近红外激光对共轭金纳米棒—基底细胞癌复合物作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]探讨分子靶向性金纳米棒的制备、观察金纳米棒进入细胞的过程及其与抗体共轭前后细胞毒性的变化并检测其与抗体共轭后提高近红外激光热疗的效果,为临床治疗皮肤基底细胞癌提供一种新思路。
     [方法]体外培养A-431人表皮癌细胞和正常人皮肤成纤维细胞,同时合成金纳米棒并使其与抗表皮生长因子受体单克隆抗体共轭结合后具有分子靶向性。进行以下实验:(1)对制备的金纳米棒进行表征。(2)改良MTT法检测不同浓度的金纳米棒及其与抗体共轭后对两种细胞毒性的变化。(3)金纳米棒与A-431细胞孵育不同时间后透射电镜观察其进入细胞的过程。(4)两种细胞分为四组:①阴性对照组;②单纯照射组;③25%金纳米棒组;④25%抗体/金纳米棒组;②③④组经不同功率近红外激光照射后改良MTT法检测细胞生长活力,台盼蓝染色观察细胞形态学变化。实验所得数据用均数±标准差(X±+S)表示,应用SPSS16.0统计学软件包进行分析,数据采用单因素方差分析进行组间比较,以P<0.05判定差异具有统计学意义。
     [结果](1)制备的金纳米颗粒呈棒状,平均粒径为35-45nm,光密度值为0.9,在540nm和822nm附近有两个等离子共振吸收峰,其822nm附近的吸收峰处于近红外区域(800-1200nm)是肌体组织的安全透射窗口,则其可用于近红外热疗。(2)改良MTT法检测细胞毒性时发现,浓度为25%以下金纳米棒和50%以下抗体/金纳米棒共轭物为两种细胞的安全浓度。(3)金纳米棒与A-431细胞共同孵育1h后金纳米棒主要存在细胞外,4h后细胞膜伸出伪足包裹吞噬金纳米棒,8-24h内在细胞质内可见大量包裹着金纳米棒的吞噬泡,细胞核内未见到金纳米棒,48h后金纳米棒又大量出现在细胞外。(4)两种细胞分别与25%的金纳米棒和抗体/金纳米棒共轭物培养后用不同功率近红外激光进行热疗,改良MTT法检测细胞活力,根据公式计算细胞相对存活率;同时台盼蓝染色观察细胞形态变化。A-431细胞:②③④组经相同激光功率照射后,④组细胞相对存活率显著低于②③组(P值均<0.01),③组细胞相对存活率也显著低于②组(P值<0.05),台盼蓝染色后②③④组间比较也发现:④组杀灭大量的细胞所用激光功率远小于②③组(P值均<0.01),③组杀灭大量的细胞所用激光功率也远小于②组(P值<0.05)。比较正常成纤维细胞的②③④组时得到结果与A-431细胞的相似,但是③④组数据组间比较(P值>0.05)。A-431细胞和正常成纤维细胞两种细胞②③④组各组间两两比较发现:相同激光功率照射后②③④组中的A-431细胞的相对细胞存活率均远小于正常成纤维细胞②③④组(P值均<0.05)。
     [结论]:
     1、采用光化学法合成了金纳米棒。金纳米棒平均粒径为35-45nm,光密度值为0.9,其纵向吸收峰位于822nm附近属于近红外区域(800-1200nm),可用于近红外激光热疗。
     2、制备成的抗表皮生长因子受体单克隆抗体/金纳米棒共轭物在细胞内的安全浓度远高于金纳米棒,提高了其生物相容性。同时也增加了金纳米棒的稳定性和分散性,使得其在生物医学领域有着更为广阔的应用前景。
     3、金纳米棒能以纳米颗粒的形式,以细胞吞噬的方式大量进入A-431细胞内,进入细胞内的金纳米棒形状也未遭到破坏。
     4、金纳米棒与抗表皮生长因子受体单克隆抗体共轭后对A-431细胞具有较好的分子靶向性,应用其进行近红外激光热疗时,与单纯金纳米棒相比,抗体/金纳米棒共轭物只需14w/cm~2的近红外激光照射后对A-431人皮肤癌细胞生长抑制率即可达87%以上,而用此激光功率照射正常人成纤维细胞时对其的生长抑制作用很小。
     5、近红外激光热疗后,A-431人皮肤癌细胞比正常人成纤维细胞对热更敏感。
[Objective] Investigate the preparation of molecular targeted gold nanorods, observation of gold nanorods into the process of cell, conjugated of gold nanorods before and after the change of cell toxicity and detection of the conjugated gold nanorods to improve the effect of infrared hyperthermia, for the treatment of basal cell carcinoma provides a new way.
     [Methods] Cultured A-431 human epidermal cancer cells and normal human skin fibroblasts in vitro, at the same time synthesis of gold nanorods and also to conjugated anti-epidermal growth factor receptor monoclonal antibody with molecular targeted. Conducted the following experiment:(1)Observe the characteristics of gold nanorods was prepared. (2) Improved MTT Colorimetric assay with different concentrations of gold nanorods and gold nanorods conjugated the toxicity of the two cells. (3)Gold bars and A-431 cells were incubated for different time transmission electron microscopy to observe the process of entering cells. (4) Divided into four groups of two cells:①egative control group,②aser irradiation alone,③25% concentrations of gold nanorods,④25% concentrations of anti-EGFR/ Au nanorods,②③④By different power of infrared laser photo-thermal therapy, then Modified MTT assay cell viability, cell survival rate according to formula, Trypan blue staining observed changes in cell morphology. Experimental data obtained with (x±s). Express, Application of statistical package with SPSS 16.0 statistical analysis, Data were statistically analyzed using a one-way analysis of variance, P<0.05 determined statistical significance.
     [Results] (1) Preparation of gold nanoparticles are bat, Average diameter is 35-45nm, Optical density around 0.8, there were two plasma resonance absorption peak in the vicinity of 520nm and 820nm. The 820nm absorption peak in the vicinity of near-infrared region (800-1200nm) is the organization's security body the transmission window. It can be used for near infrared laser thermotherapy. (2) Improved MTT Colorimetric assay cell-cytotoxic:Concentration of less than 25% of the gold nanorods and concentration of less than 50% of the anti-EGFR/Au nanorods were the safe concentration for the two cell. (3) Gold nanorods and A-431 cells were incubated after 1h, gold nanorods was also found primarily in extracellular.4h after the cell membrane out of swallowing gold nanorods wrapped pseudopodia.8-24h within the cytoplasm shows a large number of gold nanorods wrapped in bubble phagocytosis, gold nanorods are not seen in the cell nucleus.48h after the large number of gold nanorods have appeared in the extracellular. (4) Two kinds of cells respectively and 25% of the concentration of gold nanorods and 25% of the concentration of the anti-EGFR/Au nanorods incubated, then different power of infrared laser photo-thermal therapy. Improved MTT Colorimetric assay the cell growth activity, Trypan blue staining observed changes in cell morphology. A-431 cell:②③④roup irradiated by the same laser power,④roup cells relative survival rate was significantly lower than②③group(P< 0.05). Also③group cells relative survival rate was significantly lower than②roup(P<0.05). Trypan blue staining②③④group found:④roup a large number of cells were killed need a laser power is much smaller than②③group(P<0.05).③roup to kill a large number of cells used in laser power is also far less than②roup. Comparison of normal fibroblast②③④roup can get the same results. But the comparison group data③④(P>0.05). Comparison of A-431 cells and normal fibroblasts of the two cell②③④group found:After the same laser power irradiation, group②③④the A-431 cells of the relative survival rat are much smaller than normal fibroblasts(P<0.05).
     [Conclusions]
     1. Photochemically synthesized gold nanorods. Average diameter is 35-45nm, Optical density around 0.9. The 822nm absorption peak in the vicinity of near-infrared region (800-1200nm) is the organization's security body the transmission window. It can be used for near infrared laser thermotherapy.
     2. Prepared into the anti-epidermal growth factor receptor monoclonal antibody/ conjugated gold nanorods in the cell body of the safe concentration is much higher than pure gold nanorods. Enhance its biocompatibility. At the same time combined with the antibody also increased the stability of gold nanorods and dispersion, Making it in the biomedical field has more potential applications.
     3. Gold nanorods can form nanoparticles and phagocytosis way can a large number of gold nanorods entering A-431 cells. Into the cells shape of gold nanorods have not been destroyed.
     4. Anti-EGFR/Au nanorods prepared by a combination with a high molecular target-specific to the A-431 cells, Compared with pure gold nanorods, Anti-EGFR/Au nanorods just 14w/cm~2 near-infrared laser irradiation on the A-431 of human skin cancer cell growth inhibition rate of 87% or more can. While the laser power irradiation on the growth of normal fibroblasts very little inhibition.
     5. After infrared laser photo-thermal therapy, A-431 cells than normal human skin fibroblasts more sensitive to heat.
引文
[1]Clark C. Non-melanoma skin cancer:past, present and future [J].Current Problem Dermatol, 2001,13(2):109~113.
    [2]Wagner SN, Ockenfels HM, Wagner C.et al. Differential expression of tissue inh-ibitor of metalloproteinases-2 by cutaneous squamous and basal cell carcinomas [J]. Invest Dermatol, 1996,106:321-326.
    [3]Dumas V, Kanitakis J, Charvat S. et al. Expression of basement membrane antige-ns and matrix metalloproteinases 2 and 9 in cutaneous basal and squamous cell carcinomas[J]. Anticancer Res,1999,19(4B):2929-2938.
    [4]Cheng SY, Luk NM, Chong LY. Special features of non-melanoma skin cancer in Hong Kong Chinese patients:10-year retrospective study[J]. Hong Kong Med,2001,7:22~28.
    [5]Rawashdeh MA, Matalka I. Basal cell carcinoma of the maxillofacial region:site distribution and incidence rates in Arab/Jordanians,1991 to 2000. [J]. Oral Max il-lofac Surg,2004, 62:145~149.
    [6]Vries E, Louwman M, Bastiaens M, et al. Rapid and continuous increases in incidence rates of basal cell carcinoma in the southeast Netherlandssince 1973. J InvestDermatol,2004,123: 634~638.
    [7]Miller SJ, Etiology and pathogenesis of basal cell carcinoma[J]. Clin Dermatol,1995, 13:527~536.
    [8]Sen R, Baltimore D. Multiple nuclear factors interact with the immuluaoglobulin errhartcer sequence[J]. Cell,1986,46(5):705~716.
    [9]Baeuerle PA, Baltimore D. NF-kappa B:ten years after[J]. Cell,1996,87(1):13~20.
    [10]Kucharczak J, Simmons MJ, Fan Y, et al. To be or not to be:NF-kappaB is the answer-role of Rel/NF-kappaB in the regulation of apoptosis[J]. Oncogene,2003,22(56):8961~8982.
    [11]Dixit V, Mak TW. NF-kappaB signaling:Many roads lead to Madrid[J]. Cell,2002, 111(5):615~619.
    [12]Nakavama H, Ikehe T, Beppu M, et al. High expression levels of nuclear factor kappaB, IkappaB kinase alpha and Akt kinase in squamous cell carcinoma of the oral cavity [J]. Cancer,2001,92(12):3037~3044.
    [13]Sasaki N, Morisaki T, Hashizume K, et al. Nuclear factor-kappaB p65(RelA) transcription factor is constitutively activated in human gastric carcinoma tissue[J].Clin Cancer Res.2001, 7(12):4136~4142.
    [14]刘扬,王秉贤.紫外线致癌机理的研究状况概述[J].中国公共卫生学报.1999,18(3):183~185.
    [15]任建廷,桑建利.紫外线诱导的DNA损伤与皮肤癌的发生(1)[J].生物学通报.2004,39(1):4-6.
    [16]任建廷,桑建利.紫外线诱导的DNA损伤与皮肤癌的发生(2)[J].生物学通报.2004,39(2):3-5.
    [17]Albert MR, Weinstock MA. Keratinocyte carcinoma[J]. CA Cancer J Clin,2003, 53:292~302.
    [18]Marks R, Staples M, Giles G Trends in non-melanocytic skin cancer treated in Australia:the second national survey[J]. Int J Cancer,1993,53:585~590.
    [19]赵辨.临床皮肤病学[M].第三版.南京:江苏科学技术出版社,2001,1106~1110.
    [20]夏同礼主编.肿瘤实验诊断学[M].第一版.北京:北京科技出版社,2005.440--450.
    [21]汪良能,高学书.整形外科学[M].北京:人民卫生出版,1996:419.
    [22]邓丹琪,韩云涛,陈浩,等.云南省不同地区多形性日光疹、慢性光线性皮炎患病率调查[J].中华皮肤科杂志.2005,38(7):451~452.
    [23]Vuyk HD, Lohuis PJ.Mohs micrographic surgery for facial skin cancer[J]. Clin Otolaryngol, 2001,26(4):265~273.
    [24]焦大凯,徐凯,张辉,等.基底细胞癌研究进展[J].山西医科大学学报,2007,38(2):173~177.
    [25]Heo MY, Kim SH, Yang HE, et al. Protection against ultraviolet B and C-induced DNA damage and skin carcinogenesis by the flowers of Prunus persica extract[J]. Mutat Res,2001, 496(122):47~59.
    [26]Xu Shizheng, Wang Xiuli, Xu Wei, et al. Evaluation of photodynamic therapy of skin cancers with δ-aminolevulinic acid[J]. Chin Med J,2002,115 (8):1141~1145.
    [27]Stephen S, June R, Steven K, et al. Efficacv of topical 5% imiquimod cream for the treatment of nodular basall cell[J]. Arch Dermatol,2002,138:1165-1171.
    [28]Niles RM. Recent advances in the use of vitamin A (retinoids) in the prevention and treatment of cancer[J].Nutrition,2000,16(1 1-12):1084-1089.
    [29]彭楠,赵彼得.临床肿瘤热疗[M].北京:人民军医出版社,2002.30~35.
    [30]赵世俊.肿瘤热疗研究进展[J].国外医学临床放射学分册,2004,27(4):252~255.
    [31]Jordan A, Scholz R, Wust P. et al. Magnetic fluid hyperthermia(MFH):Cancer treatment with AC magnetic flied induced excitation of biocom-patible superpara-magnetic nanoparticles[J].J MangnMater,1999,201(1-3):413~419.
    [32]Stone HB, Dewey WC. Biologic basis and clinical potential of local-regional hyperthermia [J].Radiation Oncology,1987,531.
    [33]刘宝瑞,钱晓萍.肿瘤热化疗的基础与临床研究进展[J].国外医学肿瘤学分册,
    2004,31(1):34-37.
    [34]詹宏杰,梁寒.肿瘤热疗的研究[J].国外医学肿瘤学分册,2005,32(1):35~38.
    [35]张阳德,张蕾,刘新生,等.纳米技术在肿瘤诊断与治疗中的现状与展[J].中国医学工程,2004,12(6):1-4.
    [36]师昌绪.我国应进一步加大对纳米科学技术的支持[J].材料导报,2001,15(4):123.
    [37]张立德,牟季美.纳米材料与纳米机构[M].北京:科学出版社,2001,6.
    [38]Iwanaga H, Fujii M. Inter-leg angles in tetrapod ZnO particles[J]. Journal of Crystal Growth,1998,183(1-2):190~195.
    [39]Malik MA, Revaprsadu NO, Brien P.et al.A novel route for the preparation of CuSe and nanoparticles[J].Advanced Materials,1999,11(17):1441~1444.
    [40]Legget AJ, Chakravarty S, Dorsey AT, et al. Dynamic of the Disspative Two-State System [J].Rev Modphys,1987,59:1~4.
    [41]Wang Y, Herron N. Nanometer-sized Semiconductor Clusters:Matrial Synthesis, Qiamtum size and Photophysical[J]. J Phy Chem,1991,95:525~529.
    [42]白春礼.纳米科技及其发展前景[J].科学通报,2001,46:89~92.
    [43]王明华,骆云鹏.纳米技术在肿瘤诊断与治疗中的研究进展[J].四川肿瘤防治,2005,18(1):57~59.
    [44]Zhang JL, Du JM, Han BX. et al. Sonochemical formation of single-crystalline gold nanobelts[J]. Angew.Chem.Int.Ed.2006,45:1116~1119.
    [45]Li CC, Park QH, Cai WP. et al. High-yield synthesis of single-crystalline gold nano-octahedra[J].Angew.Chem.Int.Ed.2007,46:1~6.
    [46]Chen J, Saeki F, Wiley B, et al.Gold nanocages:bioconjugation and their potential use as opticalimaging contrast agents[J]. Nano Lett.2005,5(3):473~477.
    [47]Grabar KC, Allison KJ, Baker BE, et al. Two-dimensional arrays of colloidal gold particles:a flexible approach to macroscopic metal Surfaces[J].Langmuir 1996,12:2353~2561.
    [48]Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science, 2002,298:2176~2179.
    [49]Sun Y, Xia Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium[J]. J. Am. Chem. Soc.2004,126:3892~3901.
    [50]Jana NR, Gearheart L, Murphy CJ.Seeding growth for size control of 5-40 nm diameter gold nanoparticles[J].Langmuir 2001,17:6782~6786.
    [51]Kim F, Song JH. Yang PD. Photochemical synthesis of gold nanorods[J].J.Am.Che-m.Soc.2002,124:14316~14317.
    [52]Mulvaney P. Surface Plasmon Spectroscopy of Nanosized Metal Particles[J], Langmuir,1996,
    12(3):788~800.
    [53]Link Stephan, El-Sayed Mostafa A. Optical properties and ult rafast dynamics of metallic nanocrystals[J].A nnual Review of Physical Chemist ry,2003,54:331~366。
    [54]Zhu J. Theoretical study of the optical absorption properties of Au-Ag bimetallic nanospheres[J]. Physica E,2005,27(1-2):296~301.
    [55]Kelly KL, Coronado E, Zhao LL. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment[J]. J. Phys. Chem.B,2003,107(3):668~677.
    [56]Jain Prashant K, Eustis Susie, El-Sayed Mostafa A. Plasmon coupling in nanorod assemblies: Optical absorption,discrete dipole approximation simulation, and exciton-coupling model [J]. J.Phys. Chem.B,2006,110(37):18243~18253.
    [57]Vander Zande BMI, Bohmer MR, Fokkink LGJ, Schonenberge C. Colloidal dispersions of gold rods:Synthesis and optical properties[J]. Langmuir,2000,16 (2):451~458.
    [58]Jana NR. Nanorod shape separation using surfactant assited self-assembly[J]. Chem. Comm, 2001,7:1950-1951.
    [59]Alkilany Alaaldin M, Nagaria Pratik K, Hexel Cole R, et al. Cellular uptake and cytotoxicity of gold nanorods:molecular origin of cytotoxicity and surface effects[J]. Small,2009,5(6): 701~708.
    [60]Bernardi Ronald J, Lowery Amanda R, Thompson Patrick A. et al. Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma:an in vitro evaluation using human cell lines[J]. J Neurooncol,2008,86 (2):165~172.
    [61]Yang DP, Cui DX. Advance and prospects of gold nanorods[J]. Chem An Asian J,2008, in press.
    [62]Kim S, Lim YT, Soltesz EQ et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat.Biotechnol,2004,22,93-97.
    [63]Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots.Nat.Biotechnol.2004,22,969-976.
    [64]Wang Y, Xie X, Wang G, et al.Photoacoustic tomography of a nanoshell contrast agent in the in Vivo rat brain.Nano Lett.2004,4,1689~1692.
    [65]Chen J, Saeki F, Wiley BJ, et al. Gold nanocages:bioconjugation and their use as optical imaging contrast agents. Nano Lett.2005,5,473~477.
    [66]Hirsch LR, Staflbrd RJ, Bankson JA, et al. Nanoshell-mediated near-infrafed thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci.U.S.A,2003,100: 13549~13554.
    [67]O'Neal DP, Hirsch.LR, Halas NJ, et al.Photo-thermal tumor ablationin mice using near
    infrared-sbsorbing nanoparticles. Cancer Lett.2004,209,171~176.
    [68]Loo C, Lowery A, Halas N, et al. Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy. Nano Lett,2005,5,709~711.
    [69]Wei A, Wang HF, Huff TB. et al. In vitro and In vivo two-photon luminescence imaging of single gold nanorods.Proceedings of the National Acedemy of Sciences of the United States of America,2005,102(44):15752~15756.
    [70]Durr NJ, Larson T, Smith DK. et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett.2007,ASAP.
    [71]Zharov VP, Galitovskaya EN, Carl Johnson C. et al..Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters:Potential for cancer therapy [J]. L asers in Surgery and Medicine,2005,37(3):219-226.
    [72 Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer [J]. Nanotoday, 2007,1,18~29.
    [73]Huang XH, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. J.Am.Chem. Soc, 2006,128:2115~2120.
    [74]Gittins DL, Caruso FJ. Phys. Chem. B 2001,105,6846~6852.
    [75]Kim F, Song JH, Yang P D. Photochemical synthesis of gold nanorods [J].Journal of the American Chemical Society,2002,124(48):14316~14317.
    [76]Harmand MF. In vitro study of biodegradation of Co-Cr alloy using a hunman cell culture mode[J]. J Biomater sci polym Ed,1995,6(9):809~714.
    [77]Qu Y, Lu X. Aqueous synthesis of gold nanoparticles and their cytotoxicity in human dermal fibroblasts-fetal[J].Biomed Mater,2009,4(2):2500.07.
    [78]Bao AC,Yong YD, Xiao MW, et al. Synergistic effect of the combination of nanoparticulate Fe_3O_4 and Au with daunomycin on K562/A02 cells[J]. Int J Nanomedicine,2008, 3(3):343~350.
    [79]Setroikromo R, Wierenga PK, Warrde M A W Hvan. et al..Heat shock proteins and Bel-2 exp ression and function in relation to the differential hyperthermic sensitivity between leukemic and normal hematopoietic cells [J].Cell Stess and Chaperones,2007,12(4):320~330.
    [80]Cohen EE. Role of epidermal growth factor receptor pathway-targeted therapy in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol, 2006,24(17):2659~2665.
    [81]Milanezi F, Carvalho S, Schmitt FC. EGFR/HER-2 in breast cancer:a biological approach for molecular diagnosis and therapy. Expert Rev Mol Diagn,2008,8(4):417~434.
    [82]Papouchado B, Erickson LA, Rohlinger AL, et al. Epidermal growth factor receptor and activated epidermal growth factor receptor expression in gastrointestinal carcinoids and pancreatic endocrine carcinomas. Mod Pathol,2005,18(10):1329~1335.
    [83]El-Sayed IH, Huang XH, El-Sayed MA. Selective laser photo-thermal therapy of epithal carcinoma using anti-EGFR antibody conjugated gold nanoparticles.Cancer Letters, 2006(239):129~135.
    [84]Sang JS, Xia B, Sang BL. Inorganic hollow nanoparticles and nanotubes in nanomedicine. Drug Discovery Today,2007,12:15.
    [1]Burda Clemens, Chen Xiaobo, Narayanan Radha. et al.Chemistry and properties of nanocrystals of different shapes [J]. Chem Rev,2005,105 (4):1025~1102.
    [2]Paul Alivisatos. The use of nanocrystals in biological detection [J].Nature Biotechnology, 2004,22(1):47~52.
    [3]Rosi NathanielL, Mirkin ChadA. Nanostructures in biodiagnostics[J]. Chem.Rev,2005,105 (4):1547~1562.
    [4]Esumi K, Matsuhisa K, Torigoe K. Preparation of rodlike gold Particles by UV irradiation using cationic micelles as a template[J]. Langmuir,1995,11(9):3285-3287.
    [5]Kim F, Song J H, Yang P. Photochemical synthesis of gold nanorods[J]. J.Am.Chem. Soc, 2002;124(48):14316~14317.
    [6]Yu YY, Chang SS, Lee CL, et al. Gold nanorods:electrochemical synthesis and optical properties[J]. J.Phys.Chem.B,1997,101:6661~6664.
    [7]Chang SS, Shih CW, ChenCD, et al. The shape transition of gold nanorods[J].Langmuir, 1999,15:701~709.
    [8]van der Zande BMI, Bohmer M R, Fokkink LGJ, et al. dispersions of gold rods:Synthesis and optical properties[J]. Langmuir,2000,16 (2):451~458.
    [9]Govindaraj A, Satishktunar BC, Nath M. et al. Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundle [J]. Chem.Mater,2000,12(1):202~205.
    [10]Cottell DLFS, Rensmo H, Fitzmaurice D. Carbon nanotube templated self-assembly and thermal processing of gold nanowires [J]. Adv. Mater,2000.12(19):1430~1432.
    [11]Cepak VM, Martin CR. Preparation and stability of template-synthesized metal nanorod sols in organic solvents[J]. J. Phys. Chem. B,1998,102(49):9985~9990.
    [12]Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J]. J.Phys.Chem.B,2001,105 (19):4065~4067.
    [13]Jana NR, Gearheart L, Murphy CJ. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Adv. Mater,2001,13 (18):1389~1393.
    [14]Murphy CJ, Jana NR. Controlling the aspect ratio of inorganic nanorods and nanowires[J].
    Adv. Mater,2002.14(1):80-82.
    [15]Murphy CJ, Gole A. Seed-mediated synthesis of gold nanorods:Role of the size and nature of the seed[J]. Chem.Mater,2004,16(19):3633-3640.
    [16]Wei A, Wang HF, Huff TB, et al. In vitro and In vivo two-photon luminescence imaging of single gold nanorods[J]. Proceedings of the National Acedemy of Sciences of the United States of America,2005,102(44):15752~15756.
    [17]El-Sayed IvanH, Huang Xiaohua, El-Sayed Mastafa. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer [J].Nano Letters,2005,5 (5):829~834.
    [18]Huang XH, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J].J.Am.Chem.Soc,2006, 128:2115~2120.
    [19]Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer[J].Nanotoday,2007, 2(1):18~29.
    [20]Durr NJ, Larson T, Smith DK. Et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods[J]. Nano Letters,2007,7(4):941-945.
    [21]Chen CC. et al. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation[J]. J.m. hem. Soc,2006,128:3709-3715.
    [22]Anne Hamilton, Gabriel Hortobagyi. Chemotherapy:What progress in the last 5 years[J]. Journal of Clinical Oncology,2005,23(8):1760~1775.
    [23]Chen WeiR, Adams RobertL, Carubelli Raoul, et al. Laser-photo sensitizer assisted immunotherapy:Anovel modality for cancer treatment[J]. Cancer Letter,1997,115 (1):25~30.
    [24]Joseph R, Lakowicz, Mustafa H. Chowdhury, Krishanu Ray. et al. Plasmon-controlled fluorescence:a new detection technology [C]. SPIE,2006,6099:609909-1~609909-15.
    [25]Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrafed thermal therapy of tumors under magnetic resonance guidance[J]. Proc. Natl. Acad. Sci.U.S.A,2003, 100:13549-13554.
    [26]O' Neal DP, Hirsch LR, Halas NJ, et al. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles[J]. Cancer Lett,2004,209:171~176.
    [27]Lowery AR, Gobin AM, Day ES, et al. Immunonanoshells for targeted photothermal ablation of tumor cells[J]. International Journal of Nanomedicine,2006,1(2):149~154.
    [28]Zharov VP, Galitovskaya EN, Carl Johnson C. et al.Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters:Potential for cancer therapy [J]. L asers in Surgery and Medicine,2005,37(3):219~226.
    [29]Li PC, Wei CW, Liao CK,et al.Multiple targetingin photo acoustic imaging using biocon-jugatedg old nanorods[J]. Proceedings of SPIE,2006,6068,60860M-1-60860M-10.
    [30]Wang Yiwei, Xie Xueyi, Wang Xueding. et al. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain[J]. Nano Letters,2004,4(9):1689~1692.
    [31]Daniel Marie Christine, Astruc Dither. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chem. Rev,2004,104(1):293~346.
    [32]Yuan Fan, Leunig Michael, Huang Shikun. Microvaseular permeabi-lity and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenogtsft [J]. Cancer Research,1994,54(13):3352~3356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700