绕线转子无刷双馈电机转子绕组设计和运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在变速驱动和恒频发电方面,无刷双馈电机展现出了良好的应用前景。为推动这一新型电机的实用化进程,本文对无刷双馈电机做了深入分析,在电机设计方面做了一些探索,并对其作发电机时电机的运行特性做了研究。
     无刷双馈电机是一种可以实现多种运行方式的新型交流励磁电机,能够在异步,同步和双馈等多种方式运行。无刷双馈电机取消了电刷和滑环,具有结构简单、坚固耐用、功率因数可调和变频器容量等级小等优点。无刷双馈电机作为电动机时,可用于风机和水泵等负载的变频节能调速系统;作为发电机时,可用于变速恒压恒频的船用轴带发电、风力发电和水力发电系统中。
     转子结构是无刷双馈电机性能好坏的关键因素。目前国内外无刷双馈电机的转子主要采用特殊笼型和磁阻两种结构,但这两种结构存在转子磁动势谐波含量高,导体对两种极对数兼顾性差、导体利用率低等缺点。而绕线式转子能通过调整绕组的匝数、节距等方法,使得导体利用率高,谐波含量低,因而具有更好的性能指标及实用性。本文以绕线式无刷双馈电机为研究对象,研究工作目的在于:对这种电机进行深入的理论研究,提出有效的转子绕组设计方法,编写可靠的转子绕组分析、设计程序,建立绕线式无刷双馈电机电磁设计方法,推动电机的实用化进程。
     本文的工作主要包括如下几方面的内容:
     首先,回顾无刷双馈电机产生的背景条件、发展的历史和现状,阐述新型绕线式无刷双馈电机研究的意义以及该电机目前在船用轴带发电和风力发电中应用前景。接着介绍了无刷双馈电机的基本原理、定转子绕组结构和运行方式等情况。
     其次,提出绕线式无刷双馈电机转子绕组的磁动势谐波分析方法,编写转子绕组分析软件,给出转子的谐波漏抗和槽漏抗分析方法。依据槽号相位图和单绕组磁动势谐波理论,利用分布绕组可以降低磁动势谐波的特点,给出基于齿谐波原理的无刷双馈电机转子绕组设计方法,并给出几种具体的绕组设计实例。借鉴星-三角接法的定子绕组可以提高绕组系数的特点,提出了星-环形接法转子绕组设计方法,并给出了这一接法的电机工作原理和绕组连接实例。
     然后,给出无刷双馈电机定转子槽配合、极数选择的依据,以及极数配合对电机性能的影响。分析电机的电负荷和磁负荷对新型绕线式无刷双馈电机的主要尺寸设计的影响,进而分析在电、磁负荷允许的范围内,尽可能减小电机体积,以增大无刷双馈电机的功率密度的条件。对无刷双馈电机电路的参数测定是验证电机理论设计参数一个重要方法,本文采用改进的粒子群优化算法对实验所得样机数据进行分析,优化出与多组实验数据相吻合的电机等效电路参数,为电机的设计提供佐证。
     最后,以两台Y315为基础,先后设计七种4/8极电机定、转子绕组方案,围绕七种方案的样机在船用轴带发电方面的应用做了详细的分析:通过样机空载特性实验,验证了样机在不同的控制绕组频率段电机的饱和程度基本不变;通过样机负载实验分析了样机在各种负载工况下,样机的工作状态变化过程;通过对比不同方案的样机,给出了控制绕组端所联接变频器的容量与转速之间的关系;通过分析样机参数,验证了样机在不同负载、不同转速下的效率及其变化趋势;通过分析电、磁负荷,以及变频器容量对电机的影响,给出了样机的可靠运行范围;通过测量不同方案的样机,分析了电机的槽配合对电机振动的影响。
The Brushless Doubly-Fed Machine (BDFM) shows commercial promise as a variable speed drive or generator. However, for this promise to be realised the design of the machine must be improved beyond that proposed to date. This dissertation contributes towards this goal through machine analysis, winding design and performance research.
     The Brushless Doubly-Fed Machine (BDFM) is a novel AC induction machine. The BDFM can achieve multiplicate operation mode, such as asynchronous, synchronous and doubly-fed operation mode. The BDFM avoids the use of brush and slip ring and has some advantages, such as simple structure, robustness, reliability, adjustable power factor and a fractional rated converter. It will have wide application in the control-frequency saving-energy adjustable speed drive (ASD) systems, such as fan and pump load drives, and the constant-voltage constant-frequency (CVCF) variable speed generation (VSG) systems, such as ship shaft generator, water power and wind power generation.
     The key factor affecting the performance of the BDFM is the rotor structure. The rotors of domestic and foreign BDFM have mainly adopted the‘nested-loop’and reluctance structures at present, but the‘nested-loop’and reluctance structures have some disadvantages, such as low conductor utilization ratio and abundant harmonic contents of the rotor. Compared to the‘nested-loop’and reluctance rotor, because the wound rotor studied in this dissertation has a flexible connection, and makes the winding conductor utilization ratio high and harmonic contents low by rational design, adjustment and control, wound-rotor BDFM has better performance index and practicability.
     With the object of wound-rotor BDFM, the research aims to study the theory of wound-rotor BDFM in depth, develop the effective wound-rotor winding design means, write the convenient reliable rotor winding design calculation program, develop the electromagnetic design means and accelerate the utilization progress of wound-rotor BDFM.
     The main content of this dissertation is summarized as follows:
     First of all, the background conditions, the development of the history and current situation of new type wound-rotor BDFM are reviewed briefly, especially it expounds the research significance new Wound BDFM, Also it shows the application prospect in the marine and wind power. Then the basic principle of BDFM, the stator and rotor winding structure and the operation mode are introduced.
     Secondly, the Magnetic Motive Force (MMF) harmonic analysis method of the BDFM is put forward, the rotor windings analyzing software is compiled, and the harmonic leakage reactance and the rotor slot leakage reactance analysis are given. Based on the slot number phase diagram, the single-winding magnetomotive force harmonic theory, the slot harmonic principle and the characterization of MMF harmonics reduced by distributed winding, the BDFM rotor winding design method is presented .And examples of several specific winding design are given. Reference the star - delta connection winding of stator windings may be increase the winding coefficient, the star - circle connection design method of rotor winding is proposed, and the connection principle and the motor winding connection instance are given.
     Thirdly, the basis for rotor slot cooperated with stator slot of BDFM and choice poles are given. Also the effect for motor performance as motor choice diffient poles is given. The effect of the electric load and magnetic load on the main dimensions design for the new type wound-rotor BDFM is analyzed. Further in the extent permitted of electric load and magnetic load, the condition to minimize the motor size and increase the BDFM power density is analyzed. The parameters mensurate for BDFM circuit is an important method for verify the theory of motor parameters. In this paper, the prototype experimental data is anslysised by an improved particle swarm optimization algorithm and the multiple sets of optimization data are gotten, the data given suport for motor design.
     Finally, based on two sets Y315 motor, seven winding schemes of 4 / 8 pole motor have been designed, the application of prototype in the marine is analyzed as follows: the prototype magnetic field saturation almost invariant is verified as the prototype control winding work at different frequencies by no load experiment; the changing process of prototype working state in a variety of load conditions is analyzed by load experiment; the relation of the frequency inverter capacity and the speed is given by analyzing different prototype schemes; the efficiency and its trend under different loads or different speed are verified by analyzing prototype parameters; the scope of the reliable operation of the prototype is given by analysis electric load and magnetic load of prototype; it is analyzed that the rotor slot combining with stator slot of prototype effect on motor vibration by measuring the different schemes.
引文
[1] Siemens Brothers & Co. Ltd. and Francis Lydall. Improvements in polyphase induction motors. British Patent No.: 16839, July 1902.
    [2] Louis J. Hunt. A new type of induction motor. Institution of Electrical Engineers, Journal, pages 648–677, 1907.
    [3] Louis J. Hunt. The‘cascade' induction motor. Institution of Electrical Engineers, Journal, pages 406–434, 1914.
    [4] F. Creedy. Some developments in multi-speed cascade induction motors. Institution of Electrical Engineers, Journal, pages 511–537, 1920.
    [5] B. H. Smith. The theory and performance of a twin stator induction machine. IEEE Transactions on Power Apparatus and Systems, 85(2):123.131, February 1966.
    [6] B. H. Smith. Synchronous behavior of doubly-fed twin stator induction machine. IEEE Transactions on Power Apparatus and Systems, 86(10):1227–1236, 1967.BIBLIOGRAPHY 285
    [7] C. D. Cook and B. H. Smith. Stability and stabilization of doubly-fed single frame cascade induction machines. IEE Proceedings, 126(11):1168–1174, 1979. BIBLIOGRAPHY 279
    [8] C. D. Cook and B. H. Smith. Effects of machine parameter values on dynamic response and stability regions of doubly-fed cascade induction machines. IEE Proceedings - B Electrical Power Applications, 130(2):137–142, 1983.
    [9]黄守道,胡必武,欧阳欧林等.双馈电机的工业应用展望.湖南大学学湖(自然科学版), 1999, 26(4) :67- 70.
    [10]尹志尹,孙孙孙,黄连中.船用主机轴带发电机.世界海运, 2002, 25(3) :53- 54.
    [11] A. R. W. Broadway. Cageless induction machine. Proc. IEE, 118(11):1593.1600, November 1971.
    [12] A. R. W. Broadway. Brushless cascade alternator. Proc. IEE, 1974.
    [13] A. R. W. Broadway and L. Burbridge. Self-cascaded machine: a low-speed motor or high frequency brushless alternator. Proceedings, Institution of Electrical Engineers, 117:1277–1290, 1970.
    [14] Alexander Kusko and Clement Somuah. Speed control of a single-frame cascadeinduction motor with slip-power pump back. IEEE Trans. Industry Applications, IA-14(2):97.105, 1978.
    [15] Fukuo Shibata and Toshio Kohrin. A brushless, self-excited polyphase synchronous generator. IEEE Trans. on Power Apparatus and Systems, PAS-102(8):2413.2419, August 1983.
    [16] Fukuo Shibata and Kouji Taka. Speed control for brushless cascade induction motors in control range of slips s1>1 and s2>1.IEEE Trans. on Energy Conversion,EC-2(2):246.253,June 1987.
    [17] R. Spée, A. K. Wallace, and H. K. Lauw. Performance simulation of brushless doubly-fed adjustable speed drives. In Conference record of the IEEE Industry Applications Society Annual Meeting, San Diego, CA, 1989. IEEE.
    [18] A. K. Wallace, P. Rochelle, and R. Spée. Rotor modelling and development for brushless doubly-fed machines. In Conference record of the International Conference on Electrical Machines, volume 1, Cambridge,MA, August 12-15 1990. ICEM.
    [19] A. K. Wallace, R. Spée, and H. K. Lauw. Dynamic modelling of brushless doubly-fed machines. In Conference record of the IEEE Industry Applications Society Annual Meeting, San Diego, CA, 1989. IEEE.
    [20] Brian Kock, RenéSpée, and Bryan Clever. A comparison of stack preparation methods for bar insulation in diecast rotors. In Proc. IEEE Industry Applications Society Annual Meeting, volume 1, pages 182.187. IEEE IAS, IEEE, New Orleans, October 5-9 1997.
    [21] R.A. Majzoub. The role of damper windings in suppressing electromechanical oscillations of diesel-driven synchronous generators. PhD thesis, University of Cambridge, June 2001.
    [22] Chris S. Brune, RenéSpée, and Alan K.Wallace. Experimental evaluation of a variable-speed, doubly-fed wind-power generation system. IEEE Trans. Industry Applications, 30(3):648–655, May/June 1994.
    [23] Wallace A K, Spee R, Lauw H K. Dynamic modeling of brushless doubly-fed machines[C].IEEE Industrial Applications Socie Annual Meeting, San Diego, 1989: 329-334.
    [24] P. Rochelle, R. Spée, and A. K. Wallace. The effect of stator winding configuration on the performance of brushless doubly-fed machines in adjustable speed drives. In Conference record of the IEEE Industry Applications Society Annual Meeting, pages 331–337, Seattle,WA, October 7-12 1990. IEEE.
    [25] M. Boger, A.Wallace, R. Spée, and R. Li. General Pole number model of the brushless doublyfed machine. IEEE Transactions on Industry Applications, 31(5):1022–1028, 1995.
    [26] M. S. Boger. Aspects of Brushless Doubly-Fed Induction Machines. PhD thesis, University of Cambridge, 1997.
    [27] W. R. Brass eld, R. Spée, and T. G. Habetler. Direct torque control for brushless doubly-fed machines. In Conf. Record of 1992 IEEE Industry Applications Society (IAS) Annual Meeting, pages 615–622. IEEE, 4-9 October 1992. Houston, TX, USA.
    [28] W. R. Brass field, R. Spée, and T. G. Habetler. Direct torque control for brushless doubly fed machines. IEEE Transactions on Industry Applications, 32(5):1098–1103, 1996.
    [29] Williamson S, Ferreira A. C, and Wallace A. K. Generalized theory of the brushless doubly-fed machine. part I: analysis[J], Electrical Power Applications, lEE Proceedings, 144: 111-122, 1997
    [30] Williamson S , Ferreira A. C , and .Wallace A K. Generalized theory of the brushless doubly-fed machine. Part 2: Model verification and performance [J]. IEE Proc. Electr. Power Appl., 1997, 144, (2), pp. 123–129
    [31] Wallace A K, Rochelle P, and Spee R. Rotor modeling and development for brushless doubly-fed machines[C]. Conf. record of the Int. Conf. on Electrical machines, Cambridge, 1990, Vol. 1
    [32] Wallace A K, Spee R, Lauw H K. Dynamic modeling of brushless doubly-fed machines[C]. IEEE Industrial Applications Social Annual Meeting, San Diego, 1989: 329-334
    [33] Boger M, Wallace A K, Spée R. Investigation of appropriate pole number combinations for brushless doubly fed machines as applied to pump drives[C]. IEEE Trans. Ind. Appl., 1996, 31, (5), pp. 1022–1028
    [34] Brune C S, Spée R, Wallace A K. Experimental evaluation of a variable-speed, doubly-fed wind-power generation system [J] IEEE Trans.Ind. Appl, 1994, 30, (3), pp.648–655.
    [35] Ruqi Li, AlanWallace, and RenéSpée. Dynamic simulation of brushless doubly-fed machines. IEEE Transactions on Energy Conversion, 6(3):445–452, 1991.
    [36] Ruqi Li, Alan Wallace, and RenéSpée. Two-axis model development of cage-rotor brushless doubly-fed machines. IEEE Transactions on Energy Conversion, 6(3):453–460, 1991.
    [37] M. Boger, A. Wallace, and R. Spée. Investigation of appropriate pole number combinations for brushless doubly fed machines as applied to pump drives. IEEE Transactions on Industry Applications, 31(5):1022–1028, 1996.277-278 BIBLIOGRAPHY
    [38] B. V. Gorti, G. C. Alexander, and R. Spée. Power balance considerations for brushless doublyfed machines. IEEE Transactions on Energy Conversion, 11(4):687–692, December 1996.
    [39] B. V. Gorti, G. C. Alexander, R. Spée, and A. K.Wallace. Characteristics of a brushless doubly- fed machine in current-fed mode of operation. In Proc. Conference on Industrial Automation & Control (I,A & C), pages 143–148. IEEE/IAS, IEEE, 5–7 January 1995. Hyderabad, India.
    [40] R. Li, R. Spée, A. K. Wallace, and G. C. Alexander. Synchronous drive performance of brushless doubly-fed motors. IEEE Transactions on Industry Applications, 30(4):963–970,July/August 1994.
    [41] R. Li, A. Wallace, and R. Spée. Determination of converter control algorithms for brushless doubly-fed induction motor drives using Floquet and Lyapunov techniques. IEEE Transactions on Energy Conversion, 10(1):78–85, 1995.
    [42] Ruqi Li, Alan Wallace, and RenéSpée. Determination of converter control algorithms for stable brushless doubly-fed drives using foquet and lyapunov techniques. In Proc. Power Electronics Specialists Conference (PESC), pages 571–577. IEEE, 24-27 June 1991. Cambridge, MA.
    [43] Roberts P C, McMahon R A. Performance of BDFM as generator and motor [C]. IEE Proc., Electra. Power Appl., 2006, 153, (2), pp. 289–299
    [44] E. Abdi-Jalebi, P. C. Roberts, and R. A. McMahon. Real-time rotor bar current measurement using a rogowski coil transmitted using wireless technology. In 18th Intl. Power Systems Conf.(PSC2003), Iran, volume 5, pages 1–9, October 2003.
    [45] P. C. Roberts, T. J. Flack, J. M. Maciejowski, and R. A. McMahon. Two stabilising control strategies for the brushless doubly-fed machine (BDFM). In Int. Conf. Power Electronics, Machines and Drives (PEMD) (Conf. Pub. No. 487), pages 341–346. IEE, 4-7 June 2002. Bath, UK.
    [46] P. C. Roberts. Control of a bdfm motor. Master's thesis, University of Cambridge, 2000.
    [47] P. C. Roberts, E. Abdi-Jalebi, R. A. McMahon, and T. J. Flack. Real-time rotor bar current measurements using bluetooth technology for a brushless doubly-fed machine(BDFM). In Int. Conf. Power Electronics, Machines and Drives (PEMD), volume 1, pages 120–125. IEE,March 2004.
    [48] P. C. Roberts, J. M. Maciejowski, R. A. McMahon, and T. J. Flack. A simple rotor current observer with an arbitrary rate of convergence for the brushless doubly-fed (induction) machine (BDFM). In Proc. IEEE Joint CCA, ISIC, CACSD, pages 266–271, Taipai, Taiwan, 2–4 September 2004. paper no. 683.
    [49] P. C. Roberts, R. A. McMahon, P. J. Tavner, J. M. Maciejowski, and T. J. Flack. An equivalent circuit for the brushless doubly-fed machine (BDFM) including parameter estimation. Proc. IEE B - Elec. Power App., 2004. accepted for publication, November 2004.
    [50] P. C. Roberts, R. A. McMahon, P. J. Tavner, J. M. Maciejowski, T. J. Flack, and X. Wang. Performance of rotors for the brushless doubly-fed (induction) machine (BDFM). In Proc. 16th Int. Conf. Electrical Machines (ICEM), pages 450–455, September 2004. 5th-8th, Cracow,Poland.
    [51] Wang X, Roberts P C. Optimization of bdfm stator design using an equivalent circuit model and a search method[C]. In Proc, IEE 3th Int. Conf. Power Electronics, Machines and Drives, Dublin, Ireland, pp.606-610, April 2006
    [52] A. C. Ferreira. Analysis of the Brushless Doubly-Fed Induction Machine. PhD thesis, Universityof Cambridge, 1996.
    [53]张凤阁.磁场调制式无刷双馈电机研究[D].沈阳:沈阳工业大学,1999
    [54]张凤阁,王凤翔,徐隆亚.磁阻和笼型转子无刷双馈电机的统一等效电路和转矩公式[J].中国电机工程学湖,1999,19(11):28-31
    [55]王凤翔,张凤阁,郑钢.笼型转子无刷双馈电机的动态特性仿真[J].电机与控制学湖,1998,2(4):221–224
    [56]王凤翔,张凤阁,徐隆亚.不同转子结构无刷双馈电机转子磁耦合作用的对比分析[J].电机与控制学湖,1999,3(2):113–116
    [57]张凤阁,王凤翔,林成武.无刷双馈电机的结构特点与设计原则[J].微特电机,1999,27(3):21–24
    [58]张凤阁等.无刷双馈调速电机的建模与恒功率角控制策略[J].辽宁工程技术大学学湖.2006,25(1):80–83
    [59]王雪帆等.一种新型无刷双馈电机[P].Z中国,200710051868.1. Sep,19,2007. Xuefan Wang, et al. A New Type of BDFM (P). China, 200710051768.1. Sep,19,2007(in Chinese).
    [60]王雪帆.一种转子绕组采用变极法设计的新型无刷双馈电机[J ] .中国电机工程学湖,2003 , vol.23(6) :108–111.
    [61]杨向宇.无刷双馈电机的设计分析及其调速系统的仿真研究[D].西安:西安交通学,2001
    [62]杨向宇,励庆孚.无刷双馈调速电机稳态运行特性分析[J].西安交通大学学湖,2000,34(4):14–17
    [63]杨向宇,励庆孚.无刷双馈调速电机的混合坐标数学模型[J].电工技术学湖,2001,16(1):16–20
    [64]杨向宇,励庆孚.无刷双馈调速电机运行范围的分析[J].微特电机, 2001, 29(6): 29-31
    [65]杨向宇,励庆孚.变频器-无刷双馈电机调速系统的仿真研究[J].中国电机工程学湖,2002,22(7):95–100
    [66]陈志伟,杨向宇,申辉阳.无刷双馈电机专家自适应PID控制系统仿真[J].华南理工大学学湖, 2003, 31(12): 37-41
    [67]章玮.无刷双馈电机系统及其控制研究[D].杭州:浙江大学, 2001
    [68]杨向宇.无刷双馈电机的设计分析及其调速系统的仿真研究[D].西安:西安交通学, 2001
    [69]章玮,贺益康.无刷双馈电机的电磁设计研究[J].浙江大学学湖, 2000, 34(5): 507-540
    [70]章玮.无刷双馈电机电动机状态下的能量分析[J].电机与控制学湖, 2000, 4(2):94-97
    [71]张彦锋,潘再平,章玮,贺益康.无刷双馈电机的研究及应用前景[J].机电工程,1998,(6):55-60160
    [72]潘再平,章玮.无刷双馈风力发电机的理论分析[J].新源,2000,22(7):1-4
    [73]张志刚,王毅,黄守道,王耀南.无刷双馈电机在变速恒频风力发电系统中的应用[J].电气传动.2005,35(4):61-64
    [74]黄守道等.无刷双馈电机转子磁场定向控制策略的研究[J].电工技术学湖,2002,17(2):34-39
    [75]黄守道,王耀南,王毅,高剑.无刷双馈电机有功和无功功率控制研究[J].中国电机工程学湖,2005,25(4):87-93
    [76]杨顺昌.无刷双馈调速电机的数学模型[J].电工技术湖,1996,11(6):27-31
    [77]杨顺昌.无刷双馈电机的电磁设计特点[J].中国电机工程学湖, 2001, 21(7): 107-161110
    [78]杨顺昌,徐昌彪.无刷双馈电机的稳态转矩-角特性[J].电工技术学湖,1998,13(4):15-18
    [79]邓先明,姜建国.无刷双馈电机的工作原理及电磁设计[J].中国电机工程学湖,2003,23(11):126-132
    [80]邓先明,姜建国,方荣惠.笼型转子无刷双馈电机的电磁分析和等效电路[J].电工技术学湖,2005,20(9):19-23
    [81]崔力,徐甫荣.无刷双馈变频调速电机的原理及应用前景[J].电工技术,2002,(1):34-35
    [82]李辉等.变速恒频双馈发电机励磁控制策略综述[J].电工技术杂志,2002,(12):5-8
    [83]鲜永菊.无刷双馈电动机主要尺寸的探讨[J].电机与控制学湖,2000,4(1):6-9
    [84]李松辽.无刷双馈变频调速电机的原理分析[J].中小型电机,1996,23(3):13-16
    [85]王晓远等.无刷双馈电机的建模和仿真[J].微电机,2002,35(6):7-9
    [86]许实章.交流电机的绕组理论[M],机械工业出版社,1983.
    [87]阚超豪等.新型绕线式无刷双馈发电机运行范围研究[J].中国电机工程学湖(已收录)
    [88]阚超豪等.一种转子绕组星-环形拓扑结构的无刷双馈电机[J].中国电机工程学湖(已收录)
    [89]阚超豪等.绕线式转子绕组谐波分析研究[J].大电机技术.
    [90]阚超豪等.非正规定子绕组谐波分析[J].华中科技大学学湖(自然科学版), 2008,36(3) :126-128.
    [91]阚超豪等.基于改进的粒子群优化算法的绕线式无刷双馈电机参数测定.微电机, 2008,41(7):5-15.
    [92]王雪帆.一种交流无刷双馈电机. CN02115588.7.中国专利. 2002
    [93]王雪帆.一种变极起动绕线转子感应电动机. CN03128150.8.中国专利. 2003
    [94]阚超豪.交流电机绕组计算机辅助分析与设计[华中科技大学硕士学位论文]. 2006.
    [95]彭军林.无刷双馈电机及其控制研究[华中科技大学硕士学位论文]. 2006.
    [96]王昌盛.无刷双馈电机变频调速系统研究[华中科技大学硕士学位论文]. 2006.
    [97]谢鑫.无刷双馈变速恒频风力发电系统的研究[华中科技大学硕士学位论文]. 2006
    [98]王雪帆,朱泽堂.一种交流无刷双馈电机. 200710051768.1.中国专利. 2008
    [99]张经纬,王雪帆,熊飞,阚超豪.基于实验和遗传算法的无刷双馈电机参数估算.中国电机工程学湖, 2008, 28(36):103-107.
    [100] J.W. Zhang, X. F. Wang, T. Wu, etal. The Principle and Harmonic analysis of a New BDFM with Tooth Harmonic Wound Rotor Using as a Generator. International Conference on Electrical Machines and Systems, Wuhan, China, Oct. 17-20 2008, pages 3622-3626.
    [101] F. Xiong, X.F. Wang, J.W. Zhang, etal. A New Equivalent Circuit for the Brushless Doubly-Fed Machine. International Conference on Electrical Machines and Systems, Wuhan, China, Oct. 17-20 2008, pages 4155-4159.
    [102] C.H. Kan, X.F. Wang, F. Xiong, etal. Design Optimization of Tooth-Harmonic Brushless Doubly-Fed Machine.International Conference on Electrical Machines and Systems, Wuhan, China, Oct. 17-20 2008, pages 4272-4276
    [103] T. W, X.F. Wang, J.W. Zhang, etal. Studies of Commercial Converter in Wound Rotor Brushless Doubly-Fed Machine Generator Control System. International Conference on Electrical Machines and Systems, Wuhan, China, Oct. 17-20 2008, pages 2507-2511.
    [104]阚超豪等.基于Tent映射的无刷双馈发电机转子绕组设计:湖北省电工技术年会、武汉市电工技术年会(2008)会议论文;
    [105]石山,励庆孚,王兴华.基于自适应遗传算法的无刷直流电机的优化设计.西安交通大学学湖,2002,VOL.36,NO.12.
    [106] G. Becker and A. Packard. Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback. Systems and Control Letters, 23, 1994.
    [107] Shibashis Bhowmik, RenéSpée, and Johan H. R. Enslin. Performance optimization for doubly fed wind power generation systems. IEEE Trans. Industry Applications, 35(4):949–958, July/August 1999.
    [108]李李李,胡胡生.遗传算法在电机优化设计简介[J].微特电机, 2001(4): 32-33.
    [109] Kennedy J, Shi Y. Swarm Intelligence [M] .San Francisco: Morgan Kaufman Publishers, 2001.
    [110] Kennedy J, Eberhart R C. Particle swarm optimization [A]. Proceedings of IEEE International Conference on Neutral Networks[C]. USA:IEEE Press, 1995, 4.1942-1948
    [111] Shi Y, Eberhart R C.Fuzzy. Adaptive particle swarm optimization[A]. Proc Congress on Evo- utionary Computation Seoul Piscataway[C]. New York Washington D C, 2001.
    [112] Lovbjerg M,Rasmussen T K,Krink T.Hybrid particle swarm optimizer with breeding and subpopulations[A]. Proc of the Third Genetic and Evolutionary Computation Conference [C]. San Francisco Morgan Kaufman Publisher s, 2001.
    [113] Ciurrina G,Ioan D, Munteanu I. Use of intelligent-particle swarm optimization in electromagnetics[J].IEEE Trans on Magnetics, 2002, 38(2):1037- 1040.
    [114] Bergh F, Engelbrecht A P. Training product unit networks using cooperative particle swarm optimizers[A].Proc of the Third Genetic and Evolutionary Computation Conference[C].San Francisco I Morgan Kaufman Publishers, 2001.
    [115] Vanden Bergh. An Analysis of Particle Swarm 0ptimizerS[D].South Africa: Department of Computer Science, Universi ty of Pretoria ,2002.
    [116] Shi Y, Eberhart R C.A modified particle swarm optimizer[R].IEEE International Conference of Evolutionary Computation, Anchorage, Alaska, 1998.
    [117] Angeline P. Using selection to improve particle swarm optimization [M].Proceeding of IJ CNN’99.Washington, USA, 1999:84- 89.
    [118] Noel M M, Jeannette T C. Simulation of a new hybrid particle swarm optimization algorithm[M].Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory, 2004:150- 153.
    [119] Liang J J, Qin A K, Suganthan P M,et a1. Panicle swarm 0ptimization algorithms with novel learning strategies[C].IEEE International Conference on Systems,Man and Cybernetics, SMC2004, Oct 10-l 3 2004, The Hague, Netherlands, c2004 :3659- 3664.
    [120] Krohling R A. Gaussian swami: A novel particle swarm optimization algorithm[C].2004 IEEE Conference an Cybernetics and intelligent Systems . Singapore . 2004 :372- 376.
    [121] Croes G A. A method for solving traveling salesman problems[J]. Operations Research ,1958.6:791-812.
    [122] Ashok Ramchandran, Gerald C. Alexander, and RénéSpée. Off-line parameter estimation for the doubly-fed machine. In Proceedings of Conference on Industrial Electronics, Control, Instrumentation, and Automation, 1992. 'Power Electronics and Motion Control', volume 3, pages 1294–1298. IEEE, 1992. 9-13 Nov 1992.
    [123] Antonio Marcus Nogueira Lima, Cursino Brand?o Jacobina, and Eurico Bezerra de Souza Filho. Nonlinear parameter estimation of steady-state induction machine models. IEEE Trans. on Industrial Electronics, 44(3):390–397, June 1997. 282 BIBLIOGRAPHY
    [124] Georgios Papafotiou, Tobias Geyer, and Manfred Morari. Optimal direct torque control of three-phase symmetric induction motors. Technical Report AUT03-07, Eidgen ossische Technische Hochschule (ETH), Zürich, Switzerland, April 2003. Available from http://control.ee.ethz.ch/research/publications/publications.msql?id=1614.
    [125] Mohammed Ali Lotia. Control strategies for variable speed brushless doubly-fed induction motor drives. Master's thesis, University of Cambridge, 2000.
    [126] R. D. Lorenz. Observers and state liters in drives and power electronics. In Proc. IEEE IAS OPTIM, Brasov, Romania, May 16-18 2002. IEEE/IAS. Keynote paper.
    [127] Hassan K. Khalil. Nonlinear Systems. Prentice-Hall, Inc., New Jersey, 2 edition, 1996.BIBLIOGRAPHY 281
    [128] Brian Kock, RenéSpée, and Bryan Clever. A comparison of stack preparation methods for bar insulation in die cast rotors. In Proc. IEEE Industry Applications Society Annual Meeting, volume 1, pages 182–187. IEEE IAS, IEEE, New Orleans, October 5-9 1997.
    [129] Paul C. Krause, Oleg Wasynczuk, and Scott D. Sudhoff. Analysis of electric machinery and drive systems. IEEE Press Wiley, New York, second edition, 2002.
    [130] Alexander Kusko and Clement Somuah. Speed control of a single-frame cascade induction motor with slip-power pump back. IEEE Trans. Industry Applications, IA-14(2):97–105, 1978.
    [131] H. K. Lauw. Brushless doubly-fed motor control system. US Patent No.: 5,239,251, August 1993.
    [132] G. S. Brosan and J. T. Hayden. Advanced Electrical Power and Machines. Sir Isaac Pitman &Sons Ltd., 1966.
    [133] A. Bruce Carlson. Circuits: Engineering Concepts and Analysis of Linear Electric Circuits.John Wiley & Sons Inc., New York, 1996.
    [134] Henry D'Angelo. Linear Time-Varying Systems: Analysis and Synthesis. Series in Electrical Engineering. Allyn and Bacon, 1970.
    [135] J. A. de Kock, F. S. van der Merwe, and H. J. Vermeulen. Induction motor parameter estimation through an output error technique. IEEE Trans. on Energy Conversion, 9(1):69–75, March 1994.
    [136] A. Draper. Electrical Circuits Including Machines. Longmans, 1 edition, 1964.
    [137] A. Draper. Electrical Machines. Longmans, 2 editions, 1967.
    [138] Guang-Ren Duan and Ron J. Patton. A note on hurwitz stability of matrices. Automatica,34(4):509–511, 1998.
    [139] William. J. Gibbs. Conformal Transformations in Electrical Engineering. Chapman & Hall Ltd., London, 1958.280 BIBLIOGRAPHY
    [140] Keith Glover. All optimal hankel-norm approximations of linear multivariable systems and their L1-error bounds. Int. J. Control, 39(6):1115–1193, 1984.
    [141] B. Hopfensperger, D. J. Atkinson, and R. A. Lakin. Combined magnetising ux orientated control of the cascaded doubly-fed induction machine. Proc. IEE B - Electric Power Applications, 148(4):354–362, July 2001.
    [142] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991.
    [143] A. Isidori. Nonlinear Control Systems 3rd Edition. Springer, 1995.
    [144] Charles V. Jones. The Uni ed Theory of Electrical Machines. Butterworths, London, 1967.
    [145] Alson Kemp, Michael Boger, Ernesto Wiedenbrüg, and Alan Wallace. Investigation of rotorcurrent distributions in brushless doubly-fed machines. In Proc. IEEE Industry App. Soc.Annual Mtg., pages 638–643. IEEE, 6-10 October 1996. San Diego, CA.
    [146] Yuefeng Liao. Design of a brushless doubly-fed induction motor for adjustable speed drive applications. In Proc. IEEE Industry App. Soc. Annual Mtg., pages 850–855. IEEE, 6-10 October 1996.
    [147] R.A. Majzoub. The role of damper windings in suppressing electromechanical oscillations of diesel-driven synchronous generators. PhD thesis, University of Cambridge, June 2001.
    [148] George Makrides. The design and implementation of a hardware platform for driving and controlling brushless doubly-fed machines. Mphil. University of Cambridge, August 2004.
    [149] Alexandre Megretski and Anders Rantzer. System analysis via integral quadraticconstraints. IEEE Trans. Automatic Control, 42(6):819–830, June 1997.
    [150] S. Müller, M. Deicke, and Rik M. de Doncker. Doubly fed induction generator systems for wind turbines. IEEE Industry Applications Magazine, pages 26–33, May/June 2002.
    [151] E. Prempain, I. Postlethwaite, and A. Benchaib. A linear parameter variant H1 control design for an induction motor. Control Engineering Practice, 10(6):633–644, June 2002.
    [152] Amuliu Bogdan Proca and Ali Keyhani. Identification of variable frequency induction motor models from operating data. IEEE Trans. on Energy Conversion, 17(1):24–31, March 2002.
    [153] Ashok Ramchandran and Gerald C. Alexander. Frequency-domain parameter estimations for the brushless doubly-fed machine. In Conference Record of PCC 1993, pages 346–351, Power Conversion Conference, Yokohama 1993, 1993. IEEE. 19-21 Apr 1993. BIBLIOGRAPHY 283
    [154] F. Rüncos, R. Carlson, A. M. Oliveira, P. Kuo-Peng, and N. Sadowski. Performance analysis of a brushless doubly-fed cage induction generator. In Proc. 2nd Nordic Windpower Conf., 2004.1-2 March.
    [155] Wang X, McMabon R. A., and Tavner P. J. Design of the brushless doubly-fed (induction) machine[C]. IEEE Interaction Election Machines &Drives Conference, 2007, IEMDC’07. vol.2,pp.1508-1513
    [156] Gerald C. Alexander. Characterization of the brushless, doubly-fed machine by magnetic field analysis. In Proc. IEEE Industry Applications Society (IAS) Annual Mtg., pages 67–74, Seattle, WA, October 7-12 1990. IEEE.
    [157] Pierre Apkarian and Ri chard J. Adams. Advanced gain-scheduling techniques. IEEE Transactions on Control Systems Technology, 6(1):21–32, January 1998.
    [158] Peter A. Cook. Nonlinear Dynamical Systems. Prentice Hall, 1994.
    [159]梁宜编译.21世纪绿色电力的发展.水利电力科技,2002年第2期.
    [160]袁玉琪等.风风能风力发电-21世纪新型清洁能源.太阳能,2002年第2期.
    [161]赵尹等.可再生能源发电.太阳能,2001年第3期.
    [162]新能源和可再生能源产业发展’十五’规划.太阳能2002年第5期.
    [163]张凤阁,王凤翔,王正.不同转子结构无刷双馈电机稳态运行特性的对比实验研究.中国电机工程学湖,2 002, 22(4) :52- 55.
    [164]杨顺昌.无刷双馈调速电机的绕组结构.电工技术学湖, 1996, 11(2) :7-10
    [165]阚超豪,王雪帆.新型绕线转子无刷双馈发电机电磁设计.湖北工业大学学湖, 2010, 25(1) :107-112.
    [166] Roberts P C, McMahon R A, Tavner P J, et al. Equivalent circuit for the brushless doubly fed machine (BDFM) including parameter estimation and experimental verification[J]. IEE Proceedings- Electric Power Applications, 2005, 1 52(4) : 933- 942.
    [167]阚超豪,王雪帆.绕线式无刷双馈发电机的输出功率和效率分析.中国电机工程学湖(EI检索,已投稿)
    [168]卞松江,贺益康,潘再平.级联式无刷双馈电机的建模与仿真.中国电机工程学湖,2001 ,21 (12):33-37.
    [169]王爱龙,熊光煜.无刷双馈电机时步有限元分析.中国电机工程学湖,2008,28(21):123-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700