基于联合分布的雷达目标检测与分类方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究强杂波或噪声背景下雷达目标检测与分类问题。由于隐身飞机/舰艇、低空/超低空突防武器和综合电子干扰在现代战争中的大规模应用,雷达需要具有在强杂波和噪声中检测和分类目标的能力。本文在雷达回波信号的联合分布(时频分布和时间-调频率分布)和特征提取方面展开研究,并将研究成果应用于海面微弱目标检测、空中机动距离扩展目标检测和空中直升机分类。
     本文的研究成果可概括为以下四部分:
     1,研究了海面微弱目标检测问题。分析了海面波浪的形成过程及结构特点,由此得到海杂波的非平稳特性。进而根据海杂波和目标回波在时频域的区别提出了基于时频迭代分解的海面慢速微弱目标检测方法:基于特征值分解,我们首先提出快速信号合成方法(FSSM),FSSM可以从信号的维格纳分布(WD)中更精确和快速地恢复出信号;然后,基于遮隔WD(MWD)和FSSM,提出信号迭代分解方法(IDM);最后应用IDM将海面回波分解成许多分量,并根据各分量的时频聚集性从中找出目标回波,实现目标检测。应用实测海面回波验证该检测方法的结果表明其不仅能够高效地检测海面慢速微弱目标还能够显示目标的瞬时运动状态。
     2,研究了高斯白噪声背景下空中机动距离扩展目标检测问题。基于高分辨雷达(HRR)接收到的混频器输出,我们提出了三类距离扩展目标检测方法。(1)基于两个相邻混频器输出时频分解特性的距离扩展目标检测方法:首先,基于奇异值分解我们提出一种信号合成方法,它可以从两信号的互维格纳分布(CWD)中合成两个单位能量的信号,并且将两信号的能量集中在两个奇异值上;接着,提出了两个相邻混频器输出的互S-方法(CSM)。然后,将信号合成方法应用于两相邻混频器输出的CSM,得到奇异值;最后,根据所得奇异值的聚集性实现目标检测。应用没有经过距离走动校正的雷达回波数据验证所提检测方法,结果表明所提方法的检测性能优于传统方法且适用于高速运动目标。另外,该方法具有恒虚警(CFAR)特性。(2)基于一个混频器输出的匹配信号的距离扩展目标检测方法:首先构造混频器输出的匹配信号为频率与混频器输出中目标信号的最大频率相同的正弦函数;然后定义一个混频器输出的匹配模糊函数(MAF)和改进匹配滤波器(MMF);根据混频器输出在MAF和MMF中零多普勒/频率的聚集性提出了两种距离扩展目标检测方法,分别命名为MAF-D和MMF-D。该类检测器利用一个回波因而可以检测高速(包括平动速度和转动速度)运动目标。应用实测数据的检测结果表明该类方法的检测性能优于传统的检测器且对目标姿态不敏感。(3)基于一个混频器输出的调频率(FR)函数的距离扩展目标检测方法:首先根据三次相位函数(CPF)定义FR函数并确定应用其分析离散线性调频(LFM)信号时的FR范围;然后根据回波信号在零FR处的聚集性实现目标检测。该方法可以检测高速目标。应用于实测距离扩展目标的检测结果表明该方法优于基于HRRP的检测器。
     3,针对高阶多项式相位信号的参数估计问题,我们提出了一种高分辨时间-调频率分布(TFRR),并分析了其在目标检测方面的潜在应用。我们推导出该TFRR的分析表达式,并证明了其相对于CPF具有较高的分辨率。该TFRR可以用来分析两个在时间-调频率(TFR)域非常靠近的信号。由于该TFRR是双线性变换,所以当两信号的瞬时频率(IF)信号相交或非常靠近时会受到交叉项的困扰。为了抑制交叉项,我们通过引入一个FR窗提出了平滑TFRR(STFRR)。应用STFRR分析噪声背景下的高阶多项式相位信号,结果表明STFRR具有检测目标的潜能。
     4,研究了高脉冲重复频率(PRF)雷达下直升机分类问题。分析了直升机主旋翼的微多普勒调制特征,针对回波信号积累时间是否大于两“闪烁”之间间隔这两种情况,我们提出了两类直升机主旋翼参数估计方法,最终实现直升机分类。(1)针对回波信号积累时间大于两“闪烁”之间间隔这种情况我们提出两种直升机分类技术:第一种方法是匹配滤波器(MF)方法,包括时域匹配滤波器(TMF)和时频域匹配滤波器(TFMF);第二种方法为时频遮隔模板(TFMs)方法。该类方法可以分类叶片数目不同但微多普勒参数相同的直升机。仿真结果表明它们对于直升机的姿态和微多普勒参数的估计误差都具有鲁棒性。(2)针对回波信号积累时间小于两“闪烁”之间间隔这种情况我们提出了基于最小均方误差(MMSE)的部分周期数据微多普勒参数估计方法:在MMSE准则下应用正弦信号拟合从时频分布中提取出的旋翼叶片微多普勒信号,从而估计出叶片的转速和半径。仿真和实测数据的微多普勒参数估计结果都验证了该方法的有效性与精确性。
This paper is aiming at the radar target detection and classification in strong clutteror noise. In the modern warfare, the stealthy aircrafts/warships, low altitude penetrationweapons, and electronic countermeasures have been widely used. Therefore, the radarshould have the abilities to detect and classify the target in strong clutter or noise. In thisdissertation, we study the joint distribution (including time-frequency distribution andtime-frequency rate distribution) of the radar echoes and the features extraction from thejoint distribution. Then apply the results to detect the weak target in sea clutter and themaneuvering range-spread target. Also they are used to classify the helicopter byestimating the micro-Doppler parameters of the main rotor.
     The main content of this dissertation is summarized as follows.
     The first part focuses on the weak target detection in the sea clutter. The derivationand the construction of the sea waves are analyzed, indicating that the sea clutter isnon-stationary. Based on the difference between the sea clutter and the target echo inthe time-frequency domain, we propose an efficient method for detecting slow-movingweak targets based on time-frequency iteration decomposition. This method consists ofthree stages: first, we present a fast signal synthesis method (FSSM) based on theeigenvalue decomposition. The FSSM can synthesize a signal faster and moreaccurately from the Wigner distribution (WD). And then, we present a signal iterationdecomposition method (IDM) from the masked WD (MWD) and the FSSM. By theIDM, the small component of a signal can be obtained, even when it is very close to alarge component in the time-frequency plane. Finally, based on the IDM and twocriterions, the detection method is proposed. The proposed method is evaluated byX-band sea echoes with a weak simulated target or a real target. Results demonstratethat it not only detects the slow-moving weak target but shows its instantaneous state.
     The second part focuses on the maneuvering range-spread target in strong whiteGaussian noise. Using the mixer output received by the high resolution radar (HRR), wepropose three types of methods to detect a range-spread target.1) Based on thetime-frequency decomposition of the cross S-method (CSM) of two adjacent mixeroutputs, a range-spread target detection method is proposed. This method consists ofthree steps. First, we propose a signal synthesis method (SSM) based on the singular value decomposition. The SSM synthesizes two signals in their normalized forms fromtheir cross Wigner distribution (CWD) and concentrates their energy on two singularvalues. Second, we derive the CSM of two adjacent mixer outputs. Third, wedecompose the CSM of two adjacent mixer outputs by the SSM, thereby obtainingsingular values. The concentration of the singular values is used to detect therange-spread target. The proposed method is evaluated by the raw radar data withoutrange migration correction. Results show that it outperforms the conventional methods.In addition, we prove that the proposed method has the constant false-alarm rate (CFAR)property.2) Based on the matched signal of one mixer output, we propose two rangespread target detector. At the beginning, we derive the matched signal from the mixeroutput directly. The matched signal is a sinusoidal signal and shares the same frequencyas the largest component of the target signal. Then we define the matched ambiguityfunction (MAF) and the modified matched filter (MMF). Based on the concentration ofthe MAF and the MMF at zero Doppler or frequency, we propose two range-spreadtarget detectors: MAF-D and MMF-D. The two detectors use a single mixer output andthus have the ability to detect the target with a high translational velocity and rotationalvelocity. They are evaluated by the recorded radar data. Results show that theyoutperform the conventional detectors and are robust against the target gesture.3) Usingthe frequency rate (FR) function of one mixer output, we propose a range spread targetdetector. From the cubic phase function (CPF), we define a FR function and discuss theFR range of a discrete LFM signal. From the concentration at zero FR of the FRfunction of a mixer output, we derive the range-spread target detector. The detector hasthe ability to detect the target with a high velocity. Finally, experimental results arepresented by the recorded radar data, which show that the proposed detectoroutperforms the detectors using the high resolution range profile (HRRP).
     The third part focuses on the parameters estimation of the high-order polynomialphase signal. In this part, we propose a high resolution time-frequency raterepresentation (TFRR), which is a potential way to detect a target. The analyticalformula of the TFRR is presented. And the TFRR is shown to have a narrowerfrequency rate (FR) support than the cubic phase function (CPF). Consequently, theTFRR can be used to analyze the signal with close components in the time-frequencyrate (TFR) domain. Due to the bilinear transform, the TFRR suffers the cross term whenthe instantaneous frequency (IF) functions of the components are cross or very close. Tosuppress the cross term, we propose the smoothed TFRR (STFRR) by introducing anFR window to the TFRR. In addition, the application of the STFRR in analyzing a noisy high-order polynomial phase signal is given, which indicates the potential in targetdetection.
     The fourth part focuses on the helicopter classification in high pulse repetitionfrequency (PRF) radar. After analyzing the micro-Doppler of main rotor, we proposetwo types of micro Doppler parameter estimation methods due to whether the pulseaccumulative time is longer than the time interval between two successive flashes. Thenthe estimated parameters are used to classify the helicopter.1) We propose twohelicopter classification methods when the pulse accumulative time is longer than thetime interval between two successive flashes: The first one is based on the matchedfilter (MF), including the time MF (TMF) and the time-frequency MF (TFMF). Thesecond one derives from time-frequency masks (TFMs). Simulation results demonstratethat both methods have the ability to classify helicopters with the same micro-Dopplerparameters. Also, they are robust against errors of the estimated parameters and thegesture of the helicopter.2) We propose a method to estimate the blade rotational rateand radius when the pulse accumulative time is shorter than the time interval betweentwo successive flashes. Error function is constructed between a sinusoid and themicro-Doppler signal extracted from the time-frequency distribution of the echo.Solving the error function in criterion MMSE, we can obtain the micro-Dopplerparameters, i.e. rotational rate and radius. The validity and accuracy of the proposedmethod are evaluated via both synthetic and experimental data.
引文
[1]丁鹭飞,耿富录.雷达原理.西安:西安电子科技大学出版社,1984.
    [2]王小谟,张光义.雷达与探测,第2版.北京:国防工业出版社,2007.
    [3] G. R. Valenzuela. Theories for the interaction of electromagnetic and oceanicwaves-A review. Bound-Lay Meteorol., Jan.1978,13(1-4):61-85.
    [4] G. Pan, J. T. Johnson. A numerical study of the modulation of short sea waves bylonger waves. IEEE Trans. Geosci. Remote Sens., Oct.2006,44(10):2880-2889.
    [5] D. R. Wehner. High-Resolution Radar,2nded. Boston, MA: Artech House,1995.
    [6]戴奉周.宽带雷达信号处理-检测、杂波抑制与认知跟踪.博士研究生学位论文.西安电子科技大学.2010.
    [7]帅晓飞.距离扩展目标的检测算法研究.博士研究生学位论文.电子科技大学.2011.
    [8] Q. Li, E. J. Rothwell, K. M. Chen, et al. Scattering center analysis of radar targetsusing fitting scheme and genetic algorithm. IEEE Trans. Antennas Propag., Feb.1996,44(2):198-207.
    [9] M. Burgos-garcía, F. Pérez-martínez, J. Mu oz-ferreras. Helicopter classificationwith a high resolution LFMCW radar. IEEE Trans. Aerosp. Electron. Syst.,2009,45(4):1373-1384.
    [10] J. Mu oz-ferreras, F. Pérez-martínez, M. Burgos-garcía. Radar signature of ahelicopter illuminated by a long LFM signal. IEEE Trans. Aerosp. Electron. Syst.,2009,45(3):1104-1110.
    [11]杜兰.雷达高分辨距离像目标识别方法研究.博士研究生学位论文.西安电子科技大学.2007.
    [12]马林.雷达目标识别技术综述.现代雷达,2011,33(6):1-7.
    [13] V. C. Chen. Detection and analysis of human motion by radar. IEEE RadarConference,2008:1-4.
    [14] M. R. Bell, R. A. Grubbs. JEM modeling and measurement for radar targetidentification. IEEE Trans. Aerosp. Electron. Syst.,1993,29(1):73-87.
    [15] G. E. Smith. Radar target micro-Doppler signature classification. Ph.D.Dissertation, Department of Electronic and Electrical Engineering, UniversityCollege London,2008.
    [16] I. Bilik, P. Khomchuk. Minimum divergence approaches for robust classificationof ground moving targets. IEEE Trans. Aerosp. Electron. Syst.,2012,48(1):581-603.
    [17] A. G. Stove, S. R. Sykes. A Doppler-Based target classifier using lineardiscriminants and principal components. Proc. of the2003International RadarConference, Adelaide, Australia, Sep.2003:171-176.
    [18] M. G. Anderson. Design of multiple frequency continuous wave radar hardwareand micro-Doppler based detection and classification algorithms. Ph.D.Dissertation, University of Texas at Austin,2008.
    [19] I. Bilik, J. Tabrikian, A. Cohen. MM-Based target classification for groundsurveillance Doppler radar. IEEE Trans. Aerosp. Electron. Syst.,2006,42(1):267-278.
    [20]李彦兵.基于微多普勒效应的运动车辆目标分类研究.博士研究生学位论文.西安电子科技大学.2012.
    [21] J. B. Allen, L. R. Rabiner. A unified approach to short-time Fourier analysis andsynthesis. Proc. of the IEEE,1977,65(11):1558-1564.
    [22] D. Gabor. Theory of communication. Journal of the Institute of ElectricalEngineers.1946,93(11):429-457.
    [23] A. Grossmann, J. Morlet. Decomposition of Hardy Function into SquareIntegrable wavelets of Constant Shape. Philadelphia: Society for Industrial andApplied Mathematics (SIAM),1984,15(4):723-736.
    [24] R. Stockwell, L. Mansinha, R. Lowe. Localization of the complex spectrum: TheS-transform. IEEE Trans. Signal Process.,1996,44(4):998-1001.
    [25] R.G. Stockwell. A basis for efficient representation of the S-transform. DigitalSignal Process., Jan.2007,17(1):371-393.
    [26] P. D. Mefadden, J. G. Cook, L. M. Forster. Decomposition of gear vibrationsignals by the generalized S-transform. Mech Syst Signal Process.,1999,13(5):691-707.
    [27] C. R. Pimiegar, L.Mansinha. The S-transform with windows of arbitrary andvarying shape. Geophysies,68(l):381-385,2003.
    [28] C. R. Piimegar, L. Mansinha. The bi-Ganssian S-transform. SIAM Journal onScientific Computing,24(5):1678-1692,2003.
    [29] C. R. Pinnegar, L. Mansinha. Time-local Fourier analysis with a scalable,phase-modulated analyzing function: the S-transform with a complex window.Signal Proeess.,84(7):1167-1176,2004.
    [30] E. Wigner. On the quantum correction for thermodynamic equilibrium. PhysicalReview,1932,40(5):749-759.
    [31] J. Ville. Theorie et applications de la notion de signal analytique. Cables etTransmission,1946,2(1):61-74.
    [32] L. Cohen. Time-frequency distributions——a review. Proc. of the IEEE,1989,77(7):941-981.
    [33] F. Hlawatsch, G. Boudreaux-Bartels, Linear and quadratic time frequency signalrepresentations, IEEE Signal Process. Mag.(1992):21–67.
    [34] I. Shafi, J. Ahmad, S. I, Shah, et al. Techniques to Obtain Good Resolution andConcentrated Time-Frequency Distributions: A Review. EURASIP J. Adv. SignalProcess., Jan.2009,2009(27):1-43.
    [35] B. Barkat, B. Boashash. A high-resolution quadratic time-frequency distributionfor multicomponent signals analysis. IEEE Trans. Signal Process.,2001,49(10):2232-2239.
    [36] B. Boashash, Ed. Time-Frequency Signal Analysis and Processing. New York:Elsevier,2003.
    [37] L. J. Stankovic′. A method for time-frequency analysis. IEEE Trans. SignalProcess., Jan.1994,42(1):225-229.
    [38] L. J. Stankovic′, I. Djurovic. A note on “an overview of aliasing errors indiscrete-time formulations of time-frequency representations. IEEE Trans. SignalProcess., Jan.2001,49(1):257-259.
    [39] L. J. Stankovic, T. Thayaparan, M. Dakovic. Signal decomposition by using theS-method with application to the analysis of HF radar signals in sea-clutter. IEEETrans. Signal Process., Nov.2006,54(11):4332-4342.
    [40] S. Peleg, B. Porat. Estimation and classification of polynomial phase signals.IEEE Trans. Inf. Theory, Mar.1991,37(2):422-431.
    [41] B. Boashash, P. O’Shea. Polynomial Wigner-Ville distributions and theirrelationship to time-varying higher order spectra. IEEE Trans. Signal Process., Jan.1994,42(1):216-220.
    [42] P. O’Shea. A new technique for instantaneous frequency rate estimation. IEEESignal Process. Lett., Aug.2002,9(8):251-252.
    [43] P. O’Shea. A fast algorithm for estimating the parameters of a quadratic FMsignal. IEEE Trans. Signal Process., Feb.2004,52(2):385-393.
    [44] M. Faquharson, P. O’Shea. Extending the performance of the cubic phasefunction. IEEE Trans. Signal Process., Oct.2007,55(10):4767-4774.
    [45] P. Wang, J. Yang. Multicomponent chirp signals analysis using product cubicphase function. Digital Signal Process., Nov.2006,2006(16):654-669.
    [46] P. O’Shea, R. Wiltshire. A new class of multilinear functions for polynomialphase signal analysis. IEEE Trans. Signal Process., Jun.2009,57(6):2096-2109.
    [47] S. Stankovi, I. Orovi. Time-frequency rate distributions with complex-lagargument. Electron Lett., Jun.2010,46(13):950-952.
    [48] P. O’Shea. Improving polynomial phase parameter estimation by usingnonuniformly spaced signal sample methods. IEEE Trans. Signal Process., Jul.2012,60(7):3405-3414.
    [49] P. Wang, H. Li, I. Djurovi, et al. Performance of instantaneous frequency rateestimation using high-order phase function. IEEE Trans. Signal Process., Apr.2010,58(4):2415-2421.
    [50] P. Wang, H. Li, I. Djurovi, et al. Generalized high-order phase function forparameter estimation of polynomial phase signal. IEEE Trans. Signal Process., Jul.2008,56(7):3023-3028.
    [51] S. S. Abeysekera. Time-Frequency and Time-Frequency-Rate representationsusing the cross quadratic spectrum. IEEE TENCON spring conference,2013:500-504.
    [52] T. A. C. M. Claasen, W. F. G. Mecklenbrauker, The Wigner distribution-A toolfor timefrequency signal analysis, Philips J.Res.35(6)372-389,1980.
    [53] S. M. Kay, G. F. Boudreaux-Bartels. On the optimality of the Wigner distributionfor detection, ICASSP-85, Tampa (FL),1017-1020,1985.
    [54] P. Flandrin. On detection-estimation procedures in the time-frequency plane.IEEE International Conference on Acoustics, Speech, and Signal Processing,1986,11:2331-2334.
    [55] P. Flandrin. Patrick Flandrin. A Time-Frequency Formulation of OptimumDetection. IEEE trans. acoust, speech, and signal process., Sep.1988,36(9):1377-1384.
    [56] A. M. Sayeed, D. L. Jones. Optimal detection using Bilinear time-frequency andtime-scale representation. IEEE Trans. Signal Process.,1995,43(12):2872-2883.
    [57] P. Courmontagne. An optimal subspace projection in a time-frequency plane forchirp detection in a noisy environment. OCEANS,2011:1-10.
    [58] P. Shui, Z. Bao, H. Su. Nonparametric Detection of FM Signals UsingTime-Frequency Ridge Energy. IEEE Trans. Signal Process., May2008,56(5):1749-1760.
    [59] P. Wang, H. Li, I. Djurovi, et al. Integrated cubic phase function for linear fmsignal analysis. IEEE Trans. Aerosp. Electron. Syst., Jun.2010,46(3):963-977.
    [60] C. Conru, I. Djurovic, C. Ioana. Time-frequency detection using Gabor filter bankand Viterbi based grouping algorithm. IEEE International Conf Acoust, Speech,and Signal Process,2005,4:497-500.
    [61] S. Barbarossa, A. Zanalda. A combined Wigner-Ville and Hough transform forcross-terms suppression and optimal detection and parameter estimation. Proc.ICASSP’92, San Francisco, CA, Mar.1992.
    [62] S. Barbarossa. Analysis of multicomponent LFM signals by a combinedWigner-Hough transform. IEEE Trans. Signal Process.,1995,43(6):1511-1515.
    [63] S. Haykin, R. Bakker, B. W. Currie. Uncovering nonlinear dynamics-The casestudy of sea clutter. Proc. of IEEE, May.2002:860-882.
    [64] M. Greco, F. Bordoni, F. Gini. X-band sea-clutter nonstationarity: influence oflong waves,” IEEE J Oceanic Eng., Apr.2004,29(2):269-283.
    [65] T. Thayaparan, S. Kennedy. Detection of a manoeuvring air target in sea-clutterusing joint time-frequency analysis techniques. IEE Proc.-Radar Sonar Navig.,Feb.2004,151(1):19-30.
    [66] S. Panagopoulos, J. J. Soraghan. Small-target detection in sea clutter. IEEE Trans.Geosci. Remote Sens., Jul.2004,42(7):1355-1361.
    [67] J. Guan, X. Chen Y. Huang, et al. Adaptive fractional Fourier transform-baseddetection algorithm for moving target in heavy sea clutter. IET Radar SonarNavig.,2012,6(5):389-401.
    [68] Y. Zhang, S. Qian, T. Thayaparan. Detection of a manoeuvring air target in strongsea clutter via joint time-frequency representation. IET Signal Process.,2008,2(3):216-222.
    [69] A. Yasotharan, T. Thayaparan. Time-frequency method for detecting anaccelerating target in sea clutter. IEEE Trans. Aerosp. Electron. Syst., Oct.2006,42(4):1289-1310.
    [70] P. Rakovic′, M. Dakovic′, L. Stankovic′, et al. An algorithm for detecting amaneuvering target based on TFR and Viterbi algorithm. SM2ACD2010,2010.
    [71] L. J. Stankovic, T. Thayaparan, M. Dakovic. Signal decomposition by using theS-method with application to the analysis of HF radar signals in sea-clutter. IEEETrans. Signal Process., Nov.2006,54(11):4332-4342.
    [72] L. Zuo, M. Li, X. Zhang, et al. An efficient method for detecting slow-movingweak targets in sea clutter based on time-frequency iteration decomposition. IEEETrans. Geosci. Remote Sens., Jun.2013,51(6):3659-3672.
    [73] P. Shui, H. Liu, Z. Bao. Range-spread target detection based on crosstime-frequency distribution features of two adjacent received signals. IEEE Trans.Signal Process., Oct.2009,57(10):3733-3745.
    [74]许述文.窄带、宽带雷达机动目标检测技术研究.博士研究生学位论文.西安电子科技大学.2011.
    [75] L. Zuo, M. Li, X. Zhang, et al. CFAR detection of range-spread targets based onthe time-frequency decomposition feature of two adjacent returned signals. IEEETrans. Signal Process., Dec.2013,61(24):6307-6319.
    [76] L. Zuo, M. Li, X. Zhang, et al. Range-spread target detector using the frequencyrate function. IET Radar Sonar Navig, in press.
    [77] K. Kim, I. Choi, H. Kim. Efficient radar target classification using adaptive jointtime-frequency processing. IEEE Trans. Antennas Propag., Dec.2000.48(12):1789-1801.
    [78] B. Gillespie, L. Atlas. Optimizing time-frequency kernels for classification. IEEETrans. Signal Process., Mar.2001,49(3):485-496.
    [79] B. Ghoraani, S. Krishnan. Time-frequency matrix feature extraction andclassification of environmental audio signals. IEEE Trans. Audio, Speech, Sep.2011,19(7):2197-2209.
    [80] M. Tran, C. Abeynayake, L. Jain. A target discrimination methodology utilizingwavelet-based and morphological feature extraction with metal detector array data.IEEE Trans. Geosci. Remote Sens., Jan.2012,50(1):119-129.
    [81] V. C. Chen, F. Li, S. S. Ho, et al. Analysis of micro-Doppler signatures. IEE Proc.Radar Sonar Navig.,2003,150(4):271-276.
    [82] V. C. Chen, F. Li, S. S. Ho, et al. Micro-Doppler effect in radar: Phenomenon,Model, and Simulation Study. IEEE Trans. Aerosp. Electron. Syst.,2006,42(1):2-21.
    [83] S. Yoon, B. Kim, Y. Kim. Helicopter classification using time-frequency analysis.Electron Lett.,2000,36(22):1871-1872.
    [84] S. Lawrence Marple Jr., Large dynamic range time-frequency signal to helicopterDoppler radar data. ISSPA Conference,2001,1:260-263.
    [85] T. Thayaparan, S. Abrol, et al. Analysis of radar micro-Doppler signatures fromexperimental helicopter and human data. IEE Proc. Radar Sonar Navig.,2007,1(4):288-299.
    [86] P. Setlur, F. Ahmad, M. Amin. Helicopter radar return analysis: Estimation andblade number selection. Signal Process.,2011,91(6):1409-1424.
    [87] V. C. Chen. The Micro-Doppler Effect in Radar. Boston: Artech House,2011.
    [88]陈行勇.微动目标雷达特征提取技术研究.博士研究生学位论文.国防科技大学,2006.
    [89]程荣刚.基于JEM特征的空中飞机目标分类方法研究.硕士研究生学位论文.西安电子科技大学,2012.
    [90] L. Zuo, M. Li, X. Zhang, et al. Two helicopter classification methods with a highpulse repetition frequency radar. IET Radar Sonar Navig.,2013,7(3):312-320.
    [91]左磊,李明,张晓伟. MMSE准则下部分周期数据的微多普勒参数估计.西安电子科技大学学报(自然科学版),2013,4,40(2):151-158.
    [1] J. B. Allen, L. R. Rabiner. A unified approach to short-time Fourier analysis andsynthesis. Proc. of the IEEE,1977,65(11):1558-1564.
    [2] D. Gabor. Theory of communication. Journal of the Institute of ElectricalEngineers.1946,93(11):429-457.
    [3] E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys Rev,1932,40(5):749-759.
    [4] J. Ville. Theorie et applications de la notion de signal analytique. Cables etTransmission,1946,2(1):61-74.
    [5] L. Cohen. Time-frequency distributions—a review. Proc. of the IEEE,1989,77(7):941-981.
    [6] L. Cohen. Generalized phase-space distribution functions. J Math Phys,1966,7(5):781-786.
    [7] L. Cohen, T. E. Posch. Positive time-frequency distribution functions. IEEE Trans.Acoustics, Speech, Signal Process.,1985,33(1):31-38.
    [8] L. J. Stankovic, T. Thayaparan, M. Dakovic. Signal decomposition by using theS-method with application to the analysis of HF radar signals in sea-clutter. IEEETrans. Signal Process., Nov.2006,54(11):4332-4342.
    [9] W. Rihaczek. Principles of High-Resolution Radar. New York, NY: McGraw-Hill,1969.
    [10] P. M. Woodward. Probability and Information Theory with Application to Radar.London, UK: Pergamon,1953.
    [11] T. A. C. M. Claasen, W. F. G. Mecklenbrauker. The Wigner distribution-a tool fortimefrequency signal analysis—part Ill: relations with other time-frequency signaltransformations. Philips Journal of Research,1980,35:372-389,.
    [12] H. H. Szu, J. Blodgett. Wigner distribution and ambiguity functions. in Optics inFour Dimensions. L. M. Narducci,(Ed.), American Institute of Physics, NewYork, NY, USA,1981:355-381.
    [13] G. Eichmann, N. M. Marinovic. Scale-invariant Wigner distribution andambiguity functions. Analog Optical Processing and Computing, Cambridge,Mass, USA,1984,519:18-24.
    [14] I. Shafi, J. Ahmad, S. I, Shah, et al. Techniques to obtain good resolution andconcentrated time-frequency distributions: a review. EURASIP J. Adv. SignalProcess., Jan.2009,2009(27):1-43.
    [15] http://www.nongnu.org/tftb/.
    [16] http://espace.library.uq.edu.au/view/uq:211321.
    [17] L. J. Stankovic′. A method for time-frequency analysis. IEEE Trans. SignalProcess., Jan.1994,42(1):225-229.
    [18] L. J. Stankovic′, I. Djurovic. A note on “an overview of aliasing errors indiscrete-time formulations of time-frequency representations. IEEE Trans. SignalProcess., Jan.2001,49(1):257-259.
    [19]唐向宏,要齐良.时频分析与小波变换.北京:科学出版社,2008.
    [20] P. Flandrin. A time-frequency formulation of optimum detection. IEEE trans.Acoustics, Speech,. Signal Process.,1988,36(9):1377-1384.
    [21] B. Boashash. Part I: Introduction to the concepts of TFSAP, in Time-FrequencySignal Analysis and Processing: A Comprehensive Reference, B. Boashash,(Ed.),Elsevier, Oxford, UK,2003:3-76.
    [22] A. Sayeed. Optimal time-frequency detectors, in Time-Frequency Signal Analysisand Processing: A Comprehensive Reference, B. Boashash,(Ed.). Elsevier,Oxford, UK,2003:500-509.
    [23] S. Peleg, B. Friedlander. The discrete polynomial-phase transform. IEEE Trans.Signal Process., Aug.1995,43(8):1901-1914.
    [24] P. O’Shea. A new technique for instantaneous frequency rate estimation. IEEESignal Process. Lett., Aug.2002,9(8):251-252.
    [25] R.G.Baraniuk, P. Flandrin, A.J.E.M. Jansen, et al. Measuring time-frequencyinformation content using the Renyi entropies. IEEE Trans. on Info. Theory,2001,47:1391-1409.
    [26] M. B. Malarvili, V. Sucic, M. Mesbah, ea al. Renyi entropy of quadratictime-frequency distributions: effects of signal’s parameters, ISSPA,2007:1-4.
    [27] P. V. C. Hough. Methods and means for recognizing complex patterns. U.S:3069654,1962-12-18.
    [28] T. Thayaparan, L. Stankovic, I. Djurovic. Micro-Doppler Based Target Detectionand Feature Extraction in Indoor and Outdoor Environments. J. Franklin Institute,2008,345(6):700-722.
    [29] I. Djurovic′, LJ. Stankovic′. An algorithm for the Wigner distribution basedinstantaneous frequency estimation in a high noise environment. Signal Process.,2004,84(3):631-643.
    [30] L.J. Stankovic′, I. Djurovic′, A. Ohsumi, et al. Instantaneous frequency estimationby using Wigner distribution and Viterbi algorithm. Proc. of ICASSP2003, HongKong, China, Apr.2003,6:121-124.
    [31] C. Cornu, I. Djurovic′, C. Ioana, et al. Time–frequency detection using Gaborfilter banks and Viterbi based grouping algorithm. Proc. of IEEE ICASSP’2005,Philadelphia, March2005,4:497-500.
    [32] G.D. Forney. The Viterbi algorithm. Proc. IEEE,1973,61(3):268-278.
    [33]关永胜,左群声,刘宏伟.高噪声环境下微动多目标分辨.电子与信息学报,2010,82(11):2630-2635.
    [1] G. R. Valenzuela. Theories for the interaction of electromagnetic and oceanicwaves-A review. Bound-Lay Meteorol, Jan.1978.13(1-4):61-85.
    [2] S. Haykin, R. Bakker, B. W. Currie. Uncovering nonlinear dynamics—the casestudy of sea clutter. Proc. of the IEEE, May2002,90(5):860-881.
    [3] M. Greco, F. Bordoni, F. Gini. X-band sea-clutter nonstationarity: influence of longwaves. IEEE J Oceanic Eng., Apr.2004,29(2):269-283.
    [4] H. Melief, H. Greidanus, P. van Genderen, et al. Analysis of sea spikes in radar seaclutter data. IEEE Trans. Geosci. Remote Sens., Apr.2006,44(4):985-993.
    [5] G. Pan, J. T. Johnson. A numerical study of the modulation of short sea waves bylonger waves. IEEE Trans. Geosci. Remote Sens., Oct.2006,44(10):2880-2889.
    [6] A. D. Rozenberg, D. C. Quigley, W. K. Melville. Laboratory study of polarizedmicrowave scattering by surface waves at grazing incidence: the influence of longwaves. IEEE Trans. Geosci. Remote Sens., Nov.1996,34(6):1331-1342.
    [7] Y. Wang, Y. Zhang. Investigation on Doppler shift and bandwidth of backscatteredechoes from a composite sea surface. IEEE Trans. Geosci. Remote Sens., Mar.2011,49(3):1071-1081.
    [8] W. Yang, Z. Zhao, C. Qi, et al. Electromagnetic modeling of breaking waves at lowgrazing angles with adaptive higher order hierarchical legendre basis functions.IEEE Trans. Geosci. Remote Sens., Jan.2011,49(1):346-352.
    [9] P. A. Catalán, M. C. Haller, R. A. Holman, et al. Optical and microwave detectionof wave breaking in the surf zone. IEEE Trans. Geosci. Remote Sens., Jun.2011,49(6):1879-1893.
    [10]K. Ward. Compound representation of high resolution sea clutter. Electron lett.,Aug.1981,17(16):561-563.
    [11]J. V.Toporkov, M. A. Sletten. Statistical properties of low-grazing range resolvedsea surface backscatter generated through two-dimensional direct numericalsimulations. IEEE Trans. Geosci. Remote Sens., May2007,45(5):1181-1197.
    [12]A. Farina, F. Gini, M. Greco, et al. High resolution sea clutter data: statisticalanalysis of recorded live data. IEE Proc.-Radar Sonar Navig., Jun.1997,144(3):121-130.
    [13]E. Conte, A. De Maio, C. Galdi. Statistical analysis of real clutter at different rangeresolutions. IEEE Trans. Aerosp. Electron. Syst., Jul.2004,40(3):903-918.
    [14]M. Greco, F. Gini, M. Rangaswamy. Statistical analysis of measured polarimetricclutter data at different range resolutions. IEE Proc.-Radar Sonar Navig., Dec.2006,153(6):473-481.
    [15] M. S. Greco, F. Gini. Statistical analysis of high-resolution SAR ground clutterdata. IEEE Trans. Geosci. Remote Sens., Mar.2007,45(3):566-575.
    [16]J. Carretero-Moya, J. Gismero-Menoyo, A. Blanco-del-Campo, et al. Statisticalanalysis of a high-resolution sea-clutter database. IEEE Trans. Geosci. Remote Sens.,pt.2, Apr.2010,48(4):2024-2037.
    [17]A. M. McDonald, H. J. de Wind, J. E. Cilliers, et al. Performance prediction for acoherent X-band radar in a maritime environment with K-distributed sea clutter.Proceedings-IEEE2010International Radar Conference,2010:1208-1213.
    [18]K. J. Sangston, F. Gini, M. S. Greco. Coherent radar target detection inheavy-tailed compound-Gaussian clutter. IEEE Trans. Aerosp. Electron. Syst., Jan.2012,48(1):64-77.
    [19]F. Pascal, Y. Chitour, J. P. Ovarlez, et al. Covariance structuremaximum-likelihood estimates in compound Gaussian noise: Existence andalgorithm analysis,” IEEE Trans. Signal Process., Jan.2008,56(1):34-48.
    [20]M. Greco, P. Stinco, F Gini, et al. Impact of sea clutter nonstationarity ondisturbance covariance matrix estimation and CFAR detector performance. IEEETrans. Aerosp. Electron. Syst., Jul.2010,46(3):1502-1513.
    [21]P. L. Herselman, H. J. de Wind. Improved covariance matrix estimation inspectrally inhomogeneous sea clutter with application to adaptive small boatdetection.2008International Conference on Radar,2008:94-99.
    [22]J. Carretero-Moya, J. Gismero-Menoyo, A. Asensio-Lopez, et al. Application of theradon transform to detect small targets in sea clutter. IET Radar Sonar Navig., Apr.2009,3(2):155-166.
    [23]S. D. Blunt, K. Gerlach, J. heyer. HRR detector for slow-moving targets in seaclutter. IEEE Trans. Aerosp. Electron. Syst., Jul.2007,43(3):965-974.
    [24]Y. Shi, P. Shui. Target detection in high-resolution sea clutter via block-adaptiveclutter suppression. IET Radar Sonar Navig., Jan.2011,5(1):48-57.
    [25]B. Boashash, Ed. Time-Frequency Signal Analysis and Processing. New York:Elsevier,2003.
    [26]V. C. Chen, H. Ling, Time-Frequency Transforms for Radar Imaging and SignalAnalysis. Boston, MA, USA: Artech House,2002.
    [27]P. L. Herselman, C. J. Baker. Analysis of calibrated sea clutter and boat reflectivitydata at C-and X-band in South African coastal waters. Proc. of InternationalConference on Radar,2007:674-678.
    [28]P. L. Herselman, C. J. Baker, H. J. De Wind. An analysis of X-band calibrated seaclutter and small boat reflectivity at medium-to-low grazing angles. InternationalJournal of Navigation and Observation,2008.
    [29]P. Rakovic′, M. Dakovic′, L. Stankovic′, et al. An algorithm for detecting amaneuvering target based on TFR and Viterbi algorithm. SM2ACD2010,2010.
    [30]S. Panagopoulos, J. J. Soraghan. Small-target detection in sea clutter. IEEE Trans.Geosci. Remote Sens., Jul.2004,42(7):1355-1361.
    [31]L. J. Stankovic, T. Thayaparan, M. Dakovic. Signal decomposition by using theS-method with application to the analysis of HF radar signals in sea-clutter. IEEETrans. Signal Process., Nov.2006,54(11):4332-4342.
    [32]S. Grosdidier, A. Baussard, A. Khenchaf. HFSW radar model simulation andmeasurement. IEEE Trans. Geosci. Remote Sens., Sep.2010,48(9):3539-3549.
    [33]L. J. Stankovic, J. F. Bohme. Time-frequency analysis of multiple resonances incombustion engine signals. Signal Process., Nov.1999,79(1):15-28.
    [34]F. Hlawatsch, A. H. Costa, W. Krattenthaler. Time-frequency signal synthesis withtime-frequency extrapolation and don't-care regions. IEEE Trans. Signal Process.,Sep.1994,42(9):2513-2520.
    [35]H. J. De Wind, J. E. Cilliers, P. L. Herselman. Dataware: Sea clutter and small boatradar reflectivity databases. IEEE Signal Process. Mag., Mar.2010,27(2):145-148.
    [36]The McMaster IPIX radar sea clutter database, http://soma.crl.mcmaster.ca/ipix/.
    [37]CSIR, small boat detection research, http://www.csir.co.za/small_boat_detection/.
    [38]T. Lamont-Smith, K. D. Ward, D.Walker. A comparison of EM scattering resultsand radar sea clutter. IEE Radar International Conference, Oct.2002:439-443.
    [39]K. D. Ward, R. J. A. Tough, S. Watts. Sea Clutter: Scattering, the K Distributionand Radar Performance. Stevenage U.K.: Institution of Engineering and Technology,2006.
    [40]C. L. Rino, E. Eckert, A. Siegel, et al. X-band low-grazing-angle ocean backscatterobtained during LOGAN1993. IEEE J Oceanic Eng., Jan.1997,22(1):18-26.
    [41]W. J. Plant, W. C. Keller. Evidence of Bragg scattering in microwave Dopplerspectra of sea return. J Geophys Res., Sep.1990,95(C9):16299-16310.
    [42]D. Walker. Experimentally motivated model for low grazing angle radar Dopplerspectra of the sea surface. IEE Proc.-Radar Sonar Navig,2000,147(3):114-120.
    [43]D. Walker. Doppler modeling of radar sea clutter. IEE Proc.-Radar Sonar Navig,2001,148(2):73-80.
    [44]S. Watts. Radar sea clutter: recent progress and future challenges.2008International Conference on Radar,2008:10-16.
    [45]Y. Wang, Y. Zhang, M. He, et al. Doppler spectra of microwave scattering fieldsfrom nonlinear oceanic surface at moderate-and low-grazing angles. IEEE Trans.Geosci. Remote Sens., Apr.2012,50(4):1104-1116.
    [1] R. M. Nuthalapati. High resolution reconstruction of ISAR images. IEEE Trans.Aerosp. Electron. Syst., Apr.1992,28(2):462-472.
    [2] D. R. Wehner. High-Resolution Radar,2nd ed. Boston, MA: Artech House,1995.
    [3] P. Shui, H. Liu, Z. Bao. Range-spread target detection based on crosstime-frequency distribution features of two adjacent received signals. IEEE Trans.Signal Process., Oct.2009,57(10):3733-3745.
    [4] A. Zyweck, R. E. Bogner. Radar target classification of commercial aircraft. IEEETrans. Aerosp. Electron. Syst., Apr.1996,32(2):598-606.
    [5] L. Du, H. Liu, Z. Bao, M. Xing. Radar HRRP target recognition based on higherorder spectra. IEEE Trans. Signal Process., Jul.2005,53(7):2359-2368.
    [6] L. Shi, P. Wang, H. Liu, et al. Radar HRRP statistical recognition with local factoranalysis by automatic Bayesian Ying-Yang harmony learning. IEEE Trans. SignalProcess., Feb.2011,59(2):610-617.
    [7] B. R. Mahafza,. Signal Analysis and Processing Using MATLAB. New York:Chapman&Hall/CRC,2008:326-329.
    [8] E. Conte, A. De Maio, G. Ricci. CFAR detection of distributed targets innon-Gaussian disturbance. IEEE Trans. Aerosp. Electron. Syst., Apr.2002,38(2):612-621.
    [9] J. Carretero-Moya, J. Gismero-Menoyo, A. Blanco-del-Campo, et al. Statisticalanalysis of a high-resolution sea-clutter database. IEEE Trans. Geosci. RemoteSens., pt.2, Apr.2010,48(4):2024-2037.
    [10] Q. Li, E. J. Rothwell, K. M. Chen, et al. Scattering center analysis of radar targetsusing fitting scheme and genetic algorithm. IEEE Trans. Antennas Propag., Feb.1996,44(2):198-207.
    [11] S. Xu, P. Shui, X. Yan. CFAR detection of range-spread target in white Gaussiannoise using waveform entropy. Electron. Lett., Apr.2010,46(9):647-649.
    [12]P. K. Hughes. A high resolution radar detection strategy. IEEE Trans. Aerosp.Electron. Syst., Sep.1983,19(5):663-667.
    [13]E. Conte, A. De Maio, G. Ricci. GLRT-based adaptive detection algorithms forrange-spread targets. IEEE Trans. Signal Process., Jul.2001,49(7):1336-1348.
    [14]F. Bandiera, A. De Maio, A. S. Greco, et al. Adaptive radar detection of distributedtargets in homogeneous and partially homogeneous noise plus subspace interference.IEEE Trans. Signal Process., Apr.2007,55(4):1223-1237.
    [15]F. Bandiera, D. Orlando, G. Ricci. CFAR detection of extended and multiplepoint-like targets without assignment of secondary data. IEEE Signal Process. Lett.,Apr.2006,13(4):240-243.
    [16]F. Bandiera, G. Ricci. Adaptive detection and interference rejection of multiplepoint-like radar targets. IEEE Trans. Signal Process., Dec.2006,54(12):4510-4518.
    [17]G. Alfano, A. De Maio, A. Farina. Model-based adaptive detection of range-spreadtargets. Inst. Elect. Eng. Proc.-Radar Sonar Navig., Feb.2004,151(1):2-10.
    [18]K. Gerlach, M. J. Steiner. Adaptive detection of range distributed targets. IEEETrans. Signal Process., Jul.1999,47(7):1844-1851.
    [19]F. Bandiera, O. Besson, G. Ricci. Adaptive detection of distributed targets incompound-Gaussian noise without secondary data: a Bayesian approach. IEEETrans. Signal Process., Dec.2011,59(12):5698-5708.
    [20]F. Bandiera, A. De Maio, G. Ricci. Adaptive CFAR radar detection with conicrejection. IEEE Trans. Signal Process., Jun.2006,55(6):2533-2541.
    [21]F. Bandiera, D. Orlando, G. Ricci. CFAR detection strategies for distributed targetsunder conic constraints. IEEE Trans. Signal Process., Sep.2009,57(9):3305-3316.
    [22]K. Gerlach, M. Steiner. Detection of a spatially distributed target in white noise.IEEE Signal Process. Lett., Jul.1997,4(7):198-200.
    [23]P. Shui, S. Xu, H. Liu. Range-spread target detection using consecutive HRRPs.IEEE Trans. Aerosp. Electron. Syst., Jan.2011,47(1):647-665.
    [24]L. J. Stankovic, T. Thayaparan, M. Dakovic. Signal decomposition by using theS-method with application to the analysis of HF radar signals in sea-clutter. IEEETrans. Signal Process., Nov.2006,54(11):4332-4342.
    [25]L. Zuo, M. Li, X. Zhang, et al. An efficient method for detecting slow-movingweak targets in sea clutter based on time-frequency iteration decomposition. IEEETrans. Geosci. Remote Sens., Jun.2013,51(6):3659-3672.
    [26]L. J. Stankovic′. A method for time-frequency analysis. IEEE Trans. SignalProcess., Jan.1994,42(1):225-229.
    [27]L. J. Stankovic′, I. Djurovic. A note on “an overview of aliasing errors indiscrete-time formulations of time-frequency representations. IEEE Trans. SignalProcess., Jan.2001,49(1):257-259.
    [28]J. Zhou, H. Zhao, Z. Shi, et al. Global scattering center model extraction of radartargets based on wideband measurements. IEEE Trans. Antennas Propag., Jul.2008,56(7):2051-2060.
    [29]L. J. Stankovic′. An analysis of some time-frequency and time-scale distributions.Ann. Telecommun., Sep./Oct.1994,49(9/10):505-517.
    [30] K. Feher, J. Huang. P.A.M.-microwave transmission in coloured Gaussian noiseenvironment. Radio Electron Eng., Apr.1977,47(4):167-171.
    [31]P. J. Rousseeuw, C. Croux. Alternative to the median absolute deviation. J. Amer.Statist. Assoc., Dec.1993,88(424):1273-1283.
    [32]Y. Wei, S. Tan. Signal decomposition by the S-method with general windowfunctions. Signal Process., Jan.2012,92(1):288-293.
    [1] D. R. Wehner. High-Resolution Radar,2nd ed. Boston, MA: Artech House,1995.
    [2] A. Zyweck, R.E. Bogner. Radar target classification of commercial aircraft. IEEETrans. Aerosp. Electron. Syst.,1996,32(2):598-606.
    [3] J. Liu, Z. Zhang, Y. Cao, et al. Distributed target detection in subspace interferenceplus Gaussian noise Signal Process.,2014,95:88-100.
    [4] X. Shuai, L. Kong, J. Yang. AR-model-based adaptive detection of range-spreadtargets in compound Gaussian clutter, Signal Process.2011,91(4)750-758.
    [5] J. Guan, X. Zhang. Subspace detection for range and Doppler distributed targetswith Rao and Wald tests. Signal Process.2011,91(1):51-60.
    [6] F. Dai, H. Liu, Y. Cao, An adaptive weighted rank order detector for spatiallydistributed target, Signal Process.2012,92(9):2327-2331.
    [7] P. Shui, S. Xu, H. Liu. Range-spread target detection using consecutive HRRPs,IEEE Trans. Aerosp. Electron. Syst.,2011,47(1):647-665.
    [8] E. Conte, A. De Maio, G. Ricci. CFAR detection of distributed targets innon-Gaussian disturbance. IEEE Trans. Aerosp. Electron. Syst.,2002,38(2):612-621.
    [9] E. Conte, A. De Maio, G. Ricci. GLRT-based adaptive detection algorithms forrange-spread targets, IEEE Trans. Signal Process.,2001,49(7):1336-1348.
    [10]X. Shuai, L. Kong, J. Yang. Performance analysis of GLRT-based adaptive detectorfor distributed targets in compound-Gaussian clutter. Signal Process.,2010,90(1):16-23.
    [11]K. Gerlach, M.J. Steiner, F.C. Lin. Adaptive detection of range distributed targets,IEEE Trans. Signal Process.,1999,47(7):1844-1851.
    [12]B. R. Mahafza. Signal Analysis and Processing Using MATLAB. New York:Chapman&Hall/CRC,2008:326-329.
    [13]K. Gerlach, M. Steiner. Detection of a spatially distributed target in white noise.IEEE Signal Process. Lett.,1997,4(7):198-200.
    [14]S. Xu, P. Shui, X. Yan. CFAR detection of range-spread target in white Gaussiannoise using waveform entropy. Electron. Lett.,2010,46(9):647-649.
    [15]S. Xu, P. Shui. Range-spread target detection in white Gaussian noise viatwo-dimensional non-linear shrinkage map and geometric average integration. IETRadar Sonar Navig.2012,6(2):90-98.
    [16]S. Xu, P. Shui. Range-spread target detection using2D non-local nonlinearshrinkage map. Signal Process.2014,98:337-343.
    [17]P. Shui, H. Liu, Z. Bao. Range-spread target detection based on crosstime-frequency distribution features of two adjacent received signals. IEEE Trans.Signal Process.,2009,57(10):3733-3745.
    [18]L. Zuo, M. Li, X, Zhang, et al. CFAR Detection of Range-Spread Targets Based onthe Time-Frequency Decomposition Feature of Two Adjacent Returned Signals.IEEE Trans. Signal Process.,2013,62(10):3733-3745.
    [19]A. Sinsky, C. Wang. Standardization of the definition of the radar ambiguityfunction. IEEE Trans. Aerosp. Electron. Syst.,1974,10(4):532-533.
    [20]P. J. Rousseeuw, C. Croux. Alternative to the median absolute deviation, J. Amer.Statist. Assoc.,1993,88(424):1273-1283.
    [21]V. Katkovnik, L. J. Stankovic. Instantaneous frequency estimation using theWigner distribution with varying and data-driven window length. IEEE Trans.Signal Process.,1998,46(9):2315-2326.
    [22]P. Flandrin. A time-frequency formulation of optimum detection. IEEE Trans.Acoust., Speech, Signal Process.,1988,36(9):1377-1384.
    [23]P. O’Shea. A new technique for instantaneous frequency rate estimation. IEEESignal Process. Lett.,2002,9(8):251-252.
    [24]M. Abramovich, I. Segun. Handbook of Matematical Functions. New York: Dover,1968
    [1] L. Cohen. Time-frequency distributions—a review. Proc. of the IEEE,1989,77(7):941-981.
    [2] S. Qian, D. Chen. Joint time-frequency analysis. IEEE Signal Process. Mag., Mar.1999,16(2):52-67.
    [3] I. Shafi, J. Ahmad, S. I. Shah, et al. Techniques to obtain good resolution andconcentrated time-frequency distributions: a review. EURASIP J. Adv. SignalProcess., Jan.2009,2009(27):1-43.
    [4] S. Peleg, B. Porat. Linear FM signal parameter estimation from discrete-timeobservations. IEEE Trans. Aerosp. Electron. Syst., Jul.1991,27(4):607-614.
    [5] T. Abotzoglou. Fast maximum likelihood joint estimation of frequency andfrequency rate. IEEE Trans. Acoust Speech, Nov.1986, vol. AES-22(6):708-715.
    [6] S. Peleg, B. Porat. Estimation and classification of polynomial phase signals. IEEETrans. Inf. Theory, Mar.1991,37(2):422-431.
    [7] B. Boashash, P. O’Shea. Polynomial Wigner-Ville distributions and theirrelationship to time-varying higher order spectra. IEEE Trans. Signal Process., Jan.1994,42(1):216-220.
    [8] P. O’Shea. A new technique for instantaneous frequency rate estimation. IEEESignal Process. Lett., Aug.2002,9(8):251-252.
    [9] P. O’Shea, R. Wiltshire. A new class of multilinear functions for polynomial phasesignal analysis. IEEE Trans. Signal Process., Jun.2009,57(6):2096-2109.
    [10]P. O’Shea. Improving polynomial phase parameter estimation by usingnonuniformly spaced signal sample methods. IEEE Trans. Signal Process., Jul.2012,60(7):3405-3414.
    [11]S. Stankovi, I. Orovi. Time-frequency rate distributions with complex-lagargument. Electron Lett., Jun.2010,46(13):950-952.
    [12]M. Faquharson, P. O’Shea. Extending the performance of the cubic phase function.IEEE Trans. Signal Process., Oct.2007,55(10):4767-4774.
    [13]P. Wang, J. Yang. Multicomponent chirp signals analysis using product cubic phasefunction. Digital Signal Process., Nov.2006,2006(16):654-669.
    [14]P. Wang, H. Li, I. Djurovi, et al. Integrated cubic phase function for linear fmsignal analysis. IEEE Trans. Aerosp. Electron. Syst., Jun.2010,46(3):963-977.
    [15]P. O’Shea. A fast algorithm for estimating the parameters of a quadratic FM signal.IEEE Trans. Signal Process., Feb.2004,52(2):385-393.
    [16]P. Wang, H. Li, I. Djurovi, et al. Performance of instantaneous frequency rateestimation using high-order phase function. IEEE Trans. Signal Process., Apr.2010,58(4):2415-2421.
    [17]P. Wang, H. Li, I. Djurovi, et al. Generalized high-order phase function forparameter estimation of polynomial phase signal. IEEE Trans. Signal Process., Jul.2008,56(7):3023-3028.
    [18]S. Peleg, B. Friedlander. The discrete polynomial-phase transform. IEEE Trans.Signal Process., Aug.1995,43(8):1901-1914.
    [19]M. Abramovich, I. Segun. Handbook of Matematical Functions. New York: Dover,1968.
    [20]http://www.nongnu.org/tftb/.
    [1] B. D. Bullard, P. C. Dowdy. Pulse Doppler signature of a rotary-wing aircraft. IEEEAerosp. Electron. Syst. Mag.,1991,6(5):28-30.
    [2] C. E. Rotander, H. von Sydow. Classification of Helicopters by the L/N-quotient.Proc. of IEE Radar97, Oct.1997:629-633.
    [3] J. M. Tikkinen, E. E. Helander, A. Visa. Joint Utilization of Incoherently andCoherently Integrated Radar Signal in Helicopter Categorization. IEEE InternationalRadar Conference Record (IEEE Cat. No.05CH37628),2005:540-545.
    [4] H. C. A. Costa, M. C. DeMatos. Measuring time between peaks in helicopterclassification using continuous wavelet transform. IEEE Radar Conference, May2008.
    [5] S. Yoon, B. Kim, Y. Kim. Helicopter classification using time-frequency analysis.Electron Lett.,2000,36(22):1871-1872.
    [6] P. Setlur, F. Ahmad, M. Amin. Helicopter radar return analysis: Estimation andblade number selection. Signal Process.,2011,91(6):1409-1424.
    [7] J. Mu oz-ferreras, F. Pérez-martínez, M. Burgos-garcía. Helicopter classificationwith a high resolution LFMCW radar. IEEE Trans. Aerosp. Electron. Syst.,2009,45(4):1373-1384.
    [8] T. Thayaparan, S. Abrol, E. Riseborough, et al. Analysis of radar micro-Dopplersignatures from experimental helicopter and human data. IET Radar Sonar Navig.,2007,1(4):289-299.
    [9] V. C. Chen. The Micro-Doppler Effect in Radar. Boston: Artech House,2011.
    [10]A. Cilliers, W. A. J. Nel. Helicopter parameter extraction using jointTime-Frequency and Tomographic Techniques.2008International Conference onRadar,2008:598-603.
    [11]P. Tait. Introduction to Radar Target Recognition. Institution of Engineering andTechnology, London, UK,2006
    [12]P. Flandrin. A time-frequency formulation of optimum detection. IEEE trans.Acoust, Speech,1988,36(9):1377-1384.
    [13]B. Boashash. Part I: Introduction to the concepts of TFSAP, in Time-FrequencySignal Analysis and Processing: A Comprehensive Reference, B. Boashash,(Ed.),Elsevier, Oxford, UK,2003:3-76.
    [14]A. Sayeed. Optimal time-frequency detectors, in Time-Frequency Signal Analysisand Processing: A Comprehensive Reference, B. Boashash,(Ed.). Elsevier, Oxford,UK,2003:500-509.
    [15]J. M. O' Toole, M. Mesbah, B. Boashash. Accurate and efficient implementation ofthe time-frequency matched filter. IET Signal Process.,2010,4(4):428-437.
    [16]T. J. McHale, G. F. Boudreaux-Bartels. An algorithm for synthesizing signals frompartial time-frequency models using the cross Wigner distribution. IEEE Trans.Signal Process.,1993,41(5):1986-1990.
    [17]L. Zuo, M. Li, X. Zhang et al. Helicopter classification with a high PRF radar.International Conference on Systems and Informatics (ICSAI2012), Yantai, China,May2012:1682-1686.
    [18]P. Shui, H. Liu, Z. Bao. Range-spread target detection based on crosstime-frequency distribution features of two adjacent received signals. IEEE Trans.Signal Process.,2009,57(10):3733-3745.
    [19]L. J. Stankovic, V. Ivanovic. Further results on the minimum variancetime-frequency distribution kernels. IEEE Trans. Signal Process.,1997,45(6):1650-1656.
    [20]T. Thayaparan, L. J. Stankovic, M. Dakovic, et al. Micro-Doppler ParameterEstimation from a Fraction of the Period. IET Signal Process.,2010,4(3):201-212.
    [21]I. Djurovic, L. J. Stankovic. An algorithm for the Wigner Distribution BasedInstantaneous Frequency Estimation in a High Noise Environment. Signal Process,2004,84(3):631-643.
    [22]T. Thayaparan, L. Stankovic, I. Djurovic. Micro-Doppler Based Target Detectionand Feature Extraction in Indoor and Outdoor Environments. Journal of FranklinInstitute,2008,345(6):700-722.
    [23]P. Pouliguen, L. Lucas. Calculation and Analysis of Ectromagnetic Scattering byHelicopter Rotating Blades. IEEE Trans. Antennas Propag.,2002,50(10):1396-1408.
    [24]丁建江,张贤达.低分辨雷达螺旋桨飞机回波调制特性的研究.电子与信息学报,2003,25(4):460-466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700