纳米材料在金属离子及生物分子分析检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金纳米粒子和CdS量子点作为经典的纳米材料,因其尺寸小,具有各自独特的电子、催化及光学特性而在生物医学成像、DNA杂交和无机金属离子检测等方面得到广泛的应用。本文利用硫离子修饰后的金纳米粒子跟溶液当中的汞离子发生反应,并基于溶液颜色变化建立了一种运用共振光散射技术可视化检测汞离子的方法;此外,我们还分别研究了硫离子修饰后的金纳米棒,富硫离子的CdS量子点跟汞离子以及富镉离子的CdS量子点跟半胱氨酸的作用。主要研究内容为:
     (1)合成几种大小不同的金纳米粒子,用硫离子对其进行修饰,修饰后的金纳米粒子用激光拉曼光谱进行表征。将修饰后的金纳米粒子用于溶液中汞离子的检测,结果发现金纳米粒子发生聚集,溶液颜色呈现红-紫-蓝的变化,且光散射信号在汞离子浓度为0.025-0.25μmol·L-1的范围内呈线性增强,检出限(3σ)为0.013μmol·L-1,这个方法成功用于环境样中汞离子的测定,该方法经济,简单,快速,灵敏度高,有一定应用价值。
     (2)合成颜色呈粉红色的金纳米棒,用硫离子对其修饰,在弱酸性介质中,硫的一端与金纳米棒共价作用结合后,另一端与汞离子结合形成纳米复合物,使体系的共振光散射强度增强。光散射强度在汞离子浓度为0.1-10μmol·L-1范围呈线性增加,检出限为0.096μmol·L-1。
     (3)用柠檬酸三钠和六偏磷酸钠做稳定剂,控制反应初期S2-的物质的量大于Cd2+物质的量,在冰水浴中一步合成了富硫离子的CdS量子点。以富硫离子的量子点为荧光探针,选择性地检测溶液当中的汞离子。考察了不同缓冲体系、缓冲pH值、量子点浓度等多种因素的影响,在最佳实验条件下,测定汞离子的线性区间为0.05.33μmol·L-1,检出限为O.08μmol·L-1,由此我们建立了一种基于表面富硫离子的CdS量子点检测汞离子的方法。
     (4)以柠檬酸钠和六偏磷酸钠为稳定剂,控制反应初期S2-的物质的量小于Cd2+物质的量,在冰水浴中一步合成富Cd2+的CdS量子点。以富Cd2+的CdS量子点为荧光探针,选择性地检测半胱氨酸。实验研究发现半胱氨酸对量子点的荧光有增敏效应,在pH2.87的B-R缓冲溶液,体系的荧光强度增加值与半胱氨酸的加入量成正比。该方法的检出限是0.01μmol·L-1,选择性好,回收率结果满意。
Owing to the small size, electronics, catalytic and optical properties, gold nanoparticles and CdS quantum dots acted as the classic nanometer materials have been wildly used in the fields of biomedical imaging, DNA and inorganic metal ion detection since their discovery. In the thesis, we used S2" modified gold nanoparticles to detect the Hg2+in the solution by the resonance scattering technology, and a visual method for Hg2+was further developed based on the color change of this solution. In addition, new analytical methods for Hg2+determination were proposed respectively based on the S2-modified gold nanorods and sulfide-capped CdS quantum dots. Moreover, we studied the interaction between the cadmium-capped CdS quantum dots with the cysteine. The main contents are listed as follows:
     (1) We had synthesized several sizes of gold nanoparticles and modified them with S2-. After modification, the gold nanoparticles were characterized by Laser Raman Spectra and used for the detection of Hg2+in the aqueous solution. Our results showed the gold nanoparticles aggregated together and the color of the solution changed from red to violet until blue. The enhanced RLS intensities were found to be proportional to the concentration of Hg2+in the range of 0.025-0.25μmol·L-1 with a detection limit (3σ) of 0.013μmol·L-1. This method was successfully used for the detection of environmental samples and there were many merits of this way, such as simple and small measuring structure, high sensitive, fast determination, broaden adaption environment and so on, so having certain application value.
     (2) We had synthesized pink gold nanorods and modified them with S2-. In the acidic medium, one side of sulfur reacted with the gold nanorods by the covalent binding effect and the other side combined with mercury to form Hg-S bond, so the distance of gold nanorods decreased and the resonance light scattering (RLS) intensities of the system increased greatly. Experiments showed that the enhanced RLS intensities (ΔIRLS) were proportional to the concentration of Hg2+in the range of 0.1-10μmol·L-1. The correlation coefficient of linear equations was 0.9910 with a detection limit of 0.096μmol·L-1.
     (3) Using sodium hexametaphosphate and sodium citric as stabilizing substances, the sulfide-capped CdS quantum dots had been fabricated in the icewater bath by controlling the initial amount of S2-more than the initial amount of Cd2+. The sufide-capped CdS quantum dots were used as fluorescence probes for the selective determination of trace amounts of Hg2+based on the evident quenching action of Hg2+ on the fluorescences of quantum dots. The effects of buffer type, pH value and CdS quantum dots concentrations were investigated. Under optimum condition, the value of ((Fo-F)/F) upon the addition of Hg2+were found to be proportional to the concentration of Hg2+in the range of 0.05-33μmol·L-1 with a detection limit of 0.08μmol·L-1. Thus, a new fluorometric method for Hg2+based on the sulfide-capped CdS was developed.
     (4) Controlling the initial amount of Cd2+more than the initial amount of S2-, the cadmium-capped CdS quantum dots were prepared by means of sodium hexametaphosphate and sodium citric as stabilizing substances in the icewater bath. The cadmium-capped CdS quantum dots were used as fluorescence probes for the selective determination of cysteine. Our results showed that the cysteine could increase the fluorescence intensities of the CdS quantum dots. In the B-R buffer solution with pH value of 2.87, the value of ((Fo-F)/Fo) upon the addition of Hg2+were found to be proportional to the concentration of cysteine with a detection limit of 0.01μmol·L-1. Our results showed that there was a best selectivity and satisfactory recovery.
引文
[1]张志焜,崔作林.纳米技术与纳米材料.第一版,国防工业出版社2000,1-225.
    [2]李玉宝,刘东.纳米材料研究与应用.第一版,电子科技大学出版社,2005,65-83.
    [3]曹宝盛.曹传宝.徐甲强.纳米材料学.第一版,哈尔滨工程大学出版社2002,5-93.
    [4]Brringer R.; Gleiter H.; Klein, H.-P.; Marquardt, P. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? Phys. Lett. A.,1984,102,365-369.
    [5]高晓云,陈进,王冕.激光气相合成FexSiy超微粉.无机材料学报,1992,7,429-434.
    [6]隋同波.激光法合成SiC超细粉末物理化学过程的研究.硅酸盐学报,1993,21,33.
    [7]郭广生.激光气相法制备Fe2O3超微粒子.无机材料学报,1993,8,377-381.
    [8]Pacheco-Malagon, G.; Garcia-Borquez, A.;et al.TiO2-Al2O3 nanocomposites. J. Mater. Res., 1995,10,1264-1269.
    [9]Venkatachari, K. R.; et al.A combustion synthesis process for synthesizing nanocrystalline zirconia powders. J. Mater. Res.,1995,10,748-755.
    [10]Cui, Z. L.; et al. Oxidation behavior of nano-Fe prepared by hydrogen ARC plasma method. Nanostruct. Mater.,1995,5,829-833.
    [11]Birringer, R.; Gleiter, H.; et al. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? Phys. Lett.A.,1984,102,365-369.
    [12]Qian, Y.T.; Su, Y.; Xie, Y.; et al. Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite. Mater. Res. Bull.,1995,30,601-605.
    [13]Mo, M.S.; Zeng, J.H.; Liu, X.M.; Yu, W.C.;Zhang, S.Y.; Qian, Y.T.Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes.Adv. Mater, 2002,14,1658-1662.
    [14]Peng,Y.Y; Meng, Z.Y. Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2 Chem.Lett.,2001,8,772-773.
    [15]胡晓歌.王铁.程文龙等.金属纳米线的合成与组装.分析化学2004,32,1240-1245.
    [16]吴希俊.纳米固体材料的力学问题.力学进属1991,21,1,63-69.
    [17]平德海.吴希俊.几种纳米固体材料的显微结构特征.金属学报,1995,31,79-84.
    [18]杨得全.范垂祯.纳米固体材料的界面及其对性能的影响.真空与低温,1995,1,134-140.
    [19]沈海军.穆先才.纳米薄膜的分类、特性、制备方法与应用.纳米材料与结构,2005,11.506-510.
    [20]Sun, Y.; Khang, D.Y; Hua, F. Photolithographic poute to the fabrication of micro/ nanowires of Ⅲ-Ⅴ semiconductors. Adv. Funct. Mater.,2005,15,30-40.
    [21]Gittins, D.I.; Bethell D.; Schiffrin, D. J. A nanoswitch operating on fewer than 30 electrons. Nature,2000,408,67-69.
    [22]Corti, C. W.; Holliday, R. J. Commercial aspects of gold applications:.from materials science to chemical science. Gold.Bull.,2004,37,20-26:
    [23]Haruta, M. Gold as a novel catalyst in the 21 st century:preparation, working mechanism and applications. Gold. Bull,2004,37,27-36.
    [24]董守安,唐春.DNA识别,生物传感器和基因芯片中的纳米金和银粒子.贵金属2005,26,53-61.
    [25]殷焕顺,艾仕云,汪建民.制备金纳米粒子的研究进展.材群研究与应用,2007,1,277-280.
    [26]杨志林.李秀燕.胡建强.任斌.周海光.田中群.金纳米粒子光学性质中的尺寸和形状效应.光散射学报,2003,15,1-5.
    [27]李巧铃等.金纳米粒子的制备及自组装.功能材料与器件学报,2007,13,580-587.
    [28]李巧铃等.金纳米粒子的合成和应用.现代化工,2007,27,378-381.
    [29]Frens, G. Controlled nucleation for the regulation of the paticle size in monodisperse gold suspensions. Nature,1973,241,20-22.
    [30]Ching, C.L. Controlled growth of gold nanoparticles in Aerosol-OT/sorbitan molooleate/ isooctane mixal reverse micelles. J. Colloid. Interface.Sci,2000,230,60-66.
    [31]Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L.M.; et al. Gold nanorods:synthesis, characterization and applications. Coord. Chem. Rev.,2005,249,1870-1901.
    [32]Chen, J.Y.; Benjamin, J.W.; Xia, Y.N.One-dimensional nanostructures of metals:large-scale synthesis and some potential applications. Langmuir,2007,23,4120-4129.
    [33]杨玉东.徐菁华.杨林梅.潘卫三.金纳米棒合成与自组装的研究进展.化工进展,2009,28.1583-1595.
    [34]赵肃清,邓强,林壮森,蔡燕飞等.控制种子量合成不同长径比的金纳米棒.现代化工,2008,28,49-52.
    [35]齐航,朱涛,刘忠范.电解法制备棒状金纳米粒子溶胶.物理化学学报,2000,16.956-960.
    [36]Yu, Y-Y.;Chang, S-S.;Lee,C-L.Gold nanorods:electrochemical synthesis and optical properties:J. Phys. Chem. B.,1997,101,6661-6664.
    [37]Kim, F.; Song, J. H.;Yang, P.D. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc.,2002,124,14316-14317.
    [38]Liu, F-K.; Chanb,Y-C.; K; et al. Microwave rapid heating for the synthesis of gold nanorods. Mater. Lett.,2004,58,373-377.
    [39]Zhou,Y.; Wang, C.Y.; Zhu, Y.R; et al.A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem. Mater., 1999,11,2310-2312.
    [40]Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature,1996,382,607-609.
    [41]Xiao, Y.; Patolsky, F.; Katz, E.; et al. "Plugging into enzymes":nanowiring of redox enzymes by a gold nanoparticle. Science,2003,299,1877-1881.
    [42]Ma, Z.F.; Sui, S.F.Naked-eye sensitive detection of immunoglubulin G by enlargement of Au nanoparticles in vitro. Angew.Chem.Int.Ed.,2002,41,2176-2179.
    [43]Elghanian, R.;Storhoff, J.J.; Mucic, R.C.; et al.Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997,277,1078-1081.
    [44]Thanh, NTK.; Rosenzeig, Z. Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal.Chem.,2002,74,1624-1628.
    [45]Rex, M.; Hernandez, F. E.; Campiglia, A. D. Pushing the limits of mercury sensors with gold nanorods. Anal. Chem.,2006,78,445-451.
    [46]Huang, C-C.; Chang, H-T. Selective gold-nanoparticle-based "Turn-On" fluorescent sensors for detection of mercury (II) in squeous solution. Anal. Chem.,2006,78, 8332-8338.
    [47]Ueda, A.; Oshima, T.; Haruta, M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides. Appl.. Catal., B., 1997,12,81-93.
    [48]Andreeva, D.;Tabakova,T.;Idakiev,V.Au-Fe2O3 catalyst for water-gas shift reaction preared by deposition-precipitation, Appl. Catal.,A.,1998,169,9-14.
    [49]殷焕顺,艾仕云,汪建民.制备金纳米粒子的研究进展.材料研究与应用,2007,4,277-280.
    [50]Huynh, W.; Dittmer, J.J.;Alivisatos, A.P.Hybrid nanorod-polmer solar cells. Science,2002, 2425-2527.
    [51]Chan, W.C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281,2016-2018.
    [52]Peng, X.G.;Manna, L.;Yang, W.D.;Wickham, J.;Scher, E.;et al.Shape control of CdSe nanocrystals. Nature,2000,404,59-61.
    [53]邢滨,李万万,孙康.有机体系中Ⅱ-Ⅵ族量子点的制备及其合成机理.化学进展,2008,20.841-850.
    [54]陈良,饶海波,占红明,陈伟,何修军.一种表面修饰的CdS量子点的合成与特征分析.纳米材料与结构,2005,11,522-531.
    [55]宋冰,程柯,武超,杜祖亮.量子点的制备和光学性质.材料研究学报,2009,23,89-92.
    [56]王璐,王德平,黄文品.Ⅱ-Ⅵ族半导体量子点合成方法的研究进展.材料导报,2005,19,12-19.
    [57]Alivisatos, A.P. Semiconduetor clusters, nanocrystals and quantum dots. Science,2003, 271,933-937.
    [58]'Gao, X.; Yang, L.; Petros, J. A.; et al.In vivo molecular and cellular imaging with quantum dots. Curr.Opin.Biotechnol.,2005,16,63-72.
    [59]Murray, C.B.;Norris,D.J.;Bawendi,M.G. Synthesis and characterization.of nearly monodies-perse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc.,1993,115,8706-8715.
    [60]Qu, L.;Peng, Z.A.; Peng, X. Alternative routes toward high quality CdSe nanocrystals. Nano.Lett.,2001,1,333-337.
    [61]Talapin, D.V.; Rogach,A.L.; Mekis,I.et al. Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals.Colloids Surf., A.,2002,202, 145-154.
    [62]梁佳然.钟文英.于俊生.高质量CdTe量子点的水相快速合成.高等学校化学学报,2009,1,14-18.
    [63]Gao, X.H.;Cui, Y.Y.;Nie, S.In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol.,2004,22,969-976.
    [64]Gao, M.; Kirstein, S.; Rogach, A.L. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic. J. Phys. Chem. B.,2006,102,8360-8363.
    [65]汪乐余,郭畅,李茂国.功能性硫化镉纳米荧光探针荧光猝灭法测定核酸.分析化学,2003,31,83-86.
    [66]Kim, T.; Noh, M.; Lee, H.;et al. Fluorescence-based detection of point mutation in DNA sequences by CdS quantum dot aggregation. J. Phys. Chem. B.,2009,113,14487-14490.
    [67]李德娜,张兵波,马贵平,刘旭辉,田惠等.水溶性量子点纳米微球的制备、表征及其在生物检测中的应用.高等学校化学学报,2008,29,46-49.
    [68]陈朵朵,马璐,李立家.量子点在生物学中的应用.氨基酸和生物资源2009,31,48-52.
    [69]Bruchez, M.P.; Peale, F.;Ge, N.F. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semi-conductor quantum dots. Nat. Biotechnol.,2003,21,41-46.
    [70]Mitchell, G.P.; Mirkin, C.A; Letsinger,R.L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc.,1999,121,35,8122-8123.
    [71]Chan,Y-F.;Rosenzweig, Z. Luminescent CdS quantum dots as selective ion probes.Anal. Chem.,2002,74,5132-5138.
    [72]Kerim, M.; Gattas, A.; Roger, M.; et al. Peptide-coated CdS quantum dot for.the optical detection of copper and silver. Chem. Commun.,2003,21,2684-2685.
    [73]吴东平,张勇,冯如朋,周磊.痕量铜的CdS/ZnS量子点荧光猝灭测定.分析测试学报,2008,27,638-640.
    [1]Wang, Q.; Kim, D.; Dionysiou, D.D.; Sorial, G. A.;Timberlake, D. Sources and remediation for mercury contamination in aquatic systems. Environ. Pollut.,2004,131, 323-336.
    [2]Tchounwou, P.B.;Ayensu,W.K.;Ninashvili,N.Sutton, D. Environmental exposure to mercury and its toxicopathologic implications for public health.Environ.Toxicol.,2003,18 149-175.
    [3]Eisler, R. Health risks of gold miners:a synoptic review. Environ.Geochem.Health.,2003, 25,325-345.
    [4]Gutknecht, J. Inorganic mercury (Hg2+) transport through lipid bilayer membranes.Membr. Biol.,1981,61,61-66.
    [5]Zheng, W.; Aschner, M.; Ghersi-Egea, J.-F. Brain barrier systems:a new frontier in metal neurotoxicological research.Toxicol. Appl. Pharmacol,2003,192,1-11.
    [6]Wojcik, D.P.;Godfrey, M.E.; Christie, D.; Haley, B.E.Mercury toxicity presenting as chronic fatigue, memory impairment and depression:diagnosis, treatment, susceptibility, and outcomes in a New Zealand general practice setting. Neuro.Endocrinol.Lett.,2006,27, 415-423.
    [7]Mutter,J.; Naumann,J.;Schneider,R.;Walach, H.;.Haley, B. Mercury and autism: accelerating evidence? Neuro.Endocrinol.Lett.,2005,26,439-446.
    [8]Ziemba, S.E.; McCabe Jr, M.J.; Rosenspire, A.J. Inorganic mercury dissociates preassembled Fas/CD95 receptor oligomers in T lymphocytes. Toxicol.Appl.Pharmacol, 2005,206,334-342.
    [9]Guo, T.L.; Miller, M.A.; Shapiro, I. M.; Shenker, B. J. Mercuric chloride induces apoptosis in human T lymphocytes:evidence of mitochondrial dysfunction.Toxicol.Appl. Pharmacol.,1998,153,250-257.
    [10]Kan,M.; Willie, S. N.;Scriver,C.; et al.Determination of total mercury in biological sampl-es using flow injection CVAAS following tissue solubilization in formic acid.Talanta,2006, 68,1259-1263.
    [11]Baralkiewicz, D.; Gramowska,H.; Kozka, M. et al. Determination of mercury in sewage sludge by direct slurry sampling graphite furnace atomic absorption spectrometry.Spectro-chim.Acta, Part B.,2005,60,409-413.
    [12]Brand, G.P.; De, C. R.; Luna, A.S. Determination of mercury in gasoline by cold vapor atomic absorption spect romet ry with direct reduction in microemulsion mediaSpectro-chim.Acta, Part B.,2005,60,625-631.
    [13]翁棣.微波消化冷原子荧光法测定鲨鱼肝脏中的汞.光学学与光谱分析2005,25,2073-2075.
    [14]Geng,W.; Nakajima,T.; Takanashi,H. et al. Determination of mercury in ash and soil samples by oxygen flask combustion method-cold vapor atomic fluorescence spectrometry (CVAFS). J.Hazard.Mater.,2008,154,325-330.
    [15]王文革,赵书林,李舒婷.1-偶氮苯-3-(6-甲氧基-2-苯并噻唑)-三氮烯的合成及用于汞的光度测定.理化检验化学分册,2006,42,100-102.
    [16]邓美珍,刘忠芳.硫氰酸盐和结晶紫分光光度法测定痕量汞.西南师范大学学报:自然科学版,1993,18,60-64.
    [17]冯胜,张治芬.硫氰酸盐-罗丹明B-聚乙烯醇光度法在水相中测定微量汞.分析化学,1991,19,86-88.
    [18]Nolan, E. M.; Lippard, S. J.A "Turn-On" fluorescent sensor for the selective detection of mercuric ion in aqueous media. J. Am. Chem. Soc.,2003,125,14270-14271.
    [19]Yang, Y-K.; Yook, K.-J.; Tae, J.A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ions in aqueous media. J. Am.Chem. Soc., 2005,127,16760-16761.
    [20]Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. Screening mercury levels in fish with a selective fluorescent chemosensor. J. Am. Chem. Soc.,2005,127,16030-16301.
    [21]Thomas, J. M.; Ting, R.; Perrin, D. M. High affinity DNAzyme-based ligands for transition metal cations-a prototype sensor for Hg2+. Org.Biomol. Chem.,2004,2,307-312.
    [22]Ono, A.; Togashi, H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions Angew. Chem. Int. Ed.,2004,43,4300-4302.
    [23]Kim, 1.-B.; Bunz, U. H. F.Modulating the sensory response of a conjugated polymer by proteins:an agglutination assay for mercury ions in water. J.Am.Chem.Soc.,2006,128, 2818-2819.
    [24]Huang, C. C.; Chang, H. T. Selective gold-nanoparticle-based "Turn-On" fluorescent sensors for detection of mercury (Ⅱ) in aqueous solution. Anal. Chem.,2006,78,8332-8338.
    [25]Huang, C.C.; Chang, H.T. Parameters for selective colorimetric sensing of mercury (Ⅱ) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem. Commun.,2007,12,1215-1217.
    [26]Huang, C.C.; Yang, Z.; Lee, K.-H. et al.Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew.Chem.Int.Ed.,2007,46,6824-6828.
    [27]谢济运.共振散射光谱分析.柳州师专学报,2003,18,83-88.
    [28]Pasternack, R. F.; Bustamante, C.; Collings, P. J.; Giannett,A.; Gibbs, E. J. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J.Am.Chem. Soc., 1993,115,5393-5399.
    [29]Pasternack, R. F.; Collings, P. J. Resonance light scattering:a new technique for studying chromophore aggregation.Science,1995,269,935-939.
    [30]Pasternack, R. F.; Schaefer, K. S.; Hambright, P. Resonance light scattering studies of porphin diacid aggregates. Inorg. Chem.,1994,33,2062-2065.
    [31]Gopala, K.D.; Anant, K.S.; Uma,S.R. Selective detection of mercury (Ⅱ) ion using nonlinear optical properties of gold nanoparticles.J.Am.Chem.Soc.,2008,130,8038-8043.
    [32]Jiang, Z. L.; Fan, Y. Y.; Chen, M. L. Resonance scattering spectral detection of trace Hg2+ using aptamer-modified nanogold as probe and nanocatalyst Anal.Chem.,2009,81,5439-5445.
    [33]Darbha, G.K.; Ray, A.; Ray, P.C. Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. ACS Nano,2007,1,208-214.
    [34]Ray, P.C.Diagnostics of Single Base-Mismatch DNA Hybridization on gold nanoparticles by using the hyper-Rayleigh scattering technique. Angew.Chem.Int. Ed.,2006,45,1151-1154.
    [35]Darbha, G. K.; Rai, U. S.; Singh, A. K.; Ray, P. C. Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy. Chem.Eur.J.,2008,14,3896-3903.
    [36]Ray, P.C; Fortner, A.; Darbha, G. K.Gold nanoparticle based FRET asssay for the detection of DNA cleavage. J.Phys.Chem.B:,2006,110,20745-20748.
    [37]Kim, C. K.; Kalluru, R. R.; Singh, J. P.; Fortner, A.; Griffin, J.; Darbha, G. K.; Ray, P. C. Gold-nanoparticle-based miniaturized laser-induced fluorescence probe for specific DNA hybridization detection:studies on size-dependent optical properties.Nanotechnology, 2006,17,3085-3093.
    [38]Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. DNA-Directed synthesis of binary nanoparticle network materials. J.Am.Chem.Soc.,1998,120,12674-12675.
    [39]. Khlebtsov, N. G. Determination of size and concentration of gold nanoparticles from extinction spectra. Anal.Chem.,2008,80,6620-6625.
    [40]Spiro, T.G.; Farrell, F.J. Raman study of metal-metal bonding in gold(I) diisobutyl-dithiocarbamate dimer. Inorg. Chem.,1971,10,1606-1610.
    [41]Hanna, S. D.; Khan, S. I.; Zink, J. I. Synthesis, structure, luminescence and Raman-determined excited state distortions of a trinuclear Gold(I) phosphine thiolate complex. Inorg. Chem.,1996,35,5813-5819.
    [42]Awaleh, M. O.; Robert, F. B.; Reber, C. Gold (I)-dithioether supramolecular polymers: synthesis, characterization, and luminescence. Inorg. Chem.,2008,47,2964-2974.
    [43]Bharara, M.S.; Parkin, S.; Atwood, D. A. Solution and solid-state study of heteroleptic Hg (Ⅱ)-thiolates:crystal structures of [Hg4I4(SCH2CH2NH2)4] and [Hg4I8(SCH2CH2NH3)2]. nH2O. Inorg.Chem.,2006,45,2112-2118.
    [44]Harris, D.C. Quantitative chemical analysis; 7th ed. W. H. Freeman & Co.:New York, 2007.
    [45]Fabbri, D.;Locatelli,C.; Snapeb, C.E.; Tarabusi, S. J. Sulfur'speciation in mercury-contaminated sediments of a coastal lagoon:the role of elemental sulfur. J. Environ. Monit., 2001,3,483-486.
    [46]Long, Y.F.; Jiang, D L; Zhu, X.; Wang J. X., Zhou F. M. Trace Hg2+analysis via quenching of the fluorescence of a CdS-encapsulated DNA nanocomposite. Anal. Chem., 2009,81,2652-2657.
    [47]Jana, N.R.; Gearheart, L.; Murphy, C.J. et al. Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir,2002,18,922-927.
    [48]Mohamed, M.B.; Wang, Z.L.; E1-Sayed, M.A. Temperature-dependent size-controlled nucleation and growth of gold nanoclusters. J.Phys.Chem.A.,1999,103,10255-10259.
    [49]Chen, H.M,; Peng, H.C.; Liu, R.S.; et al. Controlling the length and shape of gold nanorods. J.Phys.Chem.B.,2005,109,19553-19555.
    [50]Kim, F.; Song, J.H.; Yang, P. Photochemical synthesis of gold nanorods. J.Am.Chem. Soc.,2002,124,14316-14317.
    [51]Sau, T.K.; Murphy, C.J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am.Chem.Soc.,2004,126,8648-8649.
    [52]Xiao, Y.; Shlyahovsky, B.; Popov, I.; et al. Shape and color of Au nanoparticles follow biocatalytic processes. Langmuir,2005,21,5659-5662.
    [53]Hernandez, J.; Solla-Gullon, J.; Herrero, E.;et al.Characterization of the surface structure of gold nanoparticles and nanorods using structure sensitive reactiongs. J. Phys.Chem.B.,2005, 109,12651-12654.
    [54]Sau, T.K.; Murphy, C.J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir,2004,20,6414-6420.
    [55]Jiang, X.C.; Brioude, A.; Pileni, M.P. Gold nanorods:Limitations on their synthesis and optical properties.Colloid Surf., A.,2006,277,201-206.
    [1]Susha,A.S.;Javier, A.M.; Parak,W.J. et al. Luminescent CdTe nanocrystals as ion probes and pH sensors in aqueous solutions.Colloids.Surfs.,A.2006,28,40-43.
    [2]李梦莹,周华萌,董再蒸,徐淑坤.半胱氨酸包覆的CdTe量子点作为荧光离子探针测定痕量汞(Ⅱ).冶金分析,2008,28(12):7-11.
    [3]Harris, D. C. Quantitative chemical analysis,7th ed.; W. H. Freeman & Co..New York, 2007.
    [4]Moon, C.-Y.; Wei, S.-H. Band gap of Hg chalcogenides:Symmetry-reduction-induced band-gap opening of materials with inverted band structures. Phys.Rev.B.,2006,74, 045205.
    [5]Chakraborty, I.; Mitra, D.; Moulik, S. P. Spectroscopic studies on nanodispersions of CdS, HgS, their core-shells and composites prepared in micellar medium. J.Nanopart. Res.,2005, 7,227-236.
    [6]Shahrokhian, S.; Bozorgzadeh, S. Electrochemical oxidation of dopamine in the presence of sulfhydryl compounds:Application to the square-wave voltammetric detection of penicillamine and cysteine. Electrochim.Acta.,2006,51,4271-4276.
    [7]Lau, C.; W, Q. Determination of cysteine in a pharmaceutical formulation by flow injection analysis with a chemiluminescence detector. Anal.Chim.Acta.,2004,514,45-49.
    [8]Prasad, S. Kinetic determination of organosulphur ligands by inhibition:Trace determination of cysteine and maleonitriledithiolate (MNDT). Microchem.J.,2007,85, 214-221.
    [9]Zhang, D.Q.; Zhang, M.; Liu, Z.Q.; Yu, M.X.; Huang, C.H. Highly selective colorimetric sensor for cysteine and homocysteine based on azo derivatives.Tetrahedron Lett.,2006,47, 7093-7096.
    [10]李正平,段新瑞,白玉惠.基于金纳米粒子自组装的分光光度法测定半胱氨酸.分析化学,2006,34,1149-1152.
    [11]Amarnath, V.; Amarnath, K. Specific determination of cysteine and penicillamine through cyclization to 2-thioxothiazolidine-4-carboxylic acids. Talanta,2002,56,745-751.
    [12]Wang, H.; Wang, W.S.; Zhang, H.S. A spectrofluorimetric method for cysteine and glutathione using the fluorescence system of Zn (Ⅱ)-8-hydroxyquinoline-5-sulphonic acid complex.Spectrochim.Acta, Part A.,2001,57,2403-2407.
    [13]Wang, H.; Wang, W.S.; Zhang, H.S. Spectrofluorimetic determination of cysteine based on the fluorescence inhibition of Cd (Ⅱ)-8-hydroxyquinoline-5-sulphonic acid complex by cysteine. Talanta,2001,1015-1019.
    [14]Hong, C.Y.; Xiu, C.R. Highly sensitive spectrofluorimetric determination of L-cysteine based on inhibition of hemoglobin. Spectrochim.Acta, PartA.,2003,59,3357-3362.
    [15]Li, Z.P.; Duan, X.R.; Liu, C. H.; et al. Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles. Anal.Biochem., 2006,351,18-25.
    [16]Zhang, M.; Li, M.Y,; Zhao, Q.; et al. Novel Y-type two-photon active fluorophore: synthesis and application in fluorescent sensor for cysteine and homocysteine. Tetrahedron Lett.,2007,48,2329-2333.
    [17]黄志标,王维生.利用荧光增敏效应测定半胱氨酸的新体系研究.广西科学2008,15,60-63.
    [18]王琼,陈介南,章怀云.水溶性量子点制备条件的优化及表面修饰.材群导报:研究篇,2009,23,83-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700