含硫酸镁废水石灰乳法制备氢氧化镁工艺中的分析方法建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红土镍矿制镍过程中产生含硫酸镁约10%的废水,而废水处理对制镍工艺至关重要。本课题组以硫酸镁废水为原料,采用改进的石灰乳法制氢氧化镁产品。本文研究该氢氧化镁制备工艺中的分析方法及其应用。
     氢氧化镁制备工艺中待分析物料可分为原料、中间产物和产品。对原料中生石灰、氯化钙的分析沿用文献方法;对原液中镁和硫酸根、中间产物中四种钙镁混液的分析,通过对取样方式和分析操作改进,完善氢氧化镁制备工艺中的分析方法;对氢氧化镁标准中缺少的硫酸根分析方法,在文献基础上建立新的方法,形成了一套适应于改进的石灰乳法含硫酸镁废液制氢氧化镁工艺的系统分析方法。进而,对整套系统分析方法进行精密度和准确度研究,对分析方法进行评价。此外,将系统分析方法应用于含硫酸镁废液制备氢氧化镁实际工艺,分别对其原料、中间产物和氢氧化镁产品进行跟踪分析,并对氢氧化镁制备工艺提出了改进建议。
     结果表明,整套系统分析方法分析原料、中间产物和氢氧化镁产品的标准偏差最小为0.01%,最高为0.50%,均在1%以下,相对标准偏差基本都在0.1%-2%范围内;分析方法的低、中、高浓度加标回收率最低为95%,最高为104%,均在95%-105%范围内,能满足氢氧化镁制备工艺分析的要求(精密度标准偏差<1%,准确度加标回收率在90%-110%)。应用该系统方法对工艺进行跟踪分析,同一工艺两次跟踪分析结果平衡稳定,氢氧化镁产品分析结果如下:氢氧化镁98.7%-98.8%,氧化钙0.32%-0.36%,盐酸不溶物0.21%-0.23%,氯化物0.26-0.28%,硫酸根0.34%-0.35%,铁0.27%-0.30%,水分0.30%-0.33%。
     由此可见,整套系统分析方法能准确分析氢氧化镁制备工艺中各工艺段物料分配和走向,进而实现为含硫酸镁废水制氢氧化镁工艺中原料采购把关,为氢氧化镁制备工艺中的过程控制提供指导,为氢氧化镁产品的质量检测提供标准,为优化含硫酸镁废液制备氢氧化镁工艺提供参考建议的目的。
In this dissertation, a systematic series of analytical methods and its application were studied, to meet the analytical requirements of improved process for preparing magnesium hydroxide from the~10% magnesium sulfate wastewater generated from the nickel producing of laterite.
     Based on the magnesium hydroxide preparation process, the materials were classified and summarized as raw materials, intermediate products and products. The standards of lime and calcium chloride were directly used to analyse the raw materials. The analytical methods for the magnesium and sulfate in the magnesium hydroxide original fluid and the calcium and magnesium in four kinds of intermediate mixture, were approved via improving the sampling operating methods, so as to adapt to the practical technology. The analytical method of the sulfate in product was built based on references, since it is absence in the standard. All of these formed a set of systematic method, which is applied to the preparation process of magnesium hydroxide. Then, both the exactitude and accuracy of the analytic methods were studied, including the evaluation of the analytic result. In addition, the analytical methods were applied to the practical preparing process, and the suggestions for further improvement were given as well.
     As a result, the standard deviations of the systematic methods were below 1%, and the recoveries were from 95% to 105%. Tracking analysis of preparing process and the analysis of magnesium hydroxide were tested twice, and the results were basically stable. Results of products analysis were followed:the content of Mg(OH)2 in magnesium hydroxide were 98.7%-98.8%, and the content of impurity including CaO, HCl insoluble ash, chlorides, sulfate, Fe and moisture were 0.32%-0.36%, 0.21%-0.23%,0.26-0.28%,0.34%-0.35%,0.27%-0.30% and 0.30%-0.33%, respectively.
     It was showed that the systematic analytical methods can provide the precise imformation of the distribution and the ratio of materials, and these methods can meet the analytical requirements of raw material purchase, preparing process control, quality testing of products, and they were useful for technology optimization.
引文
[1]Liu P, Guo J. Organo-modified magnesium hydroxide nano-needle and its polystyrene nanocomposite[J]. Journal of Nanoparticle Research,2007,9(4): 669-673
    [2]Michalski J. Inorganic, wet flue gas desulfurization(FGD) technologies- a review[J]. Trends in Chemical Engineering,2006,10:31-40
    [3]Higgins M, Tom L, Sobeck D. Case Study I:Application of the Divalent Cation Bridging Theory to Improve Biofloc Properties and Industrial Activated Sludge System Performancedirect Addition Of Divalent Cations[J]. Water environment research,2004,76(4):344-352
    [4]Cortina J L, Lagreca I, De Pablo J, et al. Passive In Situ Remediation of Metal-Polluted Water with Caustic Magnesia:Evidence from Column Experiments[J]. Environmental Science & Technology,2003,37(9): 1971-1977
    [5]马艳飞,王九思.绿色安全处理剂-氢氧化镁的应用概述[J].甘肃环境研究与监测,2002,15(4):282-283
    [6]Gibson A, Leykauf S, Knapp C. Magnesium Hydroxide Slurry as a Cost Effective Solution for Effective H2S Odor and Corrosion Control in Sanitary Sewer Systems[J]. Proceedings of the Water Environment Federation,2008, 2008(17):761-768
    [7]Silva M A R, Mater L, Souza S M M, et al. Small hazardous waste generators in developing countries:use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal[J]. Journal of Hazardous Materials,2007,147(3):986-990
    [8]Fellner P, Smr kova E, Pach L. Influence of admixtures and of mixing on precipitation of Mg(OH)2 from nitrate solution[J]. Acta Chimica Slovaca,2009, 2(2):14-20
    [9]王立,许芃,罗源,等.超细氢氧化镁干粉的灭火性能研究[J].消防科学与技术,2009,28(6):425-428
    [10]王国祥,肖连生,张贵清,等.复合引发剂合成氢氧化镁/聚丙烯酰胺[J].当代化工,2008,37(1):52-55
    [11]王春来,卢晗锋,俞振海,等.减压蒸馏法改性氢氧化镁阻燃剂的性能[J].材料科学与工程学报,2009,27(4):601-604
    [12]高善民,王善华.市场前景广阔的无机阻燃剂——氢氧化镁[J].化工进展,2001,20(8):56-59
    [13]Troitzsch J. Overview of flame retardants[J]. Chimica Oggi/Chemistry Today, 1998,16:18-32
    [14]Hornsby P R. The application of magnesium hydroxide as a fire retardant and smoke-suppressing additive for polymers[J]. Fire and Materials,1994,18(5): 269-276
    [15]刘立华,曾宪琴,沈玉龙.氢氧化镁阻燃剂的制备工艺研究[J].化工科技市场,2009,32(6):32-34
    [16]李征征,李三喜,张爱玲,等.氢氧化镁阻燃剂研究进展[J].塑料科技,2009,37(4):83-87
    [17]Hirschler M M, Thevaranjan T R. Effects of magnesium oxide/hydroxide on flammability and smoke production tendency of polystyrene [J]. European Polymer Journal,1985,21(4):371-375
    [18]Hornsby P R, Watson C L. A study of the mechanism of flame retardance and smoke suppression in polymers filled with magnesium hydroxide [J]. Polymer Degradation and Stability,1990,30(1):73-87
    [19]Carpentier F, Bourbigot S, Bras M L, et al. Rheological investigations in fire retardancy:application to ethylene-vinyl-acetate copolymer-magnesium hydroxide/zinc borate formulations [J]. Polymer International,2000,49(10): 1216-1221
    [20]Riva A, Camino G, Fomperie L, et al. Fire retardant mechanism in intumescent ethylene vinyl acetate compositions[J]. Polymer Degradation and Stability, 2003,82(2):341-346
    [21]Chiu S H, Wang W K. The dynamic flammability and toxicity of magnesium hydroxide filled intumescent fire retardant polypropylene[J]. Journal of Applied Polymer Science,1998,67(6):989-995
    [22]Qiu L, Xie R, Ding P, et al. Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA[J]. Composite Structures,2003,62(3-4):391-395
    [23]Yan H, Zhang X H, Wei L Q, et al. Hydrophobic magnesium hydroxide nanoparticles via oleic acid and poly(methyl methacrylate)-grafting surface modification[J]. Powder Technology,2009,193(2):125-129
    [24]陈玉坤,曾能,王万勋,等.疏松型纳米氢氧化镁阻燃聚丙烯[J].合成树脂 及塑料,2006,23(5):53-56
    [25]王路明.氢氧化镁对酸性废水处理的研究[J].盐业与化工,2008,(6):21-24
    [26]冯雪冬,马艳飞,卢杰.氢氧化镁对重金属离子铜锌的吸附特性研究[J].金属矿山,2009,(11):132-135
    [27]Soldatkina L M, Purich A N, Menchuk V V. Adsorption of Dyes on Magnesium Hydroxide[J]. Adsorption Science & Technology,2001,19(4):267-272
    [28]Dean R. Ultimate disposal of waste water concentrates to the environment[J]. Environmental Science & Technology,1968,2(12):1079-1086
    [29]Scherzberg H, Kaps S, Schultheis B. Binding of heavy metals from salt-containing waters by magnesium hydroxide[J]. Freiberg,2000,8(59): 170-190
    [30]赵雪,何瑾馨,展义臻.印染废水处理技术的研究进展[J].化学工业与工程技术,2009,30(2):38-43
    [31]Bekin A, Matsuoka A. Applicability of Magnesium Oxide as a Neutralizing Agent in Mine Water Disposal[J]. Shigen to sozai,1998,114(8):553-559
    [32]Tabak H, Scharp R, Burckle J, et al. Advances in biotreatment of acid mine drainage and biorecovery of metals:1. Metal precipitation for recovery and recycle[J]. Biodegradation,2003,14(6):423-436
    [33]Tabak H, Govind R. Advances in biotreatment of acid mine drainage and biorecovery of metals:2. Membrane bioreactor system for sulfate reduction[J]. Biodegradation,2003,14(6):437-452
    [34]王路明.氢氧化镁对印染废水处理的研究[J].无机盐工业,2008,40(12):53-55
    [35]郭如新.镁法烟气脱硫研究进展[J].硫磷设计与粉体工程,2009,(3):10-14
    [36]Berman Y, Tanklevsky A, Oren Y, et al. Modeling and experimental studies of SO2 absorption in coaxial cylinders with impinging streams:part II[J]. Chemical Engineering Science,2000,55(5):1023-1028
    [37]Dagaonkar M V, Beenackers A, Pangarkar V G Absorption of sulfur dioxide into aqueous reactive slurries of calcium and magnesium hydroxide in a stirred cell[J]. Chemical Engineering Science,2001,56(3):1095-1101
    [38]孙永明,胡涛.氢氧化镁在环保领域中的应用[J].山东化工,2008,37(11):40-42
    [39]陈向锋,刘晓慧.氢氧化镁在烟气脱硫中的应用[J].海湖盐与化工,2006,35(3):34-36
    [40]柴明,崔可,徐康富,等.氧化镁湿法烟气脱硫回收工艺的技术经济可行性初步分析[J].环境污染治理技术与设备,2006,7(4):38-40
    [41]郭如新.镁法烟气脱硫联产硫酸镁肥料[J].磷肥与复肥,2010,25(1):53-55
    [42]Liauw C M, Lees G C, Hurst S J, et al. Effect of silane-based filler surface treatment formulation on the interfacial properties of impact modified polypropylene/magnesium hydroxide composites[J]. Composites Part A: Applied Science and Manufacturing,1998,29(9-10):1313-1318
    [43]李峥,戈桦.氢氧化镁煅烧氧化镁活性研究[J].盐业与化工,2006,35(6):1-3
    [44]张勇,袁建军.石灰卤水法制备氢氧化镁的反应条件探讨[J].天津科技大学学报,2006,21(2):81-85
    [45]刘鹏,叶旭初.卤水石灰法制备Mg(OH)2[J].南京工业大学学报:自然科学版,2007,29(6):99-101
    [46]宋长友,崔江丽,罗胜铁,等.石灰-卤水法制备高纯氢氧化镁的研究[J].化学工程师,2010,(1):66-67
    [47]王鹏,毛小浩,刘亮,等.循环晶种法制取氢氧化镁的实验研究[J].盐业与化工,2008,(1):12-14
    [48]杜高翔,王柏昆.利用菱镁矿尾矿制备纳米级片状氢氧化镁[J].地学前缘,2008,15(4):142-145
    [49]胡庆福,胡晓波.白云石氨化法制取氢氧化镁新工艺研究[J].化工矿物与加工,2002,31(2):4-6
    [50]徐宝强,戴永年,杨斌.苦卤水制备纳米氢氧化镁的研究[J].云南化工,2005,32(4):7-9
    [51]杜振雷,韩海波,闪俊杰,等.麦芽酚生产过程含镁废液制备氢氧化镁的工艺[J].无机盐工业,2008,40(11):47-48
    [52]Rocha S, Mansur M, Ciminelli V. Kinetics and mechanistic analysis of caustic magnesia hydration[J]. Journal of Chemical Technology & Biotechnology, 2004,79(8):816-821
    [53]Choudhary V, Pandit M. Surface properties of magnesium oxide obtained from magnesium hydroxide:Influence on preparation and calcination conditions of magnesium hydroxide[J]. Applied catalysis,1991,71(2):265-274
    [54]纪俊荣,杜振雷,胡永琪,等.卤水-石灰乳法制备氢氧化镁的研究[J].河北工业科技,2009,26(5):290-293
    [55]杜振雷,廖勇,闪俊杰,等.卤水-石灰法制备氢氧化镁的实验研究[J].材 料导报:纳米与新材料专辑,2009,(1):41-43
    [56]印万忠,李红梅.盐湖氧化镁制备氢氧化镁的研究[J].金属矿山,2007,(7):36-39
    [57]中国石油和化学工业协会.HG/T 2327-2004 工业氯化钙[S].化学工业出版社,2005
    [58]辽宁省建筑材料研究所.JC-T478.1-92建筑石灰试验方法-物理试验方法[S].北京:中国标准出版社,1992
    [59]辽宁省建筑材料研究所.JC/T478.2-92建筑石灰试验方法-化学分析方法[S].北京:中国标准出版社,1992
    [60]交通部公路科学研究所.JTJ57-94公路工程无机结合料稳定材料试验规程[S].北京:人民交通出版社,1994
    [61]中华人民共和国原冶金工业部.GB/T 3286.1-1998石灰石、白云石化学分析方法[S].北京:中国标准出版社,1998
    [62]沈兴楠.双指示剂法测定石灰乳液有碳化率[J].浙江造纸,1997,1:42-43
    [63]袁伟.氢氧化钙和碳酸钙混合物的分析方法[J].北京化工大学学报:自然科学版,2002,29(2):94-96
    [64]杨晓明.德兴铜矿石灰乳检测精度探讨[J].有色金属:选矿部分,2002,(1):45-46
    [65]易爱虹.有色金属选矿用石灰检测方法探讨[J].铜业工程,2004,4:56-58
    [66]冶金工业部信息标准研究院.YB/T 105-2005冶金石灰物理检验方法[S].北京:冶金工业出版社,2005
    [67]李琴,沈美荣.石灰稳定土中石灰剂量测定方法探讨[J].山西建筑,2007,33(3):151-152
    [68]金迪.公路工程路用石灰中有效CaO含量测定的几点探究[J].科技资讯,2008,(35):39-39
    [69]王正,胡虢.EDTA滴定法测定石灰剂量的误差分析[J].建设科技(建设部),2007,(9):84-85
    [70]夏德林.有色金属选矿用石灰的采购与质量控制[J].铜业工程,2005,3:88-89
    [71]弓创周,王水赞,丁灵,等.工业硫酸镁标准中主含量测定方法的改进[J].无机盐工业,2009,41(12):61-62
    [72]Calvo D, Bartrol J, Valle M d. Multicomponent Titration of Calcium + Magnesium Mixtures Employing a Potentiometric Electronic-Tongue [J]. Analytical Letters,2007,40(8):1579-1595
    [73]Afkhami A, Madrakian T, Abbasi-Tarighat M. Simultaneous determination of calcium, magnesium and zinc in different foodstuffs and pharmaceutical samples with continuous wavelet transforms[J]. Food Chemistry,2008,109(3): 660-669
    [74]天津化工研究设计院.GB/T 19281-2003碳酸钙分析方法[S].中国标准出版社,2003
    [75]焦德权.EDTA配位滴定法中两种指示剂的改进[J].天津化工,2007,21(4):51-52
    [76]张轶华.精盐水钙,镁含量测定方法的改进[J].中国氯碱,2007,(2):43-43
    [77]Moss P. Limits of interference by iron, manganese, aluminium and phosphate in the EDTA determination of calcium in the presence of magnesium using Cal-red as indicator[J]. Journal of the Science of Food and Agriculture,1961, 12(1):30-34
    [78]彭秧锡,彭建兵,关于钙镁含量的连续测定方法[J].水泥,2002,6:51-52
    [79]刘华.紫外分光光度法连续测定氯酸盐工业盐水中钙镁的含量[J].化学工程与装备,2007,6:79-82
    [80]彭湘君,李银保,刘霞,等.火焰原子吸收光谱法对水中钙镁元素含量的测定[J].赣南医学院学报,2007,27(4):502-503
    [81]Ohta K, Tanaka K. Simultaneous determination of common inorganic anions, magnesium and calcium ions in various environmental waters by indirect UV-photometric detection ion chromatography using trimellitic acid-EDTA as eluent[J]. Analytica Chimica Acta,1998,373(23):189-195
    [82]Gondal M A, Hussain T. Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy[J]. Talanta,2007,71(1):73-80
    [83]程芳琴,张亚宁,常慧敏,等.紫外分光光度法测定盐湖卤水中钙镁离子含量[J].无机盐工业,2006,38(4):54-56
    [84]杨英桂,保晓玲.石墨炉原子吸收光谱法测定盐水中的钙镁含量[J].盐业与化工,2006,35(4):27-28
    [85]张桂芹,孙建之,马培华,等.火焰原子吸收和发射光谱法测定盐湖卤水的锂钠钙镁离子[J].盐业与化工,2007,36(1):10-11
    [86]Jodral-Segado A M, Navarro-Alarcn M, Serran H L-G D L, et al. Calcium and Magnesium Levels in Agricultural Soil and Sewage Sludge in an Industrial Area from Southeastern Spain:Relationship with Plant (Saccharum officinarum) Disposition [J]. Soil and Sediment Contamination:An International Journal,2006,15(4):367-377
    [87]武晓丽,阎铁城.近代硫酸根离子测定方法比较[J].内蒙古科技与经济,2004,(9):87-88
    [88]姜晖霞,曾光明.硫酸根离子分析方法评述[J].湖南化工,1998,28(6):14-15
    [89]Dedkov Y, Korsakova N, Sychkova V. New metallochromic indicator for barium:Determination of sulfate in water and soil extracts[J]. Journal of Analytical Chemistry,2006,61(12):1154-1162
    [90]阳国运,唐裴颖.电感耦合等离子体发射光谱法测定地表水和地下水中的硫酸根[J].岩矿测试,2009,28(2):176-178
    [91]Kurahashi Y, Masuda H, Miyazaki K. Analytical method to determine keratan sulfate in the serum using HPLC[J]. The Japanese journal of clinical pathology, 2008,56(5):373-378
    [92]Nesmerak R, Rychlovsky P, Nemcova I. Determination of chondroitin sulfate by thiazine dyes using flow injection analysis with spectrophotometric detection[J]. Analytical Letters,2007,40(6):1167-1175
    [93]Soleymanpour A, Asl E, Nasseri M. Chemically Modified Carbon Paste Electrode for Determination of Sulfate Ion by Potentiometric Method[J]. Electroanalysis,2006,18(16):1598-1604
    [94]Kolotilina N, Dolgonosov A. Ion-chromatographic determination of borates and sulfides with the use of a developing column[J]. Journal of Analytical Chemistry,2005,60(8):738-742
    [95]轻工业部制盐工业科学研究所.GB/T 13025.8-91制盐工业通用试验方法-硫酸根离子的测定[S].北京:中国标准出版社,1991
    [96]刘宏之,翟璨.络合滴定法测定工业废水中的硫酸根离子[J].化工环保,2003,23(1):42-45
    [97]林杰.快速,精确测定硫酸根含量新方法[J].纯碱工业,2004,(4):28-29
    [98]傅娇艳,丁振华,吴彦慜,等.硫酸钡分光光度比浊法测定高硫环境样品[J].厦门大学学报:自然科学版,2007,46(6):880-883
    [99]胡容平,吴良,俞于怀,等.分光比浊法测定高纯磷酸锌中硫酸根[J].化工技术与开发,2009,(9):42-44
    [100]龚殿婷,李凤华,樊占国,等.光电比浊法测定硼酸中硫酸根[J].冶金分析,2008,28(8):44-47
    [101]阮文蔚.共振光散射比浊法测定水样中硫酸根的方法探讨[J].海峡科学,2009,(6):175-176
    [102]杜斌,魏琴.非离子型微乳液介质-硫酸钡浊度法测定硫酸根[J].分析化学,1995,23(6):662-664
    [103]丁根娣,吴杰.硫酸钡史光比浊法测定机理的探讨[J].理化检验:化学分册,2001,37(3):111-112
    [104]顾建华,沈雄伟.超声-铬酸钡分光光度法测定水中硫酸盐[J].中国卫生检验杂志,2007,17(6):1122-1123
    [105]邢大荣,孙仕萍,张岚,等.饮用水中硫酸盐的铬酸钡分光光度测定法[J].环境与健康杂志,2007,24(12):990-991
    [106]国家环境保护总局.HJ/T 342-2007水质硫酸盐的测定铬酸钡分光光度法(试行)[S].北京:中国环境科学出版社出版,2007
    [107]中华人民共和国能源部.DL 422.4-91工业盐酸中硫酸盐含量的测定-铬酸钡分光光度法[S].北京:电力工业部,1992
    [108]陈丽娅,梁莉.铬酸钡光度法测定水环境中硫酸盐的改进[J].贵州环保科技,2001,7(4):34-35
    [109]李红卫.硫酸盐测定铬酸钡分光光度法的改进[J].人民珠江,2005,2005(2):53-54
    [110]张晓燕,李慧敏,李志强.铬酸钡光度法测定硫酸盐的改进研究[J].环境科学与管理,2006,31(4):82-83
    [111]严继东.比色法测水样中硫酸盐方法的改进[J].中国卫生检验杂志,2004,14(5):644
    [112]杨笑棣,张玲艳.铬酸钡比色测定水中硫酸盐方法的改进[J].干旱环境监测,1998,12(4):240-242
    [113]郁倩.铬酸钡分光光度法和离子色谱法测定水中硫酸盐的比较[J].职业与健康,2004,20(10):56-57
    [114]黄爱华,宁霞,侯凤仙.水样中硫酸盐测定方法的改进[J].中国城乡企业卫生,2007,2(1):21-22
    [115]卫生部法监司.GB/T 5750-2001生活饮用水卫生规范[S].北京:中华人民共和国卫生部,2001
    [116]Michalski R. Ion Chromatography:Water and Waste Water Analysis[J]. Encyclopedia of Chromatography, Third Edition,2009:1251-1257
    [117]刘富平,程祥圣,葛建平.石墨炉原子吸收光谱法间接测定海水中的微量硫酸根[J].光谱实验室,2006,23(4):800-802
    [118]Mroczek A, Werner G, Wennrich R, et al. Investigation of sulfur release in ETV-ICP-AES and its application for the determination of sulfates[J]. Fresenius' Journal of Analytical Chemistry,1998,361(1):34-42
    [119]孙爱玲,郭威.用流动注射二甲基偶氮磺-Ⅲ 分光光度法测定水中硫酸根[J].分析化学,1998,26(2):207-210
    [120]杨文英,王艳春.离子色谱法测定食盐中的硫酸盐[J].中国卫生检验杂志,2004,14(6):732-733
    [121]孙智敏,张德强,孙汉文.火焰原子吸收光谱法间接测定水中硫酸盐[J].理化检验:化学分册,2005,41(8):573-574
    [122]宋彦梅,衣守志.氢氧化镁的生产及应用技术进展[J].海湖盐与化工,2006,35(2):15-20
    [123]苏培基.工业氢氧化镁化工行业标准简介[J].化工标准·计量·质量,2001,4:3-4
    [124]中华人民共和国国家发展和改革委员会.HG/T 3821-2006纳米氢氧化镁[S].北京:化学工业出版社,2006
    [125]中华人民共和国国家海洋局.HY/T 111-2008料浆状及滤饼状氢氧化镁[S].北京:中国标准出版社,2008
    [126]中华人民共和国国家发展和改革委员会.HG/T 3607-2007工业氢氧化镁[S].北京:化学工业出版社,2007
    [127]四川大学分析中心.分析化学.北京:高等教育出版社,2008
    [128]冉广芬,马海州.硫酸根分析技术及应用现状[J].盐湖研究,2009,17(4):58-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700