluoromethylation of Aldehydes via Photoredox Organocatalysis. J. Am. Chem. Soc. 2009, 131, 10875-10876.
    [39] Eilbracht, P.; Barfacker, L.; Buss, C.; Hollmann, C.; Kitsos-Rzychon, B. E.; Kranemann, C. L.; Rische, T.; Roggenbuck, R.; Schmidt, A., Tandem reaction sequences under hydroformylation conditions: New synthetic applications of transition metal catalysis. Chem. Rev. 1999, 99, 3329-3365.
    [40] Abillard, O.; Breit, B., Domino Hydroformylation/Enantioselective Cross-Aldol Addition. Adv. Synth. Catal. 2007, 349, 1891-1895.
    [41] Eilbracht, P.; Chercheja, S., Tandem metal- and organocatalysis in sequential hydroformylation and enantioselective aldol reactions. Adv. Synth. Catal. 2007, 349, 1897-1905.
    [42] Eilbracht, P.; Chercheja, S.; Nadakudity, S. K., Combination of Enantioselective Metal Catalysis and Organocatalysis: Enantioselective Sequential Hydroformylation/Aldol Reactions. Adv. Synth. Catal. 2010, 352, 637-643.
    [43] Eilbracht, P.; Chercheja, S.; Rothenbucher, T., Tandem Metal and Organocatalysis in Sequential Hydroformylation and Enantioselective Mannich Reactions. Adv. Synth. Catal. 2009, 351, 339-344.
    [44] MacMillan, D. W. C.; Allen, A. E., The Productive Merger of Iodonium Salts and Organocatalysis: A Non-photolytic Approach to the Enantioselective alpha-Trifluoromethylation of Aldehydes. J. Am. Chem. Soc. 2010, 132, 4986.
    [45] a) Togni, A.; Fantasia, S.; Welch, J. M., Reactivity of a Hypervalent Iodine Trifluoromethylating Reagent toward THF: Ring Opening and Formation of Trifluoromethyl Ethers. J. Org. Chem. 2010, 75, 1779-1782; b) Togni, A.; Niedermann, K.; Welch, J. M.; Koller, R.; Cvengros, J.; Santschi, N.; Battaglia, P., New hypervalent iodine reagents for electrophilic trifluoromethylation and their precursors: synthesis, structure, and reactivity. Tetrahedron 2010, 66, 5753-5761; c) Togni, A.; Niedermann, K.; Fruh, N.; Vinogradova, E.; Wiehn, M. S.; Moreno, A., A Ritter-Type Reaction: Direct Electrophilic Trifluoromethylation at Nitrogen Atoms Using Hypervalent Iodine Reagents. Angew. Chem. Int. Ed. 2011, 50, 1059-1063.
    [46] MacMillan, D. W. C.; Allen, A. E., Enantioselective alpha-Arylation ofAldehydes via the Productive Merger of lodonium Salts and Organocatalysis. J. Am. Chem. Soc. 2011, 133, 4260-4263.
    [47] Ikeda, M.; Miyake, Y.; Nishibayashi, Y., Cooperative catalytic reactions using organocatalysts and transition-metal catalysts: enantioselective propargylic alkylation of propargylic alcohols with aldehydes. Angew. Chem. Int. Ed. 2010, 49, 7289-7293.
    [48] Yoshida, A.; Ikeda, M.; Hattori, G.; Miyake, Y.; Nishibayashi, Y., Cooperative Catalytic Reactions Using Organocatalysts and Transition Metal Catalysts: Enantioselective Propargylic Alkylation of Propargylic Esters with Aldehydes. Org. Lett. 2011, 13, 592-595.
    [49] Motoyama, K.; Ikeda, M.; Miyake, Y.; Nishibayashi, Y., Cooperative Catalytic Reactions Using Lewis Acids and Organocatalysts: Enantioselective Propargylic Alkylation of Propargylic Alcohols Bearing an Internal Alkyne with Aldehydes. Eur. J. Org. Chem. 2011, 2011, 2239-2246.
    [50] Yang, T.; Ferrali, A.; Sladojevich, F.; Campbell, L.; Dixon, D. J., Br(?)nsted base/Lewis acid cooperative catalysis in the enantioselective Conia-ene reaction. J. Am. Chem. Soc. 2009, 131, 9140-9141.
    [51] a) Akiyama, T., Stronger bronsted acids. Chem. Rev. 2007, 107, 5744-5758; b) Terada, M., Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon-carbon bond forming reactions. Chem. Commun. 2008, 4097-4112; c) Jacobsen, E. N.; Doyle, A. G., Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 2007, 107, 5713-5743.
    [52] Terada, M.; Uraguchi, D., Chiral Bronsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 2004, 126, 5356-5357.
    [53] Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K., Enantioselective Mannich-type reaction catalyzed by a chiral Bronsted acid. Angew. Chem. Int. Ed. 2004, 43, 1566-1568.
    [54] Alper, H.; Hamel, N., Asymmetric-Synthesis of Acids by the Palladium-Catalyzed Hydrocarboxylation of Olefins in the Presence of (R)-(-)-1,1'-Binaphthyl-2,2'-Diyl or (S)-(+)-1,1'-Binaphthyl-2,2'-Diyl Hydrogen Phosphate. J. Am. Chem. Soc. 1990, 112, 2803-2804.
    [55] Komanduri, V.; Krische, M. J., Enantioselective reductive coupling of 1,3-enynes to heterocyclic aromatic aldehydes and ketones viarhodium-catalyzed asymmetric hydrogenation: mechanistic insight into the role of Br(?)nsted acid additives. J. Am. Chem. Soc. 2006, 128, 16448-16449.
    [56] Rueping, M.; Antonchick, A. R.; Brinkmann, C., Dual catalysis: A combined enantioselective bronsted acid and metal-catalyzed reaction-metal catalysis with chiral counterions. Angew. Chem. Int. Ed. 2007, 46, 6903-6906.
    [57] Lu, Y.; Johnstone, T. C.; Arndtsen, B. a., Hydrogen-bonding asymmetric metal catalysis with alpha-amino acids: a simple and tunable approach to high enantioinduction. J. Am. Chem. Soc. 2009, 131, 11284-11285.
    [58] List, B.; Mukherjee, S., Chiral counteranions in asymmetric transition-metal catalysis: Highly enantioselective Pd/Bronsted acid-catalyzed direct alpha-allylation of aldehydes. J. Am. Chem. Soc. 2007, 129, 11336
    [59] a) List, B.; Jiang, G. X., Palladium/Bronsted Acid-Catalyzed alpha-Allylation of Aldehydes with Allylic Alcohols. Adv. Synth. Catal. 2011, 353, 1667-1670; b) Jiang, G.; List, B., Direct Asymmetricα-Allylation of Aldehydes with Simple Allylic Alcohols Enabled by the Concerted Action of Three Different Catalysts. Angew. Chem. Int. Ed. 2011, DOI: 10.1002/anie.201103263
    [60] Hu, W.; Xu, X.; Zhou, J.; Liu, W.-J.; Huang, H.; Hu, J.; Yang, L.; Gong, L.-Z., Cooperative catalysis with chiral Bronsted acid-Rh-2(OAC)(4): Highly enantioselective three-component reactions of diazo compounds with alcohols and imines. J. Am. Chem. Soc. 2008, 130, 7782
    [61] Xu, X.; Zhou, J.; Yang, L.; Hu, W., Selectivity control in enantioselective four-component reactions of aryl diazoacetates with alcohols, aldehydes and amines: an efficient approach to synthesizing chiral [small beta]-amino-[small alpha]-hydroxyesters. Chem. Commun. 2008, 6564-6566.
    [62] Li, C.; Wang, C.; Villa-Marcos, B.; Xiao, J., Chiral Counteranion-Aided Asymmetric Hydrogenation of Acyclic Imines. J. Am. Chem. Soc. 2008, 130, 14450-14451.
    [63] a) Klussmann, M., Asymmetric Reductive Amination by Combined Br(?)nsted Acid and Transition-Metal Catalysis. Angew. Chem. Int. Ed. 2009, 48, 7124-7125; b) Li, C.; Villa-Marcos, B.; Xiao, J., Metal(?)Br(?)nsted Acid Cooperative Catalysis for Asymmetric Reductive Amination. J. Am. Chem. Soc. 2009, 131, 6967-6969.
    [64] Terada, M.; Sorimachi, K., Relay Catalysis by a Metal-Complex/Bronsted Acid Binary System in a Tandem Isomerization/Carbon-Carbon BondForming Sequence. J. Am. Chem. Soc. 2008, 130, 14452.
    [65] Terada, M.; Toda, Y., Double Bond Isomerization/Enantioselective Aza-Petasis-Ferrier Rearrangement Sequence as an Efficient Entry to Anti- and Enantioenriched beta-Amino Aldehydes. J. Am. Chem. Soc. 2009, 131, 6354-6355.
    [66] You, S. L.; Cai, Q.; Zhao, Z. A., Asymmetric Construction of Polycyclic Indoles through Olefin Cross-Metathesis/Intramolecular Friedel-Crafts Alkylation under Sequential Catalysis. Angew. Chem. Int. Ed. 2009, 48, 7428-7431.
    [67] Xiao, W. J.; Chen, J. R.; Li, C. F.; An, X. L.; Zhang, J. J.; Zhu, X. Y., Ru-catalyzed tandem cross-metathesis/intramolecular-hydroarylation sequence. Angew. Chem. Int. Ed. 2008, 47, 2489-2492.
    [68] Paull, D. H.; Abraham, C. J.; Scerba, M. T.; Alden-Danforth, E.; Lectka, T., Bifunctional asymmetric catalysis: cooperative Lewis acid/base systems. Acc Chem Res 2008, 41, 655-663.
    [69] a) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J.; Lectka, T., Catalytic, Asymmetric Synthesis ofβ-Lactams. J Am Chem Soc 2000, 122, 7831-7832; b) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T., The Development of the First Catalyzed Reaction of Ketenes and Imines:(?) Catalytic, Asymmetric Synthesis ofβ-Lactams. J. Am. Chem. Soc. 2002, 124, 6626-6635.
    [70] France, S.; Shah, M. H.; Weatherwax, A.; Wack, H.; Roth, J. P.; Lectka, T., Bifunctional Lewis acid-nucleophile-based asymmetric catalysis: Mechanistic evidence for imine activation working in tandem with chiral enolate formation in the synthesis of |(?)-lactams. J. Am. Chem. Soc. 2005, 127, 1206-1215.
    [71] a) Lectka, T.; Abraham, C. J.; Paull, D. H.; Scerba, M. T.; Grebinski, J. W., Catalytic, enantioselective bifunctional inverse electron demand hetero-Diels-Alder reactions of ketene enolates and o-benzoquinone diimides. J. Am. Chem. Soc. 2006, 128, 13370-13371; b) Lectka, T.; Paull, D. H.; Alden-Danforth, E.; Wolfer, J.; Dogo-Isonagie, C.; Abraham, C. J., An asymmetric, bifunctional catalytic approach to non-natural alpha-amino acid derivatives. J. Org. Chem. 2007, 72, 5380-5382; c) Lectka, T.; Bekele, T.; Shah, M. H.; Wolfer, J.; Abraham, C. J.; Weatherwax, A., Catalytic, enantioselective [4+2]-cycloadditions of ketene enolates and o-quinones:Efficient entry to chiral, alpha-oxygenated carboxylic acid derivatives. J. Am. Chem. Soc. 2006, 128, 1810-1811; d) Lectka, T.; Paull, D. H.; Scerba, M. T.; Alden-Danforth, E.; Widger, L. R., Catalytic, Asymmetric alpha-Fluorination of Acid Chlorides: Dual Metal-Ketene Enolate Activation. J. Am. Chem. Soc. 2008, 130, 17260; e) Lectka, T.; Abraham, C. J.; Paull, D. H.; Bekele, T.; Scerba, M. T.; Dudding, T., A Surprising Mechanistic "Switch" in Lewis Acid Activation: A Bifunctional, Asymmetric Approach to alpha-Hydroxy Acid Derivatives. J. Am. Chem. Soc. 2008, 130, 17085-17094.
    [72] a) Moberg, C.; Lundgren, S.; Wingstrand, E., Lewis acid-Lewis base-catalysed enantioselective addition of alpha-ketonitriles to aldehydes. Adv. Synth. Catal. 2007, 349, 364-372; b) Moberg, C.; Lundgren, S.; Wingstrand, E.; Penhoat, M., Dual Lewis acid-Lewis base activation in enantioselective cyanation of aldehydes using acetyl cyanide and cyanoformate as cyanide sources. J. Am. Chem. Soc. 2005, 127, 11592-11593.
    [73] Jorgensen, K. A.; Knudsen, K. R., A chiral molecular recognition approach to the formation of optically active quaternary centres in aza-Henry reactions. Organic & Biomolecular Chemistry 2005, 3, 1362-1364.
    [74] a) Enders, D.; Niemeier, O.; Henseler, A., Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 2007, 107, 5606-5655; b) Nair, V.; Vellalath, S.; Babu, B. P., Recent advances in carbon-carbon bond-forming reactions involving homoenolates generated by NHC catalysis. Chem. Soc. Rev. 2008, 37, 2691-2698; c) Moore, J.; Rovis, T., in Asymmetric Organocatalysis in Topics in Current Chemistry, Vol. 291 (Ed.: List, B.), Springer Berlin / Heidelberg, 2009, pp. 77-144; d) Hirano, K.; Piel, I.; Glorius, F., Dual Activation in N-Heterocyclic Carbene-organocatalysis. Chem. Lett. 2011, 40, 786-791; e) Marion, N.; Díez-González, S.; Nolan, S. P., N-Heterocyclic Carbenes as Organocatalysts. Angew. Chem. Int. Ed. 2007, 46, 2988-3000.
    [75] Nemoto, T.; Fukuda, T.; Hamada, Y., Efficient synthesis of 3-substituted 2,3-dihydroquinolin-4-ones using a one-pot sequential multi-catalytic process: Pd-catalyzed allylic amination–thiazolium salt-catalyzed Stetter reaction cascade. Tetrahedron Lett. 2006, 47, 4365-4368.
    [76] Lebeuf, R. l.; Hirano, K.; Glorius, F., Palladium-Catalyzed C-Allylation of Benzoins and an NHC-Catalyzed Three Component Coupling Derived Thereof: Compatibility of NHC- and Pd-Catalysts. Org. Lett. 2008, 10,4243-4246.
    [77] Cardinal-David, B.; Raup, D. E. A.; Scheidt, K. A., Cooperative N-Heterocyclic Carbene/Lewis Acid Catalysis for Highly Stereoselective Annulation Reactions with Homoenolates. J. Am. Chem. Soc. 2010, 132, 5345-5347.
    [78] a) Raup, D. E. A.; Cardinal-David, B.; Holte, D.; Scheidt, K. A., Cooperative catalysis by carbenes and Lewis acids in a highly stereoselective route toγ-lactams. Nat Chem 2010, 2, 766-771; b) Cohen, D. T.; Cardinal-David, B.; Roberts, J. M.; Sarjeant, A. A.; Scheidt, K. A., NHC-Catalyzed/Titanium(IV)(?)Mediated Highly Diastereo- and Enantioselective Dimerization of Enals. Org. Lett. 2011, 13, 1068-1071; c) Cohen, D. T.; Cardinal-David, B.; Scheidt, K. A., Lewis Acid Activated Synthesis of Highly Substituted Cyclopentanes by the N-Heterocyclic Carbene Catalyzed Addition of Homoenolate Equivalents to Unsaturated Ketoesters. Angew. Chem. Int. Ed. 2011, 50, 1678-1682.
    [1] a) Larock, R. C.; Leong, W. W., in Comprehensive Organic Synthesis (Eds.: Editor-in-Chief: Barry, M. T., Ian, F.), Pergamon, Oxford, 1991, pp. 269-327; b) Yamamoto, Y.; Radhakrishnan, U., Palladium catalysed pronucleophile addition to unactivated carbon-carbon multiple bonds. Chem. Soc. Rev. 1999, 28, 199-207.
    [2] a) Müller, T. E.; Beller, M., Metal-Initiated Amination of Alkenes and Alkynes(?). Chem. Rev. 1998, 98, 675-704; b) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M., Hydroamination: Direct addition of amines to alkenes and alkynes. Chem. Rev. 2008, 108, 3795-3892.
    [3] a) Nobis, M.; Drie(?)en-H(?)lscher, B., Recent Developments in Transition Metal Catalyzed Intermolecular Hydroamination Reactions—A Breakthrough(?) Angew. Chem. Int. Ed. 2001, 40, 3983-3985; b) Brunet, J. J.; Neibecker, D., in Catalytic Heterofunctionalization, 2001, pp. 91-141.
    [4] a) Brunet, J. J.; Neibecker, D.; Niedercorn, F., Functionalization of Alkenes - Catalytic Amination of Monoolefins. J. Mol. Catal. 1989, 49, 235-259; b) Hartwig, J. F.; Johns, A. M.; Sakai, N.; Ridder, A., Direct measurement of the thermodynamics of vinylarene hydroamination. J. Am. Chem. Soc. 2006, 128, 9306-9307.
    [5] Haggins, J., Chem. Eng. News 1993, 71, 23-27.
    [6] Barluenga, J.; Aznar, F.; Liz, R.; Rodes, R., Catalytic and Non-Catalytic Addition of Aromatic-Amines to Terminal Acetylenes in the Presence of Mercury(Ii) Chloride and Acetate. J Chem Soc Perk T 1 1980, 2732-2737.
    [7] a) Barluenga, J.; Aznar, F.; Liz, R.; Rodes, R., Alkynylmercury Chloride or Acetate as Intermediates in the Mercury(Ii) Salt-Promoted Addition of Aliphatic and Aromatic-Amines to Terminal Acetylenes. J Chem Soc Perk T 1 1983, 1087-1091; b) Barluenga, J.; Aznar, F.; Liz, R., Oxidative Alkyl-Aminomercuriation and Aryl-Aminomercuriation of Prop2-Ynyl Alcohols - Synthesis of N-Substituted Alpha-Iminoketones, Alpha-Di-Imines, and Alpha-Aminopropionamidines. J Chem Soc Perk T 1 1983, 1093-1098.
    [8] Gagne, M. R.; Nolan, S. P.; Marks, T. J., Organolanthanide-centered hydroamination/cyclization of aminoolefins. Expedient oxidative access to catalytic cycles. Organometallics 1990, 9, 1716-1718.
    [9] a) Gagne, M. R.; Brard, L.; Conticello, V. P.; Giardello, M. A.; Stern, C. L.; Marks, T. J., Stereoselection effects in the catalytic hydroamination/cyclization of amino olefins at chiral organolanthanide centers. Organometallics 1992, 11, 2003-2005; b) Gagne, M. R.; Stern, C. L.; Marks, T. J., Organolanthanide-catalyzed hydroamination. A kinetic, mechanistic, and diastereoselectivity study of the cyclization of N-unprotected amino olefins. J. Am. Chem. Soc. 1992, 114, 275-294.
    [10] Li, Y.; Fu, P.-F.; Marks, T. J., Organolanthanide-Catalyzed Carbon-Heteroatom Bond Formation. Observations on the Facile, Regiospecific Cyclization of Aminoalkynes. Organometallics 1994, 13, 439-440.
    [11] Li, Y.; Marks, T. J., Organolanthanide-Catalyzed Intramolecular Hydroamination/Cyclization of Aminoalkynes. J. Am. Chem. Soc. 1996, 118, 9295-9306.
    [12] Li, Y. M., T. J. , Diverse Mechanistic Pathways and Selectivities in Organo-f-Element-Catalyzed Hydroamination. Intermolecular Organolanthanide-Catalyzed Alkyne and Alkene Hydroamination. Organometallics 1996, 15, 3770.
    [13] Walsh, P. J.; Baranger, A. M.; Bergman, R. G., Stoichiometric and catalytic hydroamination of alkynes and allene by zirconium bisamides Cp2Zr(NHR)2. J. Am. Chem. Soc. 1992, 114, 1708-1719.
    [14] McGrane, P. L.; Jensen, M.; Livinghouse, T., Intramolecular [2+2] cycloadditions of Group IV metal-imido complexes. Applications to the synthesis of dihydropyrrole and tetrahydropyridine derivatives. J. Am. Chem. Soc. 1992, 114, 5459-5460.
    [15] McGrane, P. L.; Livinghouse, T., Synthetic applications of imidotitanium-alkyne [2+2] cycloadditions. A concise, stereocontrolled total synthesis of the antifungal agent (+)-preussin. J. Am. Chem. Soc. 1993, 115, 11485-11489.
    [16] Haak, E.; Bytschkov, I.; Doye, S., Intermolecular Hydroamination of Alkynes Catalyzed by Dimethyltitanocene. Angew. Chem. Int. Ed. 1999, 38, 3389-3391.
    [17] a) Doye, S.; Pohlki, F.; Heutling, A.; Bytschkov, I.; Hotopp, T., Titanium complexes as catalysts for the intermolecular hydroamination of alkynes. Synlett 2002, 799-801; b) Odom, A. L.; Cao, C. S.; Ciszewski, J. T., Hydroamination of alkynes catalyzed by a titanium pyrrolyl complex. Organometallics 2001, 20, 5011-5013; c) Odom, A. L.; Shi, Y. H.; Ciszewski, J. T., Ti(NMe2)(4) as a precatalyst for hydroamination of alkynes withprimary amines. Organometallics 2001, 20, 3967-3969; d) Doye, S.; Pohlki, F., The mechanism of the [Cp2TiMe2]-catalyzed intermolecular hydroamination of alkynes. Angew. Chem. Int. Ed. 2001, 40, 2305.
    [18] a) Uchimaru, Y., N-H activation vs. C-H activation: ruthenium-catalysed regioselective hydroamination of alkynes and hydroarylation of an alkene with N-methylaniline. Chem. Commun. 1999, 1133-1134; b) Wakatsuki, Y.; Tokunaga, M.; Eckert, M., Ruthenium-catalyzed intermolecular hydroamination of terminal alkynes with anilines: A practical synthesis of aromatic ketimines. Angew. Chem. Int. Ed. 1999, 38, 3222-3225; c) Tokunaga, M.; Ota, M.; Haga, M. A.; Wakatsuki, Y., A practical one-pot synthesis of 2,3-disubstituted indoles from unactivated anilines. Tetrahedron Lett. 2001, 42, 3865-3868.
    [19] Beller, M.; Hartung, C. G.; Tillack, A.; Trauthwein, H., A convenient rhodium-catalyzed intermolecular hydroamination procedure for terminal alkynes. J. Org. Chem. 2001, 66, 6339-6343.
    [20] Yamamoto, Y.; Kadota, I.; Shibuya, A.; Lutete, L. M., Palladium benzoic acid catalyzed hydroamination of alkynes. J. Org. Chem. 1999, 64, 4570-4571.
    [21] Mitsudo, T.; Kondo, T.; Okada, T.; Suzuki, T., Ruthenium-catalyzed intramolecular hydroamination of aminoalkynes. J. Organomet. Chem. 2001, 622, 149-154.
    [22] Corma, A.; Leyva-Perez, A.; Sabater, M. J., Gold-catalyzed carbon-heteroatom bond-forming reactions. Chem Rev 2011, 111, 1657-1712.
    [23] Fukuda, Y.; Utimoto, K.; Nozaki, H., Preparation of 2, 3, 4, 5-tetrahydropyridines from 5-alkynylamines under the catalytic action of Au (III). Heterocycles 1987, 25, 297-300.
    [24] Iritani, K.; Matsubara, S.; Utimoto, K., Palladium catalyzed reaction of 2-alkynylanilines with allyl chlorides. Formation of 3-allylindoles. Tetrahedron Lett. 1988, 29, 1799-1802.
    [25] Mizushima, E.; Hayashi, T.; Tanaka, M., Intramolecular Electrophilic Aromatic Substitution Reactions of 2-Amidoacroleins:(?) A New Method for the Preparation of Tetrahydroisoquinolines, Tetrahydro-3-benzazepines, and Hexahydro-3-benzazocines. Org. Lett. 2003, 5, 3349.
    [26] Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K., Enantioselective Mannich-type reaction catalyzed by a chiral Bronsted acid. Angew. Chem. Int. Ed. 2004, 43, 1566-1568.
    [27] Terada, M.; Uraguchi, D., Chiral Bronsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 2004, 126, 5356-5357.
    [28] Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M., Enantioselective Bronsted acid catalyzed transfer hydrogenation: Organocatalytic reduction of imines. Org. Lett. 2005, 7, 3781-3783.
    [29] aList, B.; Yang, J. W.; Fonseca, M. T. H.; Vignola, N., Metal-free, organocatalytic asymmetric transfer hydrogenation of alpha,beta-unsaturated aldehydes. Angew. Chem. Int. Ed. 2005, 44, 108-110; bMacMillan, D. W. C.; Storer, R. I.; Carrera, D. E.; Ni, Y., Enantioselective organocatalytic reductive amination. J. Am. Chem. Soc. 2006, 128, 84-86.
    [30] You, S. L.; Kang, Q.; Zhao, Z. A., Highly enantioselective transfer hydrogenation of alpha-imino esters by a phosphoric acid. Adv. Synth. Catal. 2007, 349, 1657-1660.
    [31] Li, G.; Liang, Y.; Antilla, J. C., A Vaulted Biaryl Phosphoric Acid-Catalyzed Reduction ofα-Imino Esters:(?) The Highly Enantioselective Preparation ofα-Amino Esters. J. Am. Chem. Soc. 2007, 129, 5830-5831
    [32] a) Rueping, M.; Antonchick, A. R.; Theissmann, T., A highly enantioselective bronsted acid catalyzed cascade reaction: Organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids. Angew. Chem. Int. Ed. 2006, 45, 3683-3686; b) Rueping, M.; Antonchick, A. P.; Theissmann, T., Remarkably low catalyst loading in Bronsted acid catalyzed transfer hydrogenations: Enantioselective reduction of benzoxazines, benzothiazines, and benzoxazinones. Angew. Chem. Int. Ed. 2006, 45, 6751-6755.
    [33] a) List, B.; Mayer, S., Asymmetric counteranion-directed catalysis. Angew. Chem. Int. Ed. 2006, 45, 4193-4195; b) List, B.; Martin, N. J. A., Highly enantioselective transfer hydrogenation of alpha,beta-unsaturated ketones. J. Am. Chem. Soc. 2006, 128, 13368-13369.
    [34] a) Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Eds.; Springer-Verlag: Heidelberg, 1999. ; b) Berkessel, A.; Groger, H. Asymmetric Organocatalysis; Wiley-VCH: Weinheim, Germany, 2005.
    [35] a) Chen, G. S.; Deng, Y. J.; Gong, L. Z.; Mi, A. Q.; Cui, X.; Jiang, Y. Z.; Choi,M. C. K.; Chan, A. S. C., Palladium-catalyzed allylic alkylation of tert-butyl(diphylmethylene)-glycinate with simple allyl esters under chiral phase transfer conditions. Tetrahedron-Asymmetry 2001, 12, 1567-1571; b) Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y., Chiral phosphine-free Pd-mediated asymmetric allylation of prochiral enolate with a chiral phase-transfer catalyst. Org. Lett. 2001, 3, 3329-3331; c) Eilbracht, P.; Chercheja, S., Tandem metal- and organocatalysis in sequential hydroformylation and enantioselective aldol reactions. Adv. Synth. Catal. 2007, 349, 1897-1905; d) Eilbracht, P.; Chercheja, S.; Rothenbucher, T., Tandem Metal and Organocatalysis in Sequential Hydroformylation and Enantioselective Mannich Reactions. Adv. Synth. Catal. 2009, 351, 339-344; e) Hu, W.; Xu, X.; Zhou, J.; Liu, W.-J.; Huang, H.; Hu, J.; Yang, L.; Gong, L.-Z., Cooperative Catalysis with Chiral Bronsted Acid-Rh2(OAC)4: Highly Enantioselective Three-Component Reactions of Diazo Compounds with Alcohols and Imines. J. Am. Chem. Soc. 2008, 130, 7782-7783.
    [36] Alonso, F.; Beletskaya, I. P.; Yus, M., Transition-metal-catalyzed addition of heteroatom-hydrogen bonds to alkynes. Chem. Rev. 2004, 104, 3079-3159.
    [37] a) Heutling, A.; Pohlki, F.; Bytschkov, I.; Doye, S., Hydroamination/Hydrosilylation Sequence Catalyzed by Titanium Complexes. Angew. Chem. Int. Ed. 2005, 44, 2951; b) Field, L. D.; Messerle, B. A.; Wren, S. L., One-Pot Tandem Hydroamination/Hydrosilation Catalyzed by Cationic Iridium(I) Complexes. Organometallics 2003, 22, 4393.
    [38] Gong, L. Z.; Han, Z. Y.; Xiao, H.; Chen, X. H., Consecutive Intramolecular Hydroamination/Asymmetric Transfer Hydrogenation under Relay Catalysis of an Achiral Gold Complex/Chiral Bronsted Acid Binary System. J. Am. Chem. Soc. 2009, 131, 9182-9183.
    [39] Gong, L. Z.; Wang, C.; Han, Z. Y.; Luo, H. W., Highly Enantioselective Relay Catalysis in the Three-Component Reaction for Direct Construction of Structurally Complex Heterocycles. Org. Lett. 2010, 12, 2266-2269.
    [1] a) Schrohe, A., Chem. Ber. 1875, 367; b) Baeyer, A., Ber. 1882, 15, 2705; c) Perkin, W. H.; Jr., J. Chem. Soc. 1884, 45, 170; d) Izumi, Y., Catal. Today 1997, 33, 371; e) Kozhevnikov, I. V., Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. Chem. Rev. 1998, 98, 171; f) Tsuchimoto, T.; Joya, T.; Shirakawa, E.; Kawakami, Y., Synlett 2000, 12, 1777.
    [2] Reichert, J. S.; Bailey, J. H.; Nieuwland, J. A., The Catalytic Synthesis of the Acetals and Their Halogenation. J. Am. Chem. Soc. 1923, 45, 1552-1557.
    [3] a) Hinton, H. D.; Niewland, J. A., A New Method of Preparing Acetals. II. Acetals of Monohydric Alcohols. J. Am. Chem. Soc. 1930, 52, 2892; b) Killian, D. B.; Hennion, G. F.; Niewland, J. A., ibid 1934, 56, 1384; c) Hennion, G. F.; Niewland, J. A., ibid 1935, 57, 2006; d) Killian, D. B.; Hennion, G. F.; Niewland, J. A., ibid 1936, 58, 1658; e) Hennion, G. F.; Murray, W. S., Ibid 1942, 64, 1220; f) Bassetti, M.; Floris, B., Metalation of alkynes. II: Behaviour of alkynes with mercury (II) acetate in methanol: a systematic reinvestigation. J. Chem. Soc. Perkin Trans. 2 1988, 227; g) Barluenga, J.; Aznar, F.; Bayod, M., Catalytic and oxidative methoxymercuration of terminal alkynes: syntheses of 2-methoxy-1-alkenes and 2-methoxy-acrolein acetals. Synthesis 1988, 144.
    [4] a) Meier, I. K.; Marsella, J. A., Hydration of Acetylenic-Compounds without Using Mercury. J. Mol. Catal. 1993, 78, 31-42; b) Jennings, P. W.; Hartman, J. W.; Hiscox, W. C., Alkyne Hydration Using Pt(Ii) Catalysts. Inorg. Chim. Acta 1994, 222, 317-322; c) Kataoka, Y.; Matsumoto, O.; Tani, K., Addition of methanol to nonactivated internal alkynes catalyzed by dichloro(diphosphine)platinum(II) complex/silver salt systems. Organometallics 1996, 15, 5246-5249.
    [5] Fukuda, Y.; Utimoto, K., Effective Transformation of Unactivated Alkynes into Ketones or Acetals by Means of Au(Iii) Catalyst. J. Org. Chem. 1991, 56, 3729-3731.
    [6] Teles, J. H.; Brode, S.; Chabanas, M., Cationic gold(I) complexes: Highly efficient catalysts for the addition of alcohols to alkynes. Angew. Chem. Int.Ed. 1998, 37, 1415-1418.
    [7] a) Contel, M.; Jimenez, J.; Jones, P. G.; Laguna, A.; Laguna, M., Mesitylgold complexes: synthesis and reactivity; crystal structure of [{(Ph3P)Au([small micro]-mes)Ag(tht)}2][SO3CF3]2(mes = mesityl, tht = tetrahydrothiophene). J. Chem. Soc., Dalton Trans. 1994, 2515-2518; b) Contel, M. a.; Edwards, A. J.; Garrido, J.; Hursthouse, M. B.; Laguna, M.; Terroba, R., Mesityl gold(III) complexes. X-ray structure of mononuclear [Au(mes)2Cl(PPh3)] and the dimer [Au(mes)2Cl]2. J. Organomet. Chem. 2000, 607, 129-136.
    [8] Laguna, M.; Casado, R.; Contel, M.; Romero, P.; Sanz, S., Organometallic gold(III) compounds as catalysts for the addition of water and methanol to terminal alkynes. J. Am. Chem. Soc. 2003, 125, 11925-11935.
    [9] Santos, L. L.; Ruiz, V. R.; Sabater, M. J.; Corma, A., Regioselective transformation of alkynes into cyclic acetals and thioacetals with a gold(I) catalyst: comparison with Br(?)nsted acid catalysts. Tetrahedron 2008, 64, 7902-7909.
    [10] a) Praveen, C.; Kiruthiga, P.; Perumal, P. T., Gold (III) Bromide Catalyzed Furannulation of 2-Alkynylcycloalk-2-enols: An Expedient Route to Fused Furans. Synlett 2009, 12, 1990; b) Zhang, Y.; Xin, Z.-J.; Xue, J.-J.; Li, Y., Gold-catalyzed Alkyne Hydroxylation: Synthesis of 2-Substituted Benzo[b]furan Compounds. Chin. J. Chem. 2008, 26, 1461; c) Aponick, A.; Li, C.-Y.; Malinge, J.; Marques, E. F., Org. Lett. 2009, 11, 4624; d) Kim, S.; Kang, D.; Shin, S.; Lee, P. H., Gold-catalyzed cyclization of enyne-1,6-diols to substituted furans. Tetrahedron Lett. 2010, 51, 1899-1901; e) Egi, M.; Azechi, K., Gold-Catalyzed Synthesis of Pyrroles and Furans. Org. Lett. 2009, 11, 5002-5005.
    [11] Du, X.; Song, F.; Lu, Y.; Chen, H.; Liu, Y., A general and efficient synthesis of substituted furans and dihydrofurans via gold-catalyzed cyclization of (Z)-2-en-4-yn-1-ols. Tetrahedron 2009, 65, 1839-1845.
    [12] Cheng, C. H.; Bhuvaneswari, S.; Jeganmohan, M., Platinnm-catalyzed multistep reactions of indoles with alkynyl alcohols. Chem. Eur. J. 2007, 13, 8285-8293.
    [13] a) Patil, N. T.; Raut, V. S.; Kavthe, R. D.; Reddy, V. V. N.; Raju, P. V. K., Thorpe-Ingold effect in copper(II)-catalyzed formal hydroalkoxylation-hydroarylation reaction of alkynols with indoles.Tetrahedron Lett. 2009, 50, 6576-6579; b) Patil, N. T.; Singh, V.; Konala, A.; Mutyala, A. K., Gold(I)-catalyzed one-pot reaction between 2-alkynylanilines and alkynols leading to the formation of C-3-substituted indoles: a case of formal carboamination of alkynes. Tetrahedron Lett. 2010, 51, 1493-1496.
    [14] Peris, E.; Zanardi, A.; Mata, J. A., An Ir-Pt Catalyst for the Multistep Preparation of Functionalized Indoles from the Reaction of Amino Alcohols and Alkynyl Alcohols. Chem. Eur. J. 2010, 16, 13109-13115.
    [15] Echavarren, A. M.; Ferrer, C.; Amijs, C. H. M., Intra- and intermolecular reactions of indoles with alkynes catalyzed by gold. Chem. Eur. J. 2007, 13, 1358-1373.
    [16] Barluenga, J.; Fernández, A.; Satrústegui, A.; Diéguez, A.; Rodríguez, F.; Fa(?)anás, F. J., Tandem Intramolecular Hydroalkoxylation–Hydroarylation Reactions: Synthesis of Enantiopure Benzofused Cyclic Ethers from the Chiral Pool. Chemistry– A European Journal 2008, 14, 4153-4156.
    [17] Barluenga, J.; Fernández, A.; Diéguez, A.; Rodríguez, F.; Fa(?)anás, F. J., Gold- or Platinum-Catalyzed Cascade Processes of Alkynol Derivatives Involving Hydroalkoxylation Reactions Followed by Prins-Type Cyclizations. Chem. Eur. J. 2009, 15, 11660-11667.
    [18] Barluenga, J.; Mendoza, A.; Rodríguez, F.; Fa(?)anás, F. J., Synthesis of Spiroquinolines through a One-Pot Multicatalytic and Multicomponent Cascade Reaction. Angew. Chem. Int. Ed. 2008, 47, 7044-7047.
    [19] Povarov, L. S., Russ. Chem. Rev. 1967, 36, 656-670.
    [20] Pl(?)chl, J., Ber. Dtsch. Chem. Ges. 1883, 16, 2815.
    [21] Erlenmeyer, E., Ber. Dtsch. Chem. Ges. 1900, 33, 2036.
    [22] Mukerjee, A. K., Azlactones - Retrospect and Prospect. Heterocycles 1987, 26, 1077-1097.
    [23] a) Tepe, J. J.; Fisk, J. S.; Mosey, R. A., The diverse chemistry of oxazol-5-(4H)-ones. Chem. Soc. Rev. 2007, 36, 1432-1440; b) Tepe, J. J.; Hewlett, N. M.; Hupp, C. D., Reactivity of Oxazol-5-(4H)-ones and Their Application toward Natural Product Synthesis. Synthesis-Stuttgart 2009, 2825-2839; c) Rios, R.; Alba, A. N. R., Oxazolones in Organocatalysis, New Tricks for an Old Reagent. Chem. Asian J. 2011, 6, 720-734.
    [24] Tepe, J. J.; Peddibhotla, S.; Jayakumar, S., Highly diastereoselective multicomponent synthesis of unsymmetrical imidazolines. Org. Lett. 2002, 4,3533-3535.
    [25] Peddibhotla, S.; Tepe, J. J., Stereoselective Synthesis of Highly SubstitutedΔ1-Pyrrolines:(?) exo-Selective 1,3-Dipolar Cycloaddition Reactions with Azlactones. J. Am. Chem. Soc. 2004, 126, 12776-12777.
    [26] Tepe, J. J.; Fisk, J. S., Intermolecular ene reactions utilizing oxazolones and enol ethers. J. Am. Chem. Soc. 2007, 129, 3058-3059.
    [27] Tepe, J. J.; Mosey, R. A.; Fisk, J. S.; Friebe, T. L., Synthesis of tert-Alkyl amino hydroxy carboxylic esters via an intermolecular ene-type reaction of oxazolones and enol ethers. Org. Lett. 2008, 10, 825-828.
    [28] Keni, M.; Tepe, J. J., One-pot Friedel-Crafts/Robinson-Gabriel synthesis of oxazoles using oxazolone templates. J. Org. Chem. 2005, 70, 4211-4213.
    [29] Hélène, P., Dynamic kinetic resolution. Tetrahedron 2003, 59, 8291-8327.
    [30] a) Bevinakatti, H. S.; Newadkar, R. V.; Banerji, A. A., Lipase-catalysed enantioselective ring-opening of oxazol-5 (4H)-ones coupled with partial in situ racemisation of the less reactive isomer. J. Chem. Soc., Chem. Commun. 1990, 1091-1092; b) Gu, R. L.; Lee, I. S.; Sih, C. J., Chemo-enzymatic asymmetric synthesis of amino acids. Enantioselective hydrolyses of 2-phenyl-oxazolin-5-ones. Tetrahedron Lett. 1992, 33, 1953-1956; c) Crich, J. Z.; Brieva, R.; Marquart, P.; Gu, R. L.; Flemming, S.; Sih, C. J., Enzymic asymmetric synthesis of. alpha.-amino acids. Enantioselective cleavage of 4-substituted oxazolin-5-ones and thiazolin-5-ones. J. Org. Chem. 1993, 58, 3252-3258; d) Turner, N. J.; WintermanRaymond, J. R.; Parratt, J. S.; Taylor, S. J. C., Synthesis of homochiral-(S)-tert-leucine via a lipase catalysed dynamic resolution process. Tetrahedron Lett. 1995, 36, 1113-1116; e) Brown, S. A.; Parker, M. C.; Turner, N. J., Dynamic kinetic resolution: synthesis of optically active [alpha]-amino acid derivat
    ives. Tetrahedron: Asymmetry 2000, 11, 1687-1690.
    [31] Ruble, J. C.; Tweddell, J.; Fu, G. C., Kinetic resolution of arylalkylcarbinols catalyzed by a planar-chiral derivative of DMAP: a new benchmark for nonenzymatic acylation. J. Org. Chem. 1998, 63, 2794-2795.
    [32] Berkessel, A.; Mukherjee, S.; Cleemann, F.; Muller, T. N.; Lex, J., Second-generation organocatalysts for the highly enantioselective dynamic kinetic resolution of azlactones. Chem. Commun. 2005, 1898-1900.
    [33] Tokunaga, M.; Kiyosu, J.; Obora, Y.; Tsuji, Y., Kinetic resolution displayingzeroth order dependence on substrate consumption: Copper-catalyzed asymmetric alcoholysis of azlactones. J. Am. Chem. Soc. 2006, 128, 4481-4486.
    [34] Steglich, W.; Hofle, G., Hypernucleophilic Acylation Catalysts. II. Simple Preparation of Acyl-5-oxazolinones from 5-Acyloxyoxazoles. Tetrahedron Lett. 1970, 4727-4730.
    [35] a) Ruble, J. C.; Fu, G. C., Enantioselective construction of quaternary stereocenters: rearrangements of O-acylated azlactones catalyzed by a planar-chiral derivative of 4-(pyrrolidino) pyridine. J. Am. Chem. Soc. 1998, 120, 11532-11533; b) Fu, G. C., Enantioselective nucleophilic catalysis with planar-chiral heterocycles. Acc. Chem. Res. 2000, 33, 412-420.
    [36] Melhado, A. D.; Luparia, M.; Toste, F. D., Au ( I ) -Catalyzed Enantioselective 1 , 3-Dipolar Cycloadditions of Mu with Electron-Deficient Alkenes. J. Am. Chem. Soc. 2007, 129, 12638-12639.
    [37] Jorgensen, K. A.; Cabrera, S.; Reyes, E.; Aleman, J.; Milelli, A.; Kobbelgaard, S., Organocatalytic asymmetric synthesis of alpha,alpha-disubstituted alpha-amino acids and derivatives. J. Am. Chem. Soc. 2008, 130, 12031-12037.
    [38] Uraguchi, D.; Ueki, Y.; Ooi, T., Chiral Tetraaminophosphonium Carboxylate-Catalyzed Direct Mannich-Type Reaction. J. Am. Chem. Soc. 2008, 130, 14088-14089.
    [39] Terada, M.; Tanaka, H.; Sorimachi, K., Enantioselective Direct Aldol-Type Reaction of Azlactone via Protonation of Vinyl Ethers by a Chiral Bronsted Acid Catalyst. J. Am. Chem. Soc. 2009, 131, 3430-+.
    [40] Jiang, J.; Qing, J.; Gong, L.-Z., Asymmetric Synthesis of 3-Amino-delta-lactams and Benzo a quinolizidines by Catalytic Cyclization Reactions Involving Azlactones. Chem. Eur. J. 2009, 15, 7031-7034.
    [41] a) Wasilke, J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C., Concurrent tandem catalysis. Chem. Rev. 2005, 105, 1001-1020; b) Shao, Z.; Zhang, H., Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis. Chem. Soc. Rev. 2009, 38, 2745; c) de Armas, P.; Tejedor, D.; García-Tellado, F., Asymmetric Alkynylation of Imines by Cooperative Hydrogen Bonding and Metal Catalysis. Angew. Chem. Int. Ed. 2010, 49, 1013-1016; d) Rueping, M.; Koenigs, R. M.; Atodiresei, I., Unifying Metaland Bronsted Acid Catalysis-Concepts, Mechanisms, and Classifications. Chem. Eur. J. 2010, 16, 9350-9365; e) Zhong, C.; Shi, X., When Organocatalysis Meets Transition-Metal Catalysis. Eur. J. Org. Chem. 2010, 2010, 2999-3025.
    [42] a) Gong, L. Z.; Han, Z. Y.; Xiao, H.; Chen, X. H., Consecutive Intramolecular Hydroamination/Asymmetric Transfer Hydrogenation under Relay Catalysis of an Achiral Gold Complex/Chiral Bronsted Acid Binary System. J. Am. Chem. Soc. 2009, 131, 9182-9183; b) Gong, L. Z.; Wang, C.; Han, Z. Y.; Luo, H. W., Highly Enantioselective Relay Catalysis in the Three-Component Reaction for Direct Construction of Structurally Complex Heterocycles. Org. Lett. 2010, 12, 2266-2269; c) Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt, G.; Dixon, D. J., Enantioselective Bronsted Acid-Catalyzed N-Acyliminium Cyclization Cascades. J. Am. Chem. Soc. 2009, 131, 10796-10797; d) Liu, X.-Y.; Che, C.-M., Highly enantioselective synthesis of chiral secondary amines by gold(I)/chiral Br(?)nsted acid catalyzed tandem intermolecular hydroamination and transfer hydrogenation reactions. Org. Lett. 2009, 11, 4204-4207.
    [43] a) Matsunaga, S.; Yoshino, T.; Morimoto, H.; Lu, G.; Shibasaki, M., Construction of Contiguous Tetrasubstituted Chiral Carbon Stereocenters via Direct Catalytic Asymmetric Aldol Reaction of alpha-Isothlocyanato Esters with Ketones. J. Am. Chem. Soc. 2009, 131, 17082-17083; b) Wang, W.; Xue, F.; Zhang, S. L.; Liu, L.; Duan, W. H., Organocatalytic Enantioselective Cross-Aldol Reactions of Aldehydes with Isatins: Formation of Two Contiguous Quaternary Centered 3-Substituted 3-Hydroxyindol-2-ones. Chem. Asian J. 2009, 4, 1664-1667.
    [44] Du, C.; Li, L.; Li, Y.; Xie, Z. X., Construction of Two Vicinal Quaternary Carbons by Asymmetric Allylic Alkylation: Total Synthesis of Hyperolactone C and (-)-Biyouyanagin A. Angew. Chem. Int. Ed. 2009, 48, 7853.
    [45] Overman, A. E.; Paone, D. V.; Stearns, B. A., Direct stereo- and enantiocontrolled synthesis of vicinal stereogenic quaternary carbon centers. Total syntheses of meso- and (-)-chimonanthine and (+)-calycanthine. J. Am. Chem. Soc. 1999, 121, 7702-7703.
    [46] a) Jacobsen, E. N.; Uyeda, C.; R(?)theli, A. R., Catalytic Enantioselective Claisen Rearrangements of O-Allyl beta-Ketoesters. Angew. Chem. Int. Ed.2010, 49, 9753-9756; b) Trost, B. M.; Cramer, N.; Silverman, S. M., Enantioselective construction of spirocyclic oxindolic Cyclopentanes by palladium-catalyzed trimethylenemethane-[3+2]-cycloaddition. J. Am. Chem. Soc. 2007, 129, 12396-12397.
    [47] a) Vogt, H.; Brase, S., Recent approaches towards the asymmetric synthesis of [small alpha],[small alpha]-disubstituted [small alpha]-amino acids. Organic & Biomolecular Chemistry 2007, 5, 406-430; b) Cativiela, C.; Díaz-de-Villegas, M. D., Recent progress on the stereoselective synthesis of acyclic quaternaryα-amino acids. Tetrahedron: Asymmetry 2007, 18, 569-623; c) Cativiela, C.; D(?)(?)az-de-Villegas, M. a. D., Stereoselective synthesis of quaternaryα-amino acids. Part 1: Acyclic compounds. Tetrahedron: Asymmetry 1998, 9, 3517-3599.
    [48] Rueping, M.; Antonchick, A. R.; Brinkmann, C., Dual catalysis: A combined enantioselective bronsted acid and metal-catalyzed reaction-metal catalysis with chiral counterions. Angew. Chem. Int. Ed. 2007, 46, 6903-6906.
    [49] Seo, S.; Yu, X.; Marks, T. J., Intramolecular Hydroalkoxylation/Cyclization of Alkynyl Alcohols Mediated by Lanthanide Catalysts. Scope and Reaction Mechanism. J. Am. Chem. Soc. 2008, 131, 263-276.
    [50] Imahori, T.; Ojima, H.; Yoshimura, Y.; Takahata, H., Acceleration Effect of an Allylic Hydroxy Group on Ring Closing Enyne Metathesis of Terminal Alkynes: Scope, Application, and Mechanistic Insights. Chem. Eur. J. 2008, 14, 10762-10771.
    [1] a) Weiss, K.; Fitscha, P.; Gazso, A.; Gludovacz, D.; Sinzinger, H., Calcium blockers: antiatherogenic action by influencing the prostaglandin-system. Progress in clinical and biological research 1989, 301, 353; b) Chang, Y.-T.; Wignall, S. M.; Rosania, G. R.; Gray, N. S.; Hanson, S. R.; Su, A. I.; Merlie, J.; Moon, H.-S.; Sangankar, S. B.; Perez, O.; Heald, R.; Schultz, P. G., Synthesis and Biological Evaluation of Myoseverin Derivatives:(?) Microtubule Assembly Inhibitors. J. Med. Chem. 2001, 44, 4497-4500; c) Wang, L.-Z.; Hua, Z.-X.; Niu, W.-G., Progress in Synthesis and Biological Activities of 1,5-Benzodiazepines. Chin. J. Org. Chem 2010, 30, 1664.
    [2] Varala, R.; Enugala, R.; Adapa, S. R., p-Nitrobenzoic Acid Promoted Synthesis of 1,5-Benzodiazepine Derivatives. J. Braz. Chem. Soc. 2007, 18, 291-296.
    [3] Jarikote, D. V.; Siddiqui, S. A.; Rajagopal, R.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V., Room temperature ionic liquid promoted synthesis of 1,5-benzodiazepine derivatives under ambient conditions. Tetrahedron Lett. 2003, 44, 1835-1838.
    [4] Balakrishna, M. S.; Kaboudin, B., A simple and new method for the synthesis of 1,5-benzodiazepine derivatives on a solid surface. Tetrahedron Lett. 2001, 42, 1127-1129.
    [5] Kuo, C.-W.; More, S. V.; Yao, C.-F., NBS as an efficient catalyst for the synthesis of 1,5-benzodiazepine derivatives under mild conditions. Tetrahedron Lett. 2006, 47, 8523-8528.
    [6] Suresh; Saini, A.; Sandhu, J. S., RuCl3·xH2O: A Novel and Efficient Catalyst for the Facile Synthesis of 1,5-Benzodiazepines Under Solvent-Free Conditions. Synth. Commun. 2008, 38, 3193-3200.
    [7] Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O., Ytterbium triflate promoted synthesis of 1,5-benzodiazepine derivatives. Tetrahedron Lett. 2001, 42, 3193-3195.
    [8] a) Lewin, A. H.; Sun, G. B.; Fudala, L.; Navarro, H.; Zhou, L. M.; Popik, P.; Faynsteyn, A.; Skolnick, P., Molecular features associated with polyamine modulation of NMDA receptors. J. Med. Chem. 1998, 41, 988-995; b) Bitha, P.; Carvajal, S. G.; Citarella, R. V.; Delossantos, E. F.; Durr, F. E.; Hlavka, J. J.;Lang, S. A.; Lindsay, H. L.; Thomas, J. P.; Wallace, R. E.; Lin, Y. I., A New Family of Water-Soluble, 3rd Generation Antitumor Platinum Complexes. J. Med. Chem. 1989, 32, 2063-2067; c) Uckun, F. M.; Venkatachalam, T. K.; Mao, C., Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds. Biorg. Med. Chem. 2004, 12, 4275-4284; d) Uckun, F. M.; Venkatachalam, T. K.; Sudbeck, E. A.; Mao, C., Stereochemistry of halopyridyl and thiazolyl thiourea compounds is a major determinant of their potency as nonnucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett. 2000, 10, 2071-2074; e) Giordanetto, F.; Karlsson, O.; Lindberg, J.; Larsson, L. O.; Linusson, A.; Evertsson, E.; Morgan, D. G. A.; Inghardt, T., Discovery of cyclopentane- and cyclohexane-trans-1,3-diamines as potent melanin-concentrating hormone receptor 1 antagonists. Bioorg. Med. Chem. Lett. 2007, 17, 4232-4241.
    [9] a) Overman, L. E.; Franklin, A. S.; Ly, S. K.; Mackin, G. H.; Shaka, A. J., Application of the tethered Biginelli reaction for enantioselective synthesis of batzelladine alkaloids. Absolute configuration of the tricyclic guanidine portion of batzelladine B. J. Org. Chem. 1999, 64, 1512-1519; b) Overman, L. E.; Cohen, F., Enantioselective total synthesis of batzelladine F: Structural revision and stereochemical definition. J. Am. Chem. Soc. 2001, 123, 10782-10783; c) Murphy, P. J.; Heys, L.; Moore, C. G., The guanidine metabolites of Ptilocaulis spiculifer and related compounds; isolation and synthesis. Chem. Soc. Rev. 2000, 29, 57-67; d) Berlinck, R. G. S.; Burtoloso, A. C. B.; Kossuga, M. H., The chemistry and biology of organic guanidine derivatives. Natural Product Reports 2008, 25, 919-954. [10] a) Pini, D.; Mastantuono, A.; Uccellobarretta, G.; Iuliano, A.; Salvadori, P., Addition of Diethylzinc to Aryl Aldehydes Catalyzed by (1s,3s)-N,Ni-Bis[Benzyl]-1,3-Diphenyl-1,3-Propanediamine and Its Dilithium Salt - a Mechanistic Rationale Investigation. Tetrahedron 1993, 49, 9613-9624;
    b) Ogino, K.; Tamiya, H.; Kimura, Y.; Azuma, H.; Tagaki, W., cis-Diamines as active catalysts for the decarboxylation of oxalacetate. J Chem Soc Perk T 2 1996, 979-984; c) Ozaki, S.; Mimura, H.; Yasuhara, N.; Masui, M.; Yamagata, Y.; Tomita, K.; Collins, T. J., Synthesis of Chiral Square-Planar Cobalt(Iii) Complexes and Catalytic Asymmetric Epoxidations with These Complexes. J Chem Soc Perk T 2 1990, 353-360; d) Hems, W. P.; Groarke, M.;Zanotti-Gerosa, A.; Grasa, G. A., [(Bisphosphine) Ru(II) diamine] complexes in asymmetric hydrogenation: Expanding the scope of the diamine ligand. Acc. Chem. Res. 2007, 40, 1340-1347.
    [11] Reetz, M. T.; Kayser, F.; Harms, K., Stereoselective Synthesis of Beta-Amino Nitriles and 1,3-Diamines. Tetrahedron Lett. 1994, 35, 8769-8772.
    [12] Barton, D. H.; McCombie, S. W., J. Chem. Soc. Perkin Trans. 1 1975, 1574.
    [13] Kaiser, A.; Balbi, M., Chiral 1,3-diamines from a lithiated isocyanide and chiral aziridines. Tetrahedron-Asymmetry 1999, 10, 1001-1014.
    [14] Roos, G. H. P.; Donovan, A. R., Synthesis of novel C-2-symmetric ligands based on (R,R)- and (S,S)-diphenyl-1,3-propanediol. Tetrahedron-Asymmetry 1999, 10, 991-1000.
    [15] Kobayashi, S.; Yamashita, Y., Zirconium-catalyzed enantioselective [3+2] cycloaddition of hydrazones to olefins leading to optically active pyrazolidine, pyrazoline, and 1,3-diamine derivatives. J. Am. Chem. Soc. 2004, 126, 11279-11282.
    [16] Terada, M.; Machioka, K.; Sorimachi, K., High substrate/catalyst organocatalysis by a chiral bronsted acid for an enantioselective aza-ene-type reaction. Angew. Chem. Int. Ed. 2006, 45, 2254-2257.
    [17] Zhao, C. H.; Liu, L.; Wang, D.; Chen, Y. J., Asymmetric Mannich-type reaction of a chiral N-(tert-butylsulfinyl) ketimine with imines: Application to the synthesis of chiral 1,3-diamines. Eur. J. Org. Chem. 2006, 2977-2986.
    [18] Kitagawa, O.; Matsuo, S.; Yotsumoto, K.; Taguchi, T., Catalytic asymmetric desymmetrization of meso-diamide derivatives through enantioselective N-allylation with a chiral pi-allyl Pd catalyst: Improvement and reversal of the enantioselectivity. J. Org. Chem. 2006, 71, 2524-2527.
    [19] Concellón, J. M.; Bernad, P. L.; Suárez, J. R., Selective ring-opening of nonactivated amino aziridines by thiols and unusual nucleophilic substitution of a dibenzylamino group. J. Org. Chem. 2005, 70, 9411-9416.
    [20] a) Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M., Enantioselective Bronsted acid catalyzed transfer hydrogenation: Organocatalytic reduction of imines. Org. Lett. 2005, 7, 3781-3783; b) List, B.; Yang, J. W.; Fonseca, M. T. H.; Vignola, N., Metal-free, organocatalytic asymmetric transfer hydrogenation of alpha,beta-unsaturated aldehydes. Angew. Chem. Int. Ed. 2005, 44, 108-110; c) MacMillan, D. W. C.; Storer, R.I.; Carrera, D. E.; Ni, Y., Enantioselective organocatalytic reductive amination. J. Am. Chem. Soc. 2006, 128, 84-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700