基于树状分子的DNA电化学生物传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱氧核糖核酸(DNA)是重要的生命物质,其结构和功能的研究对遗传和变异有着重要意义,对DNA的检测分析是临床诊断的重要依据。常见的分析方法有色谱法、显微光度法、吸光光度法、荧光光度法、光散射技术、电化学分析法和传感器技术。其中DNA传感器又根据换能方法的不同分为电化学传感器、光化学传感器、压电传感器、光导纤维传感器等。DNA的电化学分析和电化学传感器的研究是近年来研究的热点,与荧光标记、发光标记等常见标记技术相比,具有选择性好、灵敏度高、测试费用低、易于微型化等优点,同时又不破坏测试体系,不受生物样品中混浊、溶血等情况干扰,所以能够在临床基因疾病检验、环境检测、法学鉴定等领域得到广泛的应用,逐渐成为分子生物学研究中直接进行DNA序列检测的方法之一。
     树枝状大分子是上世纪中期开发的一类具有三维结构的合成高分子,其结构特点是高度支化,与传统线型聚合物相比,具有良好的溶解性和较低的黏度。其内部具有空腔,外部含有大量的功能基团,具有络合与分散各种金属微粒的潜在能力。作为一种新型分子,在表面活性剂、纳米复合材料等方面已展现出较好的应用前景。随着支化代数的增加,树枝状大分子的分子结构逐渐接近球形。与传统的表面活性剂相比,虽然分子结构不同,但是树枝状大分子的官能团也含有亲油基和亲水基,因此具有和传统表面活性剂相近的性质。同时,树枝状大分子的结构比传统高分子更明确,由于具有非结晶性、低黏度和较好的水溶性,并且末端可导入大量的反应性或功能性官能团,因此在生物医药,材料改性、工业催化及石油工业呈现出较好的应用性能。在纳米复合材料方面,树状大分子可以作为聚合模板,表面经修饰的PAMAM树状大分子还可以用来制备Cu—PAMAM、Ag—PAMAM、Au—PAMAM及CdS—PAMAM等树状金属纳米复合材料。树枝状大分子的特殊结构,即内部具有空腔,外部含有大量的功能基团,使其被广泛应用于DNA电化学传感器的制备。
     本论文的工作致力于基于树状分子的DNA电化学生物传感器研究。主要包括以下三个方面:(1)PAMAM-NH_2(G4)、Ag/PAMAM-NH_2(G4)的光谱学研究;(2)羧基化多壁碳纳米管和PAMAM-NH_2(G2)增强的DNA电化学生物传感器;(3)基于DT4.5/Cu~(2+)标记DNA探针的DNA电化学传感器研究。本论文的新意在于将Ag/PAMAM-NH_2复合纳米粒子、羧基化多壁碳纳米管、PAMAM树状大分子和DT4.5/Cu~(2+)树枝状络合物应用到DNA电化学传感器中,并采用紫外-可见光谱、荧光光谱、红外光谱、原子力显微镜、差热-热重分析、X射线光电子能谱以及循环伏安、交流阻抗、差分脉冲伏安等电化学分析方法进行全方位表征。实验证明,制备的新型DNA电化学传感器灵敏度高、检测限低、稳定性和重现性好,且传感器能够再生。本论文主要内容分为以下几个部分:
     一、PAMAM-NH_2(G4)、Ag/PAMAM-NH_2(G4)的光谱学研究
     本文包括两部分内容:(一)通过原子力显微镜(AFM)成像,比较PAMAM-NH_2(G4)和PAMAM-NH_2(G2)结构形态的差异。研究四代以氨基为端基的聚酰胺胺树枝状化合物PAMAM-NH_2(G4)在不同条件下的荧光发射,讨论pH、陈化时间、浓度和生物分子dsDNA对其荧光强度的影响;(二)以PAMAM-NH_2(G4)为模版,制备Ag/PAMAM-NH_2(G4)树形纳米分子,讨论不同摩尔比(PAMAM-NH_2(G4):Ag+)的Ag+/PAMAM-NH_2(G4)溶液的滴定曲线图,从而定性地研究了不同摩尔比和pH值对Ag+与PAMAM-NH_2(G4)络合的影响,并用紫外-可见光谱,荧光光谱等测试手段对所制得的银树形纳米分子进行表征。Ag/PAMAM-NH_2(G4)树形纳米分子在DNA传感器中具有极其广阔的应用前景。
     二、羧基化多壁碳纳米管和PAMAM-NH_2(G2)增强的DNA电化学生物传感器
     本文介绍了一种新型的高灵敏度的DNA电化学传感器,即将羧基化的多壁碳纳米管和聚酰胺胺树枝状化合物应用到DNA电化学传感器中。我们在玻碳电极(GC)表面依次修饰羧基化的多壁碳纳米管(MWNT-COO-)和二代以氨基为端基的聚酰胺胺树枝状化合物( PAMAM-NH_2(G2) ),得到PAMAM/MWNT-COO-/GC电极。该修饰电极共价键合DNA探针序列,在不同浓度的互补序列溶液中经过杂交反应后,检测电极表面的阻抗变化,得到Rct—浓度曲线。采用CV、EIS、IR、XPS和TAG对层层修饰进行表征,同时讨论MWNT-COO-浓度及杂交时间的选择。该种传感器灵敏度高,线性范围宽,线性范围在5.0×10~(-10) M到5.0×10~(-14) M之间,最低检测限为1.034×10~(-14) M。实验证明,传感器稳定性佳、重现性好,同时具备良好的再生能力。另外,以柔红霉素为指示剂,检测DNA电化学探针对目标DNA的识别能力,柔红霉素响应信号明显。
     三、基于DT4.5/Cu~(2+)标记DNA探针的DNA电化学传感器研究
     利用DT4.5能与Cu~(2+)络合的特性,将大量Cu~(2+)嵌入DT4.5内部,首次将其标记DNA,制备DT4.5/Cu~(2+)标记的DNA电化学探针。本论文使用紫外吸收光谱表征DT4.5与Cu~(2+)络合的情况,研究了pH值对DT4.5与Cu~(2+)络合的影响和相关机理,并证明了DT4.5/Cu~(2+)标记的DNA电化学探针的成功制备。文章中还讨论和优化了包括修饰电极的制备、阳极溶出伏安法(ASV)检测Cu~(2+)的各种参数选择在内的各种实验条件,最终选择碳纳米管修饰电极、-0.4V作为最佳富集电位、300s作为还原富集时间。由于采用了灵敏度很高的阳极溶出伏安法并使用碳纳米管修饰电极进行测定,使传感器对特定序列DNA片段检测的灵敏度得到了极大的提高,检测下限达到1.0×10-12M,稳定性和重现性良好。
Deoxyribonucleic acid (DNA) is one of important materials to the life. Studies of its structure and function contribute to the research of genetic variation, and the detection and analysis of DNA is an important basis for clinical diagnosis. Common analytical methods include chromatography, micro-spectrophotometry, absorption spectrophotometry, fluorescence spectrophotometry, light scattering techniques, electrochemical analysis and sensor technology. DNA sensors, according to how the transducer works can be divided into different methods, such as electrochemical sensors, photochemical sensors, piezoelectric sensors, optical fiber sensors. Electrochemical DNA analysis and electrochemical sensor research are the hotspots in recent years. Compared with common markers such as the fluorescent, luminescent markers, its advantage is good selectivity, high sensitivity, testing low-cost, easy miniaturization, etc., without destroying the test system or disturbed by the turbidity and hemolytic interference from biological samples. It can be widely applied to clinical genetic diseases, environmental detection, and identification in the field of Law. DNA electrochemical sensors have gradually become direct DNA sequence detection methods in molecular biology research.
     Dendrimers developed in the middle of last century are a kind of synthetic polymers of three-dimensional structure. Their structural characteristics are highly branched. As compared with traditional linear polymers, dendrimers have good solubility and low viscosity. With their internal cavity and external to contain a large number of functional groups, dendrimers can disperse or complex with various metal particles. As a new type of molecules in the surfactants, nano-composite materials have shown good application prospects. With an increase of their generation, the molecular structure of dendrimers is gradually close to spherical. With the traditional surfactants in comparison, although their molecular structure is different, the functional groups of the dendrimers also contain pro-oil-based and water-based, and therefore similar to traditional surfactants’nature. At the same time, the structure of dendrimers are much clearer than the traditional polymers, because of non-crystalline, low viscosity and good water-soluble, and the end to import a large number of reactive or functional groups, so dendrimers show better application performance in Biomedicine, Modification of Materials, Industrial Catalysis and the oil industry.The dendrimer can be used as a template polymerization in nanocomposites. After surface-modified, PAMAM dendrimer can also be used to prepare Cu-PAMAM, Ag-PAMAM, Au-PAMAM and CdS-PAMAM Dendrimer metal nanocomposites, etc. Because of the special structure of dendrimers, that is, with the internal cavity, external to contain a large number of functional groups, they are widely used in the preparation of DNA electrochemical sensor.
     In this paper, the work is committed to developing DNA electrochemical biosensor based on dendrimers. This paper mainly includes the following three aspects: (1) The spectral analysis of PAMAM-NH_2 (G4), Ag/PAMAM-NH_2 (G4); (2) Carboxylated multi-wall carbon nanotubes and PAMAM-NH_2 (G2)-modified DNA electrochemical sensors; (3)Study of DNA electrochemical sensor based on DT4.5/Cu2+ -marked DNA probe. In this paper, the novelty lies in that we applied the composite nanoparticles Ag/PAMAM-NH_2, carboxylated multi-wall carbon nanotubes, PAMAM dendrimer and DT4.5/Cu2+ dendritic complexes to DNA electrochemical sensor, and got comprehensive characterization by ultraviolet - visible spectroscopy, fluorescence spectroscopy, infrared spectroscopy, atomic force microscopy, differential thermal - thermal gravimetric analysis, X-ray photoelectron spectroscopy and some electrochemical analysis methods such as cyclic voltammetry, AC impedance, differential pulse voltammetry, etc. Data show that this new type of DNA electrochemical sensor has high sensitivity and low detection line, good stability, good reproducibility and reproducibility. The main contents of this paper are divided into the following sections:
     ⅠThe spectral analysis of PAMAM-NH_2 (G4), Ag/PAMAM-NH_2 (G4)
     This article includes two parts: (1) Through the atomic force microscope (AFM) imaging, we compare PAMAM-NH_2 (G4) with PAMAM-NH_2 (G2) discovering morphology differences. A strong fluorescence emission of NH_2-terminated fourth-generation poly(amidoamine) dendrimers has been studied through changing pH, aging time, concentration of the solution of PAMAM-NH_2(G4)or adding biological moleculars dsDNA to this solution; (2) We take PAMAM as templates to create Ag/PAMAM-NH_2(?G4) dendrimer nanocomposites (DNC). We discuss titration curve of the solution of Ag+/PAMAM-NH_2 (G4). The results showed that different mole ratio of Ag+ to PAMAM and pH strongly influence complexation between Ag+ and PAMAM. The silver-DNCs were characterized by means of UV-visible absorption and fluorescence spectroscopy. Ag/PAMAM-NH_2 (G4) dendrimer nano moleculars in DNA sensors have an extremely wide application prospect.
     ⅡCarboxylated multi-wall carbon nanotubes and PAMAM-NH_2 (G2)-modified DNA electrochemical sensors
     In this paper, we introduce a new type of high-sensitivity DNA electrochemical sensor, that is, we applied carboxylated multi-wall carbon nanotubes and PAMAM dendrimer to DNA electrochemical sensor. Layer-by-layer films assembled by alternate adsorption of carboxylated multi-wall carbon nanotubes (MWNT-COO-) and NH_2-terminated second-generation poly(amidoamine) dendrimers(PAMAM-NH_2(G2)) onto a glassy carbon electrode were reported. After covalently adsorbed with PO4 probe sequence, PAMAM/MWNT-COO-/GC electrode was immersed in the solutions of complementary sequences of different concentrations, and then we can get Rct-concentration curve by EIS. Layer-by-layer films were characterized by CV, EIS, IR, XPS and TAG. At the same time, the concentration of MWNT-COO- and the timing of the hybridization were discussed. This sensor has demonstrated high sensitivity and wide linear range. Linear range is between 5.0×10~(-10) M to 5.0×10~(-14) M, and the minimum detection limit is 1.034×10~(-14) M. Experiments show that this sensor has good stability, good reproducibility, and at the same time, it has good regeneration capacity. In addition, we use daunomycin as indicator to test the recognition of DNA electrochemical probe on the target DNA. As a result, response signal is significant and satisfactory.
     ⅢStudy of DNA electrochemical sensor based on DT4.5/Cu~(2+)-marked DNA probe
     With the complexation between DT4.5 and Cu~(2+), it is the first time that we embed large amounts of Cu~(2+) into the inside of DT4.5, and then the complex is marked to ssDNA. Thus, we get DT4.5/Cu~(2+) labeled electrochemical DNA probe. In this paper, the complexation between DT4.5 and Cu~(2+) is charactered by UV absorption spectroscopy. At the same time, we study the impact of the pH value and mechanism of the complexation between DT4.5 and Cu~(2+), and prove the successful preparation of DT4.5/Cu~(2+) labeled DNA electrochemical probe. We also discuss and optimize a variety of experimental conditions, including the preparation of modified electrode and choosing the various parameters on the process of anodic stripping voltammetry (ASV) detection of Cu~(2+). As a result, we choose to use carbon nanotubes modified electrode, -0.4V as the optimal enrichment potential, and 300s as preconcentration time. As a result of using the highly-sensitive anodic stripping voltammetry and carbon nanotube modified electrode, the sensitivity of sensors on the specific sequence of DNA fragment detection has been greatly improved. The detection limit reachs 1.0×10~(-12)M. This sensor shows good stability and reproducibility.
引文
[1]蔡宏.新型DNA电化学生物传感器的研制及纳米材料在其中的应用研究[M].上海,2003:25.
    [2] LI Z,WANG H D,DONG S J,et a1.Electrochemical investigation of DNA adsorbed on conducting polymer modified electrode[J].Ana1.Sci.,1997,13:305~310.
    [3]XU C,CAI H,HE P G,et a1.Electrochemical detection of sequence\J specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA[J].Analyst,2001,126(1):62~65.
    [4]周家宏,杨辉,邢巍等.一个制备脱氧核糖核酸修饰电极的简便方法[J].应用化学,2001,18(7):575~577.
    [5]HASHIM OTO K,ITO K,ISHIM ORI Y.Sequence—specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye[J].Ana1.Chem.,1994,66(21):3830~3833.
    [6]OKAHATA Y,MATSUNOBU Y,IJIRO K,et a1.Hybridization of nucleic acids immobilized on a quartz crystal microbalance[J].J.Am.Chem.Soc.,1992,1l4(21):8299~8300.
    [7]MAEDA M,NAKANO K,UCHIDA S,et a1.Mg一selective electrode comprising double—helical DNA as receptive entity[J].Chem.Lett.,1994,10:1805~1808.
    [8]HASHIM OTO K,ITO K,ISHIM ORI Y.Sequence—specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye[J].Ana1.Chem.,1994,66(21):3830~3833.
    [9]ITO K,HASHIMOTO K,ISHIMORI Y.Quantitative analysis for solid—phase hybridization reaction and binding reaction of DNA binder to hybrids using a quartz crystal microba1ance[J].Ana1.Chim.Acta.,1996,327:29~35.
    [10]NAKANO K,MAEDA M.Bioaffinity sensor using synthetic oligonucleotide—modified Au electrode[J].Ana1.Sci.,1997,13:455~456.
    [11]HERNE T M,TARLOV M J.Characterization of DNA probes immobilized on gold surfaces[J].J.Am.Chem.Soc.,1997,119(38):8916~8920.
    [12]XU X H,BARD A J.Immobllization and hybridization of DNA on an aluminum(III) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection[J].J.Am.Chem.Soc.,1995,117(9):2627~2631.
    [13]方禹之,刘盛辉,何品刚.用盐酸阿霉素作为嵌入剂石墨电极伏安法识别测定DNA片段的研究[J].高等学校化学学报,1996,17(8):1222~1224.
    [14]刘盛辉,孙长林,何品刚等.单链脱氧核糖核酸在石墨电极表面固定化的研究[J].分析化学,1999,27(2):130~134.
    [15]LIU S H,YE J N,HE P G,et a1.Voltammetric determination of sequence—specific DNA by electroactive intercalator on graphite electrode[J].Ana1.Chim.Acta.,1996,335:239.
    [16]WATTS H J,YEUNG D,PARKES H.Real—time detection and quantification of DNA hybridization by an optical biosensor[J].Ana1.Chem.,1995,67(23):4283~4289.
    [17]LOFAS S,JOHNSSON B,EDSTR0M A,et a1.Methods for site controlled coupling to carboxymethyldextran surfaces in surface plasmon resonance sensors[J].Biosens.Bioelectron.,1995,10(9-10):813~822.
    [18]LOFAS S,JOHNSSON B.A novel hydrogel matrix on gold surfaces in surface plasmort resonance sensors for fast and efficient covalent immobilization of ligands[J].Chem.Soc.Chem.Commun.,1990,21:1526~1528.
    [19]CARUSO F,R0DDA E,FURLONG D N,et a1.Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development[J].Ana1.Chem.,1997,69(11):2043~2049.
    [20]王保珍,杜小燕,郑晶等.铂电极表面生物素一亲和素固载单链脱氧核糖核酸的电化学传感器[J].分析化学,2005,33(6):789~792.
    [21]MARRAZZA G,CHIANELLA L,MASCINI M.Disposable DNA electrochemical sensor for hybridization detection[J].Biosens.Bioelectron.,1999,14(1):43~51.
    [22]XIAO C,YANG M,SUI S.DNA—containing organized molecular structure based on controlled assembly on supported monolayers[J].Thin Solid Films,1998.327~329:647~651.
    [23]PANTANO P,MORTON T H,KUHR W G.Enzyme—modified carbon—fiber microelectrodes with millisecond response times[J].J.Am.Chem.Soc.,1991,113(5):1832~1833.
    [24]牟颖,赵晓君,王珍等.γ-干扰素DNA传感器组装过程的表面等离子体子共振研究[J].化学学报,2000,58(5):500~504.
    [25]ZHOU X C,HUANG L Q,LI S F Y.Microgravimetric DNA sensor based on quartz crystal microbalance:comparison of oligonucleotile immobilization methods and the application in genetic diagnosis[J].Biosens.Bioelectron.,2001,16(1-2):85~95.
    [26]COSNIER S,GALLAND B,GONDRA N C,et al.Electrogenerati0n of biotinylated functionalized poolypyrroles for the simple immobilization of enzymes[J].E1ectr0analysis,1998,10(12):808~813.
    [27]MILLANK M,SARAULLO A,MIKKELSEN S R.Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode[J].Ana1.Chem.,1994,66(18):2943~2948.
    [28]XU X H,YANG H C,MALLOUK T E,et a1.Immobilization of DNA on an aluminum(III) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection[J].J.Am.Chem.Soc.,1994,116(18):8386~8387.
    [29]XU X H,BARD A L.Immobilization and hybridization of DNA on an aluminum(III)alkanebisphosphonare thin film with electrogenerated chemiluminescent detection[J].J.Am.Chem.Soc.,1995,117(9):2627~2631.
    [30]WANG J,BARD A L.Monitoring DNA immobilization and hybridization on surfaces by atomic force microscopy force measurements[J].Ana1.Chem.,2001,73(10):2207~2212.
    [31]黄德超,黄德欢.碳纳米材料及应用[J].物理学发展,2004,24(3):274~288.
    [32]Henning T H,Salama F.Carbon in the universe[J].Science,1998,282(5):204~210.
    [33]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(7):56~58.
    [34]陈荣生,肖华,黄卫华等.单壁碳纳米管修饰的高灵敏纳米碳纤维电极[J].高等学校化学学报,2003,24(5):808~810.
    [35]Hughes M,Chen G Z,Shaffer M S P,et a1.The effect of nanotube loading and dispersion on the three-dimensional nanostructure of carbon nanotube-conducting polymer composite films[J].Chem Mater,2002,14(4):610~613.
    [36]Halbert M K,Baldwin R P.Determination of lidocaine and active metabolites in blood serum by liquid chromatography with electrochemical detection[J].Anal.Chem.,1985,57(3):591~595.
    [37]Millan K M,Saraullo A,Mikkelsen S R.Sequence-selective biosensor for DNA based on electroactive hybridization indicators[J].Anal.Chem.,1994,66(18):2943~2948.
    [38]Britto P J,Santhanam K S V,Ajayan P M.Carbon nanotube electrode for oxidation of dopamine[J].Bioelectrochem Bioenerg,1996,41:121~122.
    [39]Banks C E,Davies T J,Wildgoose G G,et al.Electrocatalysis at graphite and carbon nailotube moditied electrodes:edge-plane sites and tube ends are the reactive sites[J].Chem Commun,2005,(7):829~841.
    [40]Morre R R,Banks C E,Compton R G.Metal Nanoparticles and Related MaterialsSupported on Carbon Nanotubes:Methodsand Applications[J].Anal.Chem.,2004,76(10):2677~2682.
    [41] Wang S G,Zhang Qing,W ang Ruili,et a1.A novel multi-walled carbon nanotube-based biosensor for glucose detection[J].Biochemical and Biophysical Research Communications,2003,11(5):572~576.
    [42]Zhao Yuandi,Zhang Weide,Chen Hong,et a1.Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode[J].Sens Actuator B,2002,87(11):168~172.
    [43]姜玲艳,刘传音,姜丽萍等.壳聚糖-多壁碳纳米管修饰电极(MC/GCE)测定多巴胺和抗坏血酸[J].中国化学快报,2005,16(2):229~232.
    [44]王宗花,刘军,颜流水等.碳纳米管修饰电极的孔性界面对电分离多巴胺和抗坏血酸的影响[J].高等学校化学学报,2003,24(2):236~240.
    [45]向伟,李将渊,王玉晋等.多壁碳纳米管修饰金电极测定维生素B12[J].西华师范大学学报(自然科学版),2006,27(2):209~213.
    [46]吴芳辉,赵广超,魏先文.多壁碳纳米管修饰电极对对苯二酚的电催化作用[J].分析化学,2004,32(8):1057~1060.
    [47]Ding Y P,Liu W L,W u Q S.Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry[ J ].Electroanal Chem,2005,575(2):275~280.
    [48]Wang J,Kawde A N,Jan M R.Carbon nanotube-modified electrodes for electrochemical DNA-sensors [J].Biosens Bioelectron,2004,20(5):995~1000.
    [49]林丽,曹旭妮,张文等.碳纳米管修饰电极用于高效液相色谱对全血中巯基化合物的测定[J].分析化学,2003,31(3):261~265.
    [50]Ottaviani M F,Cossu E,Turro N J,et al.Characterization of starburst dendrimers by electron paramagnetic resonance;positively charged nitroxide radicals of variable chain length used as spin probes[J].Am Chem Soc,1995,117:4387.
    [51]Tomalia D A,Baker H,Dewald J,et al.A new class of polymer:starburst—dendritic macromolecules[J].Polym J,1985,17:l17.
    [52]王俊.杨锦宗,陈红侠等.发散法合成树枝状高分子聚酰胺胺[J].合成化学,2001,9:62.
    [53]周玉兰,刘永利,杨华等.聚酰胺胺型树状大分子化合物的合成研究[J].首都医科大学学报,2001,22:21.
    [54]Huang Shiwen,Fu Liezhen,Zhang Xueqing,et al.Syntheses of polyamidoamine dendrimers starting from a hexadimensional core and application in gene transfer[J].Science in China(Series B),2003,46:271.
    [55]李杰,王俊,王天凤等.树枝状大分子聚酰胺胺的合成与性能[J].化学研究,2004,15:31.
    [56]王冰冰,罗宇飞,贾欣茹等.扇形PAMAM树枝状高分子的合成与表征[J].高分子学报,2004,2:304.
    [57]叶玲,张锦南,周玉兰等.PAMAM树状大分子对烟酸增溶效果的影响.首都医科大学学报,2002,23(1):17.
    [58]Ye Ling,Gu Wei,Bai Jingfa,et al.Investigation of the interaction of polyamidoamine dendrimers with nicotinic acid as solubility enhancer[J].Chin J Rehabil Theory Practice,2002,8(5):294.
    [59]王俊,万家齐,李杰等.树枝状大分子聚酰胺胺对布洛芬的增溶性能研究[J].应用化工,2004,33(3):13.
    [60]周贵忠,谭惠民,罗运军等.一种稠油原油污水处理破乳剂的合成及性能研究[J].工业用水与废水,2004,35(2):79.
    [61]王俊,陈红侠,于翠艳等.树枝状聚酰胺胺对0/w型模拟原油乳液的破乳性能[J].石油学报,2002,18(3):60.
    [62]王俊,李杰,于翠艳等.星型聚合物破乳剂的合成与性能研究[J].精细化工,2002,19(3):169.
    [63]周贵忠,潘朝蓬,王纲等.聚酰胺胺(PAMAM)树形分子用作乳化炸药的稳定剂[J].火炸药学报,2001,4:20.
    [64]周贵忠,潘朝蓬,多英全等.一种新型乳化炸药及其制备工艺[J].爆破器材,2001,30(4):1.
    [65]Lei Ziqiang,Yang Zhiwang,Han Qiaorong,et al.Oxidation of cyclohexene catalyzed by PAMAM-SA-M Dendrimers[J].Chinese Chem Lett,2002,13(6):49l.
    [66]Lei Ziqiang,Yang Zhiwang,Han Qiaorong,et al.Catalytic properties of dendrtic PAMAMSA—Zinc complexes in the oxidation of cyclohexene[J].Chem Res in Chinese Univ,2001,17:160.
    [67]王金凤,贾欣如,金钟等.聚酰胺胺型树枝状化合物与四氯化钛的配合及其催化作用初步研究[J].高等学校化学学报,2001,22(4):709.
    [68]李国平,罗运军,谭惠民.以树形分子为模板制备银纳米颗粒[J].化学学报,2004,62(12):1158.
    [69]李国平,罗运军,徐厚才.树形分子保护下铜原子簇的制备[J].无机化学学报,2004,20(1):61.
    [70]周贵忠,谭惠民,罗运军等.TNT红水处理新方法[J].工业水处理,2002,22(6):14.
    [71]周贵忠,谭惠民,罗运军等.聚酰胺胺树形分子在染料废水处理中的应用研究[J].环境科学与技术,2003,26(1):1.
    [72]张崇淼,张大伦,罗运军.聚酰胺胺(PAMAM)树形分子在洗煤废水处理中的应用研究[J].能源环境保护,2003,17(4):20.
    [73]徐文国,周贵忠,谭惠民等.新型高分子絮凝剂处理含油废水的研究[J].北京理工大学学报,2003,23(2):260.
    [74]吴彤,罗运军,谭惠民等.树形分子对PA11/PA6共混物性能的影响[J].工程塑料应用,2001,29(5):1.
    [75]李晓萌,罗运军,谭惠民等.树枝形聚酰胺胺对尼龙6性能影响的研究[J].工程塑料应用,2003,31(2):2.
    [76]崔艳霞,罗运军,李国平.PAMAM树形分子对CaCO3结晶影响的研究[J].无机化学学报,2002,18(11):1093.
    [77]王金凤,贾欣如,金钟等.树枝状大分子的自组装超薄膜[J].高等学校化学学报,2001,22(4):709.
    [78]梁红波,魏焕郁,施文芳等.树枝状聚醚酰胺基紫外固化粉末涂料的研究[J].热固性树脂,2002,17(2):4.
    [79]韩巧荣,郑薇等.树枝状大分子PAMAM—DSlCL的合成及其性能研究[J].功能材料,2004,35(4):534.
    [80] Elena E. Ferapontova,Eva M. Olsen,Kurt V. Gothelf.An RNA Aptamer-Based Electrochemical Biosensor for Detection of Theophylline in Serum[J].Am. Chem. Soc.,2008,130 (13):4256-4258.
    [81] S. S. Babkina,N. A. Ulakhovich.Complexing of Heavy Metals with DNA and New Bioaffinity Method of Their Determination Based on Amperometric DNA-Based Biosensor[J].Anal. Chem.,2005,77 (17):5678-5685.
    [82] Haixin Chang,Ying Yuan,Nanlin Shi,Yifu Guan.Electrochemical DNA Biosensor Based on Conducting Polyaniline Nanotube Array[J].Anal. Chem.,2007,79 (13):5111-5115.
    [83] Shusheng Zhang,Hua Zhong,Caifeng Ding.Ultrasensitive Flow Injection Chemiluminescence Detection of DNA Hybridization Using Signal DNA Probe Modified with Au and CuS Nanoparticles[J].Anal. Chem.,2008,80 (19):7206-7212.
    [84] Shusheng Zhang,Jianping Xia,Xuemei Li.Electrochemical Biosensor for Detection of Adenosine Based on Structure-Switching Aptamer and Amplification with Reporter Probe DNA Modified Au Nanoparticles[J].Anal. Chem.,2008,80 (22):8382-8388.
    [85] T. Garci#a, E. Casero,M.,et al.Dual-Stage DNA Sensing: Recognition and Detection[J].Anal. Chem.,2008,80 (24):9443-9449.
    [86] Castillo E,Pezzotti F,Navarro A,et al.Lipase catalyzed synthesis of xylitol monoesters:solvent engineering approach[J].J Biotechnol,2003,102:251—259.
    [87] Moil M,Garcia R G,BeUeville M P,et al.A new way to conduct enzymatic synthesis in an active membrane using ionic liquids as catalyst support[J].Catalysis Today,2005,104(3):313—317.
    [88] Maruyama T,Nagasawa S,Goto M.Poly(ethylene glycol)一lipase complex that is catalytically active for alcoholysis reactions in ionic liquids[J].Biotechnol Lett,2002,24:1341—1345.
    [89]于志辉,田密,焦庆影.Au\Pt双金属纳米颗粒在玻碳电极上的自组装[J].物理化学学报,2006,22(8):1015-1021.
    [90] Lowry G V,Johnson K M.Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution[J].Environ SciTechnol,2004,38:5208—5216.
    [91] Clark C J,Rat P S,Annable M D.Degradation of perchloroethylene in cosolvent solution by zero-valent iron[J].J Hazard Mater,2003,96:65—78.
    [92] ZHANG Weihua,QUAN Xie,ZHANG Zhuoyong.Catalytic reductive dechlorination of p-chlorophenol in water using Ni/Fe nanoscale particles[J].Journal of Environmental Sciences,2007,19:362-366.
    [93]D.A. Tomalia,H. Baker,J. Dewald,et al.A new class of polymers starbust- dendrimtic macromolecules[J].Polym.,1985,17:117–132.
    [94] T.J. Prosa,B.J. Bauer,E.J. Amis,et al.A SAXS study of the internal structure of dendritic polymer systems[J].Scherrenberg J. Polym. Sci.,1997,35:2913–2924.
    [95]Prabal K,William A.Solvent Quality Changes the Structure of G8 PAMAM Dendrimer[J]. J. Phys. Chem. B,2006,110 (51):25628 -25632.
    [96] Jae Wook Lee,Byung-Ku Kim. Convergent Synthesis of Symmetrical and Unsymmetrical PAMAM Dendrimers[J].Macromolecules,2006,39:2418-2422.
    [97] István J. Majoros.PAMAM Dendrimer-Based Multifunctional Conjugate[J].Biomacromolecules,2006,7 (2):572 -579.
    [98] Dongjun Wang,Toyoko Imae,Masao Miki.Fluorescence emission from PAMAM and PPI dendrimers[J].Journal of Colloid and Interface Science,2007,306:222–227.
    [99] C.L. Larson,S.A. Tucker.Intrinsic Fluorescence of Carboxylate Terminated Polyamido Amine Dendrimers[J].Appl. Spectrosc.,2001,55:679—683.
    [100] D. Leisner,T. Imae.Cationic surfactant–poly(amido amine) dendrimer interactions studied by Krafft temperature measurements[J].J. Phys. Chem. B,2003,107:13158—13167.
    [101]Kwangmeyung Kim,Misu Lee.Cell-Permeable and Biocompatible Polymeric Nanoparticles[J].J. Am. Chem. Soc.,2006,28 (11):490 -3491.
    [102] Daniel Aili,Karin Enander.Aggregation-Induced Folding of a De Novo Designed Polypeptide Immobilized on Gold Nanoparticles[J].J. Am. Chem. Soc.,2006,28 (7):194 -2195.
    [103] Gabriel Shemer,Olga Krichevski.Chirality of Silver Nanoparticles Synthesized on DNA[J].J. Am. Chem. Soc.,2006,28 (34):1006-11007.
    [104] Lihua Zhao,Douglas A.Loy,Kenneth J. Shea.Photodeformable Spherical Hybrid Nanoparticles[J].J. Am. Chem. Soc.,2006,128 (44):14250-14251.
    [105]李国平,罗运军,谭惠民.以树形分子为模板制备银纳米颗粒[J].化学学报,2004,62(12):1158—1161.
    [106] Zheng J,Dickson R M.DNA Templated Ag Nanocluster Formation[J].J. Am. Chem. Soc.,2004,82:124-139.
    [107] Bologh L,Valluzzi R,et al.Formation of silver and gold dendrimer nanocomposites[J].Journal of Nanoparticles Research,1999,1:353-368.
    [108] Wojciech Lesniak,Anna U.Bielinska.Silver/Dendrimer Nanocomposites as Biomarkers: Fabrication, Characterization and Intracellular Detection[J].NANO LETTERS,2005,5(11):2123-2130.
    [109]李国平,罗运军.银离子与聚酰胺胺型树形高分子配位作用的研究[J].无机化学学报, 2003,11:1212-1216.
    [110] Masaki Ujihara,Jhony Orbulescu,Toyoko Imae.Film Structures of PAMAM Dendrimers with an Azacrown Core and Long Alkyl Chain Spacers on Water or Ag Nanoparticle Suspension[J].Langmuir,2005,21:6846-6854.
    [111]白燕,戴小锋,刘仲明等.电化学DNA传感器中DNA的固定与杂交条件探讨[J].传感器技术,2005,24(6):23-28.
    [112]王丰,府伟灵.电化学阻抗谱在生物传感器研究中的应用进展[J].生物技术通讯,2007,18(3):549-552.
    [113]陈新黔.DNA传感器研究进展及应用前景[J].中华肝脏病杂志,2004,12(9):576-576.
    [114]邹小勇,陈汇勇,李荫.电化学DNA传感器的研制及其医学应用[J].分析测试学报,2005,24(1):123-128.
    [115]唐婷,彭图治,时巧翠.碳纳米管修饰金电极检测特定序列DNA[J].化学学报,2005,63(22):2042-2046.
    [116]董军,何晓英.多壁碳纳米管的羧基修饰[J].海南师范学院学报,2006,l9(4):342-375.
    [117]章昌华,胡剑青,涂伟萍.聚酰胺胺(PAMAM)树状分子的合成[J].化工新型材料,2005,33(10):32-34.
    [118]PAN Bi.feng,CUI Da.xiang,XU Ping,et al..Design of Dendrimer Modified Carbon Nanotubes for Gene Delivery[J].Chinese Journal of Cancer Research,2007,19(1):1-6.
    [119]Xing Lu,Toyoko Imae.Dendrimer-Mediated Synthesis of Water-Dispersible Carbon-Nanotube-Supported Oxide Nanoparticles[J].J. Phys. Chem. C,2007,111:8459-8462.
    [120]Yun-Long Zeng,Yu-Fang Huang,Jian-Hui Jiang,et al.Functionalization of multi-walled carbon nanotubes with poly(amidoamine) dendrimer for mediator-free glucose biosensor[J].Electrochemistry Communications,2007,9:185–190.
    [121]Muhammad J. A. Shiddiky,Md. Aminur Rahman,Yoon-Bo Shim.Hydrazine-Catalyzed Ultrasensitive Detection of DNA and Proteins[J].Anal. Chem.,2007,79:6886-6890.
    [122]范晓燕.傅立叶变换红外光谱在生命科学中的应用[J].生命科学研究,2003,7(2):83-87.
    [123] Xing Lu,Toyoko Imae.Size-Controlled in situ Synthesis of Metal Nanoparticles on Dendrimer-Modified Carbon Nanotubes[J].J. Phys. Chem. C,2007,111:2416-2420.
    [124] Tesfaye Hailu Degefa,Juhyoun Kwak.Electrochemical Impedance Sensing of DNA at PNA Self Assembled Monolayer[J].Journal of Electroanalytical Chemistry,2008,612(1):37-41.
    [125] Hui Bin Sun,Hiroki Yokota.MutS-Mediated Detection of DNA Mismatches Using Atomic Force Microscopy[J].Anal. Chem.,2000,72 (14):3138-3141.
    [126] Christina Boozer,Jon Ladd,Shengfu Chen,et al.DNA Directed Protein Immobilization on Mixed ssDNA/Oligo(ethylene glycol) Self-Assembled Monolayers for Sensitive Biosensors[J].Anal. Chem.,2004,76 (23):6967-6972.
    [127] Gi Hun Seong, Tomohisa Niimi,Yasuko Yanagida,et al.Single-Molecular AFM Probing of Specific DNA Sequencing Using RecA-Promoted Homologous Pairing and Strand Exchange[J].Anal. Chem.,2000,72 (6):1288-1293.
    [128] Akira Takeuchi,Koji Sode.A Salmonella Detection System Using an Engineered DNA Binding Protein That Specifically Captured a DNA Sequence[J].Anal. Chem.,2000,72 (13):2809-2813.
    [129] Laurence M. Brill,Arthur R. Salomon,Scott B. Ficarro,et al.Robust Phosphoproteomic Profiling of Tyrosine Phosphorylation Sites from Human T Cells Using Immobilized Metal Affinity Chromatography and Tandem Mass Spectrometry[J].Anal. Chem.,2004,76 (10):2763-2772.
    [130] Carla dos Santos Riccardi,Christine Kranz,Janusz Kowalik,et al.Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes[J].Anal. Chem.,2008,80 (1):237-245.
    [131] Xiaoteng Luo,Thomas Ming-Hung Lee,I-Ming Hsing.Immobilization-Free Sequence-Specific Electrochemical Detection of DNA Using Ferrocene-Labeled Peptide Nucleic Acid[J].Anal. Chem.,2008,80 (19):7341-7346.
    [132] Emil Palec#ek,Michal Masak,Rene Kizek,et al.Sensitive Electrochemical Determination of Unlabeled MutS Protein and Detection of Point Mutations in DNA[J].Anal. Chem.,2004,76 (19):5930-5936.
    [133] Stanislav Haso,Hana Pivokov,Vladimr Vetterl,et al.Label-Free Sequence-Specific DNA Sensing Using Copper-Enhanced Anodic Stripping of Purine Bases at Boron-Doped Diamond Electrodes[J].Anal. Chem.,2008,80 (7):2391-2399.
    [134] Arzum Erdem,Pagona Papakonstantinou,Hayley Murphy.Direct DNA Hybridization at Disposable Graphite Electrodes Modified with Carbon Nanotubes[J].Anal. Chem.,2006,78 (18):6656-6659.
    [135] Fabien Le Floch,Hoang A. Ho,Mario Leclerc.Label-Free Electrochemical Detection of Protein Based on a Ferrocene-Bearing Cationic Polythiophene and Aptamer[J].Anal. Chem.,2006,78 (13):4727-4731.
    [136] Richard M. Crooks,Buford I. Lemon III,Li Sun,et al.Dendrimer-Encapsulated Metals and Semiconductors: Synthesis,Characterization,and Applications[J].Springer Berlin / Heidelberg,2001,212:81-135.
    [137]蔡宏,王延琴,何品刚等.基于纳米金胶标记DNA探针的电化学DNA传感器研究[J].高等学校化学学报,2003,24(8) :1390-1394.
    [138] H. Luo,Z. Shi,N. Li,Z. Gu,Q. Zhuang.Investigation on the electrochemical and electrocatalytic behavior of chemically modified electrode of single wall carbon nanotube functionalized with carboxylic acid group[J].Chem. J. Chin. Univ. 2000,21:1372– 1376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700