铜互连结构的力学性质及基于互连结构制备的阻变存储器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属化是现代IC工艺的一个重要组成部分,目前铜已经取代铝而成为主流互连材料。铜互连纳米多层膜体系的力学特性,如硬度与弹性模量会对器件的可靠性产生重大影响。因此,建立一套能够在纳米尺度表征其力学性能的方法是十分必要的。
     新型的存储器技术首先要能够集成进入标准的半导体工艺,同时需要具有高存储密度、非破坏性读写、低功耗、耐擦写等优点。阻变式随机存储器(RRAM)由于其简单的结构、优异的性能而受到业界的广泛关注。在现有互连结构上制备的RRAM单元与后端工艺之间兼容度非常高。目前,基于铜/铝金属化制备RRAM单元已取得一定进展,然而,这种两端器件的材料体系需要丰富,器件性质的表征方法有待完善,工作机理尚不明确。
     本文针对Cu互连结构的力学性质以及基于互连结构制备的阻变存储器进行了研究,主要包括以下四部分内容:
     一、使用纳米压入技术检测Cu/Ta/SiO2/Si多层膜结构的纳米力学参量(硬度、弹性模量),并研究了外力作用下体系的形变情况。为了表征纳米压痕下的形变微观区域,采用聚焦离子束加工出压痕截面,同时进行扫描电子、扫描离子显微观察,发现样品衬底发生开裂,多层膜结构出现分层现象。TEM分析表明分层出现在’Ta/SiO2界面,分层的原因主要归结为在应力作用下,多层膜中各种材料的应变、弹性恢复能力不同。
     二、使用导电原子力显微分析技术(C-AFM)对CuxO阻变材料及器件进行了微区电流分布研究。CuxO薄膜采用等离子体氧化工艺在Cu互连结构表面制备。结果发现开启状态薄膜中形成了导电通道;从电流分布的均匀性出发评估了相应器件的可缩小性;结合Pt/CuxO/Cu存储单元性能测试结果,分析了它的工作机理;对宏观I-V测试中观察到的开启电压浮动、高阻值涨落、无形成过程等现象从微观角度做出解释。
     三、使用等离子体浸没注入技术(PⅢ)在铜互连结构上制备了氮化铜薄膜,通过调控注入条件优化薄膜质量。对以氮化铜作为中间层的M/CuxN/Cu MIM结构进行电学测试,结果表明该结构具有电阻开关特性。结合器件微区电流分布情况,认为其阻变特性是源于金属性导电细丝的形成/断裂。然后进一步研究了CuxN基RRAM存储单元的开启速度、温度稳定性、疲劳特性、非易失性以及可缩小性等器件性能。最后讨论了电极材料以及制备工艺对于器件电阻开关性质的影响。
     四、分别使用PⅢ技术和脉冲激光沉积技术在Al互连结构表面制备了A1N薄膜,针对不同工艺对于薄膜物性的影响进行了讨论。通过沉积上电极Cu形成Cu/AIN/Al单元,初步研究了该结构的电学性质,展望了这种A1N基存储单元的应用前景。
Metallization is one of the crucial parts in modern IC technology. Nowadays, copper has been widely adopted as a substitute for aluminum in the manufacture of ultra large-scale integrated circuits (ULSI). The mechanical properties of the Cu interconnection, such as hardness and elastic modulus, also significantly influence the performance and reliability of ICs. Therefore, the characterization of nanotribological properties of Cu/Ta/SiO2/Si multilayer thin films as a system turns out to be important in the evaluation of multilevel copper interconnects and nanoscale ICs.
     New memory technologies must be easily integrated into standard semiconductor process. The devices should be read out non-destructively, have low power consumption and high scalability. As a promising candidate for next generation nonvolatile memories, resistive random access memory (RRAM) can provide a simple structure and outstanding performance. The interests in studying the resistance switching materials will come from both academia and industry. RRAM cells fabricated on the interconnect structures show excellent compatibility with copper/aluminum back-end-of-line (BEOL). However, the material systems of such memory cells need to be enriched; the methods of characterization remain to be improved and the switching mechanism is still a matter of debate.
     In this context, the nanotribological properties of Cu/Ta/SiO2/Si multilayer system as well as RRAM cells based on interconnection structure were studied respectively, the following parts were included:
     1. Nanoindentation was adopted to investigate the compound hardness and elastic modulus of Cu/Ta/SiO2/Si multilayer thin film system. In order to reveal the structure variance, a residual indent was cut by FIB. The cross-section of the residual indent was observed by the scanning electron microscope (SEM), as well as the scanning ion microscope (SIM). It was found that an apparent fracture occurred in Si substrate and the multilayer thin film structure delaminated. Transmission electron microscope (TEM) analysis showed that the delamination occurred at the interface between the Ta layer and SiO2 layer of the residual indent. The different strain and the ability of elastic recovery of each material under stress are supposed to be the main reason of the delamination.
     2. Conductive atomic force microscopy (CAFM) analysis has been proved to be an effective method for the investigation of local conductivity of CuxO based RRAM devices. The CuxO films were grown by plasma oxidation process at room temperature. Current mapping results showed that local filaments growth and dissolution during the switching process. The scaling potential of such devices was discussed based on the density and uniformity of the filaments. The Pt/CuxO/Cu terminal memory cells did not need any forming process to activate it, however, the high resistances and the set voltages scattered in a large extent during cycling, the mechanism behind this phenomenon has been explained from microcosmic aspect.
     3. Copper nitride film prepared by plasma immersion ion implantation (PⅢ) was demonstrated to exhibit reversible resistance variance character. The nitrogen ion implantation process was carried out with progressively increased negative high voltage and single voltage, so as to controll the total nitrogen concentration and distribution in the CuxN film. By forming a gradually distributed nitrogen concentration in the Cu-nitride film, the nitride based memory devices show bipolar nature with a low operation voltage, forming-free characteristics, a distinguishable resistance ratio and a dependence on electrode materials. The bipolar switching behavior is attributed to the formation and rupture of conductive filaments within a cycle, which is confirmed by spreading resistance images. From the voltage step experiment, it was found that local conducting filaments might be formed by migration of Cuz+ ions under bias voltage. The properties of the Ni/CuxN/Cu memory cell, including programming speed, temperature dependence, endurance, retention and scalability, were discussed.
     4. AlN thin films were fabricated on Al interconnection by using PⅢand Pulse Laser Deposition (PLD), respectively. And their topography, crystal structure and chemical composition were investigated. By introducing top electrode metal Cu, a capacitor consisted of insulating layer AlN, sandwiched between Cu and Al was formed. The Cu/AlN/Al memory cells showed resistive switching behavior; however, the device performance has remained quite poor up to now and needs to be improved in the next future. Finally the application prospect of the AlN based RRAM cells are discussed.
引文
[1]李思言.VLSI铜互连可靠性TDDB特性及其寿命评估模型研究[D].西安;西安电子科技大学,2009.
    [2]杜鸣,郝跃.超深亚微米集成电路的铜互连技术布线工艺与可靠性[J].西安电子科技大学学报,2005,23:56-59.
    [3]Quirk M, Serda J. Semiconductor Manufaturing Technology [M].北京:电子工业出版社,2004.
    [4]Xiaocheng X. Interconnecting Technology of Mental Copper Used in IC with Deep Sub-micron Processing [J]. Microelectronic Technology,2001,29:1-6.
    [5]Latt KM, Lee YK, Osipowicz T, et al. Interfacial reactions and failure mechanism of Cu/Ta/SiO2/Si multilayer structure in thermal annealing [J]. Materials Science and Engineering B,2002,94:111-120.
    [6]Li BZ, Sullivan TD, Lee TC, et al. Reliability challenges for copper interconnects [J]. Microelectronics Reliability,2004,44:365-380.
    [7]ITRS. The International Technology Roadmap for Semiconductors [M]//WWW.ITRS.NET.2009.
    [8]Tsai MH, Tsai WJ, Shue SL, et al. Reliability of dual damascene Cu metallization [C]. IEEE, proceedings of the International Interconnect Technology Conference, Burlingame,CA,2000:214-216.
    [9]Tsui BY, Fang KL, Shyh DL. Electrical instability of low-dielectric constant diffusion barrier film (a-SiC:H) for copper interconnect [J]. IEEE Trans Electron Devices,2001,48:2375-2383.
    [10]Wu ZC, Shiung ZW, Wang CC, et al. Electrical reliability issues of integrating low-K dielectrics with Cu metallization [C]. Ieee. proceedings of the the IEEE 2000 International Interconnect Technology Conference, Burlingame, CA, 2000:82-84.
    [11]Nucci JA, Keller RR, Sanchez JE, et al. Local crystallographic texture and voiding in passivated copper interconnects [J]. Appl Phys Lett,1996,69: 117856.
    [12]侯通贤,林晓玲,姚若河.互连宽度对铜互连应力可靠性的影响[J].微电子学,2010,40:122-125
    [13]王永,管伟华,龙世兵,et al.阻变式存储器存储机理[J].物理,2008,37:870-874.
    [14]Bez R, Pirovano A. Non-volatile memory technologies:emerging concepts and new materials [J]. Mater Sci Semicond Process,2004,7:349-355.
    [15]吴晓薇,郭子政.磁阻随机存取存储器(MRAM)的原理与研究进展[J].信息记录材料,2009,10:52-57.
    [16]Burr GW, Kurdi BN, Scott JC, et al. Overview of candidate device technologies for storage-class memory [J]. IBM J Res Dev,2008,52:449-464.
    [17]Baek IG, Kim DC, Lee MJ, et al. Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application [M]. Ieee International Electron Devices Meeting 2005, Technical Digest. New York; Ieee.2005:769-772.
    [18]Hickmott TW. Low-Frequency Negative Resistance in Thin Anodic Oxide Films [J]. J Appl Phys,1962,33:2669-2683.
    [19]Asamitsu A, Tomioka Y, Kuwahara H, et al. Current switching of resistive states in magnetoresistive manganites [J]. Nature,1997,388:50-52.
    [20]Kozicki MN, Yun M, Hilt L, et al. Applications of programmable resistance changes in metal-doped chalcogenides [M]//WACHSMAN E D, AKRIDGE J R, LIU M, et al. Solid-State Ionic Devices. Pennington; Electrochemical Society Inc.1999:298-309.
    [21]Beck A, Bednorz JG, Gerber C, et al. Reproducible switching effect in thin oxide films for memory applications [J]. Appl Phys Lett,2000,77:139-141.
    [22]Argall F. Switching Phenomena in Titanium Oxide Thin Films [J]. Solid-State Electron,1968,11:535.
    [23]Yang JJ, Pickett MD, Li X, et al. Memristive switching mechanism for metal/oxide/metal nanodevices [J]. nature Nanotechnology,2008,3:429-433.
    [24]Gibbons JF, Beadle WE. Switching Properties of Thin NiO Films [J]. Solid-State Electron,1964,7:785.
    [25]Kim DC. Lee MJ, Ahn SE, et al. Improvement of resistive memory switching in NiO using lrO2 [J]. Appl Phys Lett,2006,88:232106.
    [26]Dong R, Lee DS, Xiang WF, et al. Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures [J]. Appl Phys Lett,2007,90: 042107.
    [27]Lv HB, Yin M, Song YL, et al. Forming process investigation of CuxO memory films [J]. IEEE Electron Device Lett,2008.29:47-49.
    [28]Lee HY, Chen PS, Wu TY, et al. HfOx Bipolar Resistive Memory With Robust Endurance Using AlCu as Buffer Electrode [J]. IEEE Electron Device Lett, 2009,30:703-705.
    [29]Lee HY, Chen PS, Wu TY, et al. Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM [C]. Ieee. proceedings of the Ieee International Electron Devices Meeting 2008, Technical Digest, New York,2008:297-300.
    [30]Lin CY, Wu CY, Wu CY, et al. Effect of top electrode material on resistive switching properties of ZrO2 film memory devices [J]. IEEE Electron Device Lett,2007,28:366-368.
    [31]Guan WH, Long SB, Liu Q, et al. Nonpolar nonvolatile resistive switching in Cu doped ZrO2 [J]. IEEE Electron Device Lett,2008,29:434-437.
    [32]Chen A, Haddad S, Wu YC, et al. Non-volatile resistive switching for advanced memory applications [C]. Ieee International Electron Devices Meeting 2005, Technical Digest. New York; Ieee.2005:765-768.
    [33]Gibbons JF, Beadle WE. Highly Scalable Nonvolatile Resistive Memory Using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses [C]. IEEE, proceedings of the the IEEE International Electron Devices Meeting. San Francisco,2004:587-590.
    [34]Chen A. Ionic Memories:Status and Challenges [M].2008 9th Annual Non-Volatile Memory Technology Symposium, Proceedings. New York; Ieee. 2008:27-31.
    [35]Kozicki MN. Balakrishnan M. Gopalan C, et al. Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes [M].2005 Non-Volatile Memory Technology Symposium, Proceedings. New York; Ieee. 2005:83-89.
    [36]Jeong DS, Schroeder H, Waser R. Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack [J]. Electrochem Solid State Lett,2007,10:G51-G53.
    [37]Lv HB. Zhou P. Fu XF, et al. Polarity-free resistive switching characteristics of CuxO films for non-volatile memory applications [J]. Chin Phys Lett,2008, 25:1087-1090.
    [38]Chua LO. Memristor-the missing circuit element [J]. IEEE Transactions on Circuit Theory 1971,18:507-519.
    [39]Strukov DB, Snider GS, Stewart DR, et al. The missing memristor found [J]. Nature,2008,453:80-83.
    [40]Waser R, Aono M. Nanoionics-based resistive switching memories [J]. Nat Mater,2007,6:833-840.
    [41]Waser R, Dittmann R, Salinga M, et al. The role of defects in resistively switching chalcogenides [J]. Int J Mater Res,2010,101:182-198.
    [42]Waser R, Dittmann R, Staikov G, et al. Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges [J]. Adv Mater, 2009,21:2632.
    [43]O'Dwyer JJ. The theory of electrical conduction and breakdown in solid dielectrics [M]. Oxford:Clarendon,1973.
    [44]Russo U, Ielmini D, Cagli C, et al. Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM [M].2007 Ieee International Electron Devices Meeting, Vols 1 and 2. New York; Ieee.2007:775-778.
    [45]Choi BJ, Jeong DS, Kim SK, et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition [J]. J Appl Phys,2005,98: 033715.
    [46]Kim CH, Jang YH, Hwang HJ, et al. Observation of bistable resistance memory switching in CuO thin films [J]. Appl Phys Lett,2009,94:102107.
    [47]Son JY, Shin YH. Direct observation of conducting filaments on resistive switching of NiO thin films [J]. Appl Phys Lett,2008,92:222106.
    [48]Simmons JG, Verderber RR. New Conduction and Reversible Memory Phenomena in Thin Insulating Films [C]. The Royal Society, proceedings of the Proceedings of the Royal Society of London 1967:77-102.
    [49]Lampert MA, Mark P. Current injection in solids [M]. New York:Academic Press,1970.
    [50]Sawa A, Fujii T, Kawasaki M, et al. Interface resistance switching at a few nanometer thick perovskite manganite active layers [J]. Appl Phys Lett,2006, 88:232112.
    [51]Kao KC, Hwang W. Electrical Transport in Solids [M]. New York; Pergamon. 1981:314.
    [52]Rozenberg MJ, Inoue IH, aacute, et al. Nonvolatile Memory with Multilevel Switching:A Basic Model [J]. Physical Review Letters,2004,92:178302.
    [53]Yang WY, Kim WG, Rhee SW. Radio frequency sputter deposition of single phase cuprous oxide using Cu2O as a target material and its resistive switching properties [J]. Thin Solid Films,2008,517:967-971.
    [54]http://my.ece.ucsb.edu/mishra/classfiles/SCLCtransport.pdf.
    [55]Schindler C, Meier M, Waser R, et al. Resistive switching in Ag-Ge-Se with extremely low write currents [C]. IEEE, proceedings of the Non-Volatile Memory Technology Symposium, Albuquerque, NM 2007:82-85.
    [56]Mott NF, Gurney RW. Electronic Processes in Ionic Crystals [M]. Oxford: Oxford University Press,1948.
    [57]Willis BG, Lang DV. Oxidation mechanism of ionic transport of copper in SiO2 dielectrics [J]. Thin Solid Films,2004,467:284-293.
    [58]Banno N, Sakamoto T, Iguchi N, et al. Diffusivity of Cu Ions in Solid Electrolyte and Its Effect on the Performance of Nanometer-Scale Switch [J]. IEEE Trans Electron Devices,2008,55:3283-3287.
    [59]Bard AJ, Faulkner LR. Electrochemical Methods:Fundamentals and Applications [M]. New York:Wiley,2000.
    [60]Budevski E, Staikov G, Lorenz WJ. Electrochemical Phase Formation and Growth [M]. Weinheim:VCH,1996.
    [61]Staikov G. Electrocrystallization in Nanotechnology [M]. Weinheim: Wiley-VCH,2007.
    [62]Schindler C, Staikov G, Waser R. Electrode kinetics of Cu-SiO2-based resistive switching cells:Overcoming the voltage-time dilemma of electrochemical metallization memories [J]. Appl Phys Lett,2009,94:72109.
    [63]Guo X, Schindler C, Menzel S, et al. Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems [J]. Appl Phys Lett,2007,91:133513.
    [64]Szot K, Speier W, Carius R, et al. Localized Metallic Conductivity and Self-Healing during Thermal Reduction of SrTiO3 [J]. Physical Review Letters,2002,88:075508.
    [65]Meyer R, Waser R, Helmbold J, et al. Observation of Vacancy Defect Migration in the Cation Sublattice of Complex Oxides by 180 Tracer Experiments [J]. Physical Review Letters,2003,90:105901.
    [66]Szot K, Speier W, Bihlmayer G, et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 [J]. Nat Mater,2006,5: 312-320.
    [67]Pinto R. Filamentary switching and memory action in thin anodic oxides [J]. Physical Letters A,1971,35:155-156.
    [68]Beaulieu RP, Sulway DV, Cox CD. The detection of current filaments in VO2 thin-film switches using the scanning electron microscope [J]. Solid-State Electron,1973,3:428-429.
    [69]Rossel C, Meijer GI, Bremaud D, et al. Electrical current distribution across a metal-insulator-metal structure during bistable switching [J]. J Appl Phys, 2001,90:2892-2898.
    [70]Sawa A. Resistive switching in transition metal oxides [J]. Mater Today,2008, 11:28-36.
    [71]Baikalov A, Wang YQ, Shen B, et al. Field-driven hysteretic and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3 interface [J]. Appl Phys Lett, 2003,83:957.
    [72]Muenstermann R, Dittmann R, Szot K, et al. Realization of regular arrays of nanoscale resistive switching blocks in thin films of Nb-doped SrTiO3 [J]. Appl Phys Lett,2008,93:023110.
    [73]Seo S, Lee MJ, Seo DH, et al. Conductivity switching characterisitics and reset currents in NiO films [J]. Appl Phys Lett,2005,86:093509.
    [74]Kund M, Beitel G, Pinnow CU, et al. Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20nm [C]. IEEE. proceedings of the Electron Devices Meeting,2005 IEDM Technical Digest IEEE International Washington, DC,2005:754-757.
    [75]Dietrich S, Angerbauer M, Ivanov M, et al. A Nonvolatile 2-Mbit CBRAM Memory Core Featuring Advanced Read and Program Control [J]. IEEE Journal of Solid-State Circuits 2007,42:839-845.
    [76]LaPedus M. Startup readies conductive-bridging RAM [N]. EE Times,2010.
    [77]Baek IG, Lee MS, Seo S, et al. Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses [C]. IEEE, proceedings of the Technical Digest International Electron Devices Meeting, San Francisco,2004:587-590.
    [78]Goetzberger A, Shockley W. Metal Precipitates in Silicon p-n Junctions [J]. J Appl Phys,1960,31:1821-1824.
    [1]ITRS. The International Technology Roadmap for Semiconductors [M]//WWW.ITRS.NET.2010.
    [2]Fujiwara K, Tanimoto H, Mizubayashi H. Elasticity study of very thin Cu films [J]. Materials Science and Engineering A,2006,442:336-341.
    [3]Nitta SV, Ponoth S. Method for Manufacturing Interconnect Structures Incorporating Air-Gap Spacers [P]. America:US 2009/0075470 A1,2009.
    [4]Noguchi J, Sato K, Konishi N, et al. Reliability of air-gap Cu interconnect and approach to selective W sealing using 90nm node technology [C]. IEEE, proceedings of the The Ieee International Interconnect Thechnology Conference,2004:81-83.
    [5]Li S, Dong ZL, Latt KM, et al. Formation of Cu diffusion channels in Ta layer of a Cu/Ta/SiO2/Si structure [J]. Appl Phys Lett,2002,80:2296-2298.
    [6]Goetzberger A, Shockley W. Metal Precipitates in Silicon p-n Junctions [J]. J Appl Phys,1960,31:1821-1824.
    [7]Kim YC, Lee DS, Lee WJ. Adhesion and Diffusion Barrier Properties of Ta Films Fabricated by Auxiliary Plasma Assisted Bias Sputtering [J]. Japanese Journal of Applied Physics.2010,49:076501.
    [8]Li S, Park HS, Liang MH, et al. Effects of Cu diffusion behaviors on electronic property of Cu/Ta/SiO2/Si structure [J]. Thin Solid Films,2004, 462-463:192-196.
    [9]ITRS. The International Technology Roadmap for Semiconductors [M]//WWW.ITRS.NET.2009.
    [10]高鹏,陶敏中,袁哲俊,et al.纳米压痕技术及其应用[J].中国机械工程,1996.7:58-59.
    [11]张泰华,杨业敏.纳米硬度技术的发展和应用[J].力学进展,2002,32:349-364.
    [12]Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Material Research,1992,7:1564-1583.
    [13]Beegan D, Chowdhury S, Laugier MT. A nanoindentation study of copper films on oxidised silicon substrates [J]. Surface and Coatings Technology [J]. Surface and Coatings Technology,2003,176:124-130.
    [14]Johnson KL. Contact Mechanics [M]. Cambridge:Cambridge University Press, 1987.
    [15]Zeng F, Gao Y, Li L, et al. Elastic modulus and hardness of Cu-Ta amorphous films [J]. Journal of Alloys and Compounds,2005,385:75-79.
    [16]Saha R, Barnard JA. Effect of structure on the mechanical properties of Ta and Ta(N) thin films prepared by reactive DC magnetron sputtering [J]. Journal of Crystal Growth,1994,174:495-500.
    [17]Beck U, Smith DT, Reiners G, et al. Mechanical properties of SiO2 and Si3N4 coatings:a BAM/NIST co-operative project [J]. Thin Solid Films,1998,332: 164-171.
    [18]Bhushan B, Koinkar VN. Microtribological studies of doped single-crystal silicon and polysilicon films for MEMS devices [J]. Sensors and Actuators A, 1998,57:91-102
    [19]Bhushan B. Nanotribology and nanomechanics [J]. Wear,2005,259: 1507-1531.
    [1]Yang JJ, Pickett MD, Li X, et al. Memristive switching mechanism for metal/oxide/metal nanodevices [J]. nature Nanotechnology,2008,3:429-433.
    [2]Sawa A. Resistive switching in transition metal oxides [J]. Mater Today,2008, 11:28-36.
    [3]Koffyberg FP, Benko FA. A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO [J]. J Appl Phys,2009,53:1173-1177.
    [4]Tsur Y, Riess I. Self-compensation in semiconductors [J]. Physical Review B. 1999.60:8138.
    [5]Rai BP. Cu2O solar cells:A review [J]. Solar Cells,1988.25:265-272.
    [6]Dagotto E. Complexity in Strongly Correlated Electronic Systems [J]. Science, 2005,309:257-262.
    [7]Kim CH, Jang YH, Hwang HJ, et al. Observation of bistable resistance memory switching in CuO thin films [J]. Appl Phys Lett,2009,94:102107.
    [8]Yang WY, Kim WG, Rhee SW. Radio frequency sputter deposition of single phase cuprous oxide using Cu2O as a target material and its resistive switching properties [J]. Thin Solid Films,2008,517:967-971.
    [9]Dong R, Lee DS, Xiang WF, et al. Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures [J]. Appl Phys Lett,2007,90: 042107.
    [10]Zhou P, Lv HB, Yin M, et al. Performance improvement of CuOx with gradual oxygen concentration for nonvolatile memory application [J]. J Vac Sci Technol B,2008,26:1030-1032.
    [11]Zhou P, Yin M, Wan HJ, et al. Role of TaON interface for CuxO resistive switching memory based on a combined model [J]. Appl Phys Lett,2009,94: 053510.
    [12]Chen A. Haddad S, Wu YC, et al. Non-volatile resistive switching for advanced memory applications [M]. Ieee International Electron Devices Meeting 2005, Technical Digest. New York; Ieee.2005:765-768.
    [13]Lennard-Jones JE, Devonsrire AF. Critical Phenomena in Gass.I [C]. The Royal Society, proceedings of the the Royal Society of London,1937:53-70.
    [14]Szot K, Speier W, Bihlmayer G, et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 [J]. Nat Mater,2006,5: 312-320.
    [15]Muenstermann R, Dittmann R, Szot K, et al. Realization of regular arrays of nanoscale resistive switching blocks in thin films of Nb-doped SrTiO3 [J]. Appl Phys Lett,2008,93:023110.
    [16]Son JY, Shin YH. Direct observation of conducting filaments on resistive switching of NiO thin films [J]. Appl Phys Lett,2008,92:222106.
    [17]Schindler C, Szot K, Karthauser S, et al. Controlled local filament growth and dissolution in Ag-Ge-Se [J]. Phys Status Solidi-Rapid Res Lett,2008,2: 129-131.
    [18]Lee MH, Song SJ, Kim KM, et al. Scanning probe based observation of bipolar resistive switching NiO films [J]. Appl Phys Lett,2010,97:062909.
    [19]Kim HD, An HM, Kim KC, et al. Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells [J]. Semicond Sci Technol,2010,25: 065022.
    [20]Choi BJ, Jeong DS, Kim SK, et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition [J]. J Appl Phys,2005,98: 033715.
    [21]Hsiung CP, Gan JY, Tseng SH, et al. Resistance Switching Characteristics of TiO2 Thin Films Prepared with Reactive Sputtering [J]. Electrochem Solid State Lett,2009,12:G31-G33.
    [22]Yang YC, Pan F, Liu Q, et al. Fully Room-Temperature-Fabricated Novolatile Resistive Memory for Ultrafast and High-Density Memory Application [J]. Nano Letters,2009,9:1636-1643.
    [23]Xu N, Liu LF, Sun X, et al. Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories [J]. Appl Phys Lett,2008,92:232112.
    [1]Zhou P, Lv HB, Yin M, et al. Performance improvement of CuOx with gradual oxygen concentration for nonvolatile memory application [J]. J Vac Sci Technol B,2008.26:1030-1032.
    [2]Dong R, Lee DS, Xiang WF, et al. Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures [J]. Appl Phys Lett,2007,90: 042107.
    [3]Yang B, Guo HX, Yin KB, et al. The<001>-oriented growth of Cu2S films and its switching properties [J]. J Electroceram,2009,22:87-90.
    [4]Muller R, Naulaerts R, Billen J, et al. CuTCNQ resistive nonvolatile memories with a noble metal bottom electrode [J]. Appl Phys Lett,2007,90
    [5]Asano M, Umeda K, Tasaki A. Cu3N Thin-Film for a New Light Recording Media [J]. Jpn J Appl Phys Part 1-Regul Pap Short Notes Rev Pap,1990,29: 1985-1986.
    [6]Nosaka T, Yoshitake M, Okamoto A, et al. Thermal decomposition of copper nitride thin films and dots formation by electron beam writing [J]. Appl Surf Sci,2001,169:358-361.
    [7]Fan XY, Wu ZG, Li HJ, et al. Morphology and thermal stability of Ti-doped copper nitride films [J]. J Phys D-Appl Phys,2007,40:3430-3435.
    [8]Gulo F, Simon A, Kohler J, et al. Li-cu exchange in intercalated Cu3N-With a remark on Cu4N [J]. Angew Chem-Int Edit,2004,43:2032-2034.
    [9]Hayashi Y, Masuda M, Tonomyo K, et al. Hydrogen ion implantation effect on the magnetic properties of metallic multilayered films [J]. J Alloy Compd, 1999,295:463-467.
    [10]Jacobs H, Niewa R, Sichla T, et al. Metal nitrogen compounds with unusual chemical bonding:Nitrides, imides, amides and ammine complexes [J]. J Alloy Compd,1997,246:91-100.
    [11]Pierson JF, Horwat D. Addition of silver in copper nitride films deposited by reactive magnetron sputtering [J]. Scr Mater,2008,58:568-570.
    [12]Blucher J, Bang K, Giessen BC. Preparation of the Metastable Interstitial Copper Nitride, Cu4n, by Dc Plasma Ion Nitriding [J]. Mater Sci Eng A-Struct Mater Prop Microstruct Process,1989,117:L1-L3.
    [13]Gallardo-Vega C, de la Cruz W. Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition [J]. Appl Surf Sci,2006,252:8001-8004.
    [14]Pierson JF. Structure and properties of copper nitride films formed by reactive magnetron sputtering [J]. Vacuum,2002,66:59-64.
    [15]Ghosh S, Singh F, Choudhary D, et al. Effect of substrate temperature on the physical properties of copper nitride films by r.f. reactive sputtering [J]. Surf Coat Technol,2001,142:1034-1039.
    [16]Hahn U, Weber W. Electronic structure and chemical-bonding mechanism of Cu3N, Cu3NPd, and related Cu(I) compounds [J]. Phys Rev B,1996,53: 12684-12693.
    [17]Soukup L, Sicha M, Fendrych F, et al. Copper nitride thin films prepared by the RF plasma chemical reactor with low pressure supersonic single and multi-plasma jet system [J]. Surf Coat Technol,1999,116:321-326.
    [18]Wang DY, Nakamine N, Hayashi Y. Properties of various sputter-deposited Cu-N thin films [J]. J Vac Sci Technol A-Vac Surf Films,1998,16:2084-2092.
    [19]Liu ZQ, Wang WJ, Wang TM, et al. Thermal stability of copper nitride films prepared by rf magnetron sputtering [J]. Thin Solid Films,1998,325:55-59.
    [20]Maruyama T, Morishita T. Copper Nitride Thin-Films Prepared by Radiofrequency Reactive Sputtering [J]. J Appl Phys,1995,78:4104-4107.
    [21]肖剑荣,蒋爱华.氮化铜薄膜的研究[J].材料导报.2009,23:115-117.
    [22]吴志国,张伟伟,白利峰,et al.纳米Cu3N薄膜的制备与性能[J].物理学报,2005.54:1687-1606.
    [23]Borsa DM, Boerma DO. Growth, structural and optical properties of Cu3N films [J]. Surf Sci,2004,548:95-105.
    [24]Terada S, Tanaka H, Kubota K. Heteroepitaxial Growth of Cu3N Thin-Films [J]. J Cryst Growth,1989,94:567-568.
    [25]Juza R, Hahn H. Copper-nitride.-Metal amides and metal nitrides [J]. Z Anorg Allg Chem,1939,241:172-178.
    [26]Wang J, Chen JT, Yuan XM, et al. Copper nitride (Cu3N) thin films deposited by RF magnetron sputtering [J]. J Cryst Growth.2006,286:407-412.
    [27]Zachwieja U, Jacobs H. Ammonothermal Synthesis of Copper Nitride [J]. Journal of the Less-Common Metals,1990,161:175-184.
    [28]Fallberg A, Ottosson M, Carlsson JO. CVD of Copper(Ⅰ) Nitride [J]. Chem Vapor Depos,2009,15:300-305.
    [29]Conrad JR, Dodd RA, Worzala FJ, et al. Plasma Source Ion-Implantation-a New, Cost-Effective, Non-Line-of-Sight Technique for Ion-Implantation of Materials [J]. Surf Coat Technol,1988,36:927-937.
    [30]Conrad JR. Sheath Thickness and Potential Profiles of Ion-Matrix Sheaths for Cylindrical and Spherical Electrodes [J]. J Appl Phys,1987,62:777-779.
    [31]王浪平,王小峰,汤宝寅.等离子体浸没离子注入与沉积技术的发展及前沿问题[J].中国表面工程,2010,23:9-14.
    [32]刘杰,汪明刚,杨威风,et al.等离子体浸没离子注入技术与设备研究[J].半导体技术,2010,35:626-629.
    [33]Pelletier J, Anders A. Plasma-blased ion implantation and deposition:A review of physics, technology, and applications [J]. IEEE Trans Plasma Sci,2005,33: 1944-1959.
    [34]Lu X, Iyer SSK, Lee J, et al. Plasma immersion ion implantation for SOI synthesis:SIMOX and ion-cut [J]. J Electron Mater,1998,27:1059-1066.
    [35]Barroso JJ, Rossi JO, Ueda M. Plasma immersion ion implantation description using child current law [M]//CHUAQUI H, FAVRE M. Plasma Physics. Melville; Amer Inst Physics.2001:102-107.
    [36]Lieberman MA. Model of Plasma Immersion Ion-Implantation [J]. J Appl Phys,1989,66:2926-2929.
    [37]Nakamura K, Tanaka M, Sugai H. Direct measurements of sheath-accelerated secondary electrons for monitoring the incident ion flux in plasma immersion ion implantation [J]. Plasma Sources Sci Technol,2002,11:161-164.
    [38]Qin S, Chan C, Jin ZJ. Plasma immersion ion implantation model including multiple charge state [J]. J Appl Phys,1996,79:3432-3437.
    [39]Barnat EV, Lu TM. Transient charging effects on insulating surfaces exposed to a plasma during pulse biased dc magnetron sputtering [J]. J Appl Phys, 2001,90:5898-5903.
    [40]Chu PK, Qin S, Chan C, et al. Plasma immersion ion implantation-A fledgling technique for semiconductor processing [J]. Mater Sci Eng R-Rep, 1996,17:207-280.
    [41]Kim KJ, Kim JH, Kang JH. Structural and optical characterization of Cu3N films prepared by reactive RF magnetron sputtering [J]. J Cryst Growth,2001, 222:767-772.
    [42]Zhu WH, Xiao HM. Ab initio study of electronic structure and optical properties of heavy-metal azides:T1N3, AgN3, and CuN3 [J]. J Comput Chem, 2008,29:176-184.
    [43]Depla D, Haemers J, De Gryse R. Target surface condition during reactive glow discharge sputtering of copper [J]. Plasma Sources Sci Technol,2002,11: 91-96.
    [44]Soto G, Diaz JA, de la Cruz W. Copper nitride films produced by reactive pulsed laser deposition [J]. Mater Lett,2003,57:4130-4133.
    [45]Maya L. Deposition of Crystalline Binary Nitride Films of Tin, Copper, and Nickel by Reactive Sputtering [J]. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1993,11:604-608.
    [46]Lee D, Seong DJ, Jo I, et al. Resistance switching of copper doped MoOx films for nonvolatile memory applications [J]. Appl Phys Lett,2007,90: 122104.
    [47]Choi BJ, Jeong DS. Kim SK, et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition [J]. J Appl Phys,2005,98: 033715.
    [48]Simmons JG. Conduction in Thin Dielectric Films [J]. J Phys D-Appl Phys, 1971,4:613-657.
    [49]Waser R, Dittmann R, Salinga M, et al. The role of defects in resistively switching chalcogenides [J]. Int J Mater Res,2010,101:182-198.
    [50]Kwon DH, Kim KM, Jang JH, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory [J]. Nat Nanotechnol,2005, 5:148-153.
    [51]Waser R, Aono M. Nanoionics-based resistive switching memories [J]. Nat Mater.2007.6:833-840.
    [52]Gopalan C, Ma Y, Gallo T, et al. Demonstration of Conductive Bridging Random Access Memory (CBRAM) in logic CMOS process [J]. Solid-State Electronics,2011,58:54-61.
    [53]Bernard Y, Renard VT, Gonon P. et al. Back-end-of-line compatible Conductive Bridging RAM based on Cu and SiO2 [J]. Microelectron Eng, 2011,88:814-816.
    [54]Schindler C, Staikov G. Waser R. Electrode kinetics of Cu-SiO2-based resistive switching cells:Overcoming the voltage-time dilemma of electrochemical metallization memories [J]. Appl Phys Lett,2009,94:072109
    [55]Banno N, Sakamoto T, Iguchi N, et al. Diffusivity of Cu Ions in Solid Electrolyte and Its Effect on the Performance of Nanometer-Scale Switch [J]. IEEE Trans Electron Devices,2008,55:3283-3287.
    [56]ITRS. The International Technology Roadmap for Semiconductors [M]//WWW.ITRS.NET/LINKS/2007ITRS/2007_CHAPTERS/2007_PIDS.PD F.2007.
    [57]Ji AL, Huang R, Du Y, et al. Growth of stoichiometric Cu3N thin films by reactive magnetron sputtering [J]. J Cryst Growth,2006,295:79-83.
    [58]Waser R, Dittmann R, Staikov G, et al. Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges [J]. Adv Mater, 2009,21:2632-2663.
    [59]Kozicki MN, Balakrishnan M, Gopalan C, et al. Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes [C].2005 Non-Volatile Memory Technology Symposium, Proceedings. New York; Ieee. 2005:83-89.
    [60]Schindler C, Meier M, Waser R, et al. Resistive switching in Ag-Ge-Se with extremely low write currents [C]. IEEE, proceedings of the Non-Volatile Memory Technology Symposium, Albuquerque, NM 2007:82-85.
    [61]Schindler C, Thermadam SCP, Waser R, et al. Bipolar and unipolar resistive switching in Cu-doped SiO2 [J]. IEEE Trans Electron Devices,2007,54: 2762-2768.
    [62]Kim WG, Rhee SW. Effect of the top electrode material on the resistive switching of TiO2 thin film [J]. Microelectron Eng,2010,87:98-103.
    [63]Lee CB, Kang BS, Benayad A, et al. Effects of metal electrodes on the resistive memory switching property of NiO thin films [J]. Appl Phys Lett, 2008,93:042115.
    [64]Hansen M. Constitution of binary alloys [M]. New York:McGraw-Hill,1958.
    [65]Hou QH, Mutharasan R, Koczak M. Feasibility of aluminium nitride formation in aluminum alloys [J]. Mater Sci Eng A-Struct Mater Prop Microstruct Process,1995,195:121-129.
    [1]Blawert C, Mordike BL. Plasma immersion ion implantation of pure aluminium at elevated temperatures [J]. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms,1997,127:873-878.
    [2]http://en.wikipedia.org/wiki/Aluminium_nitride. Aluminium nitride [M]. Wikipedia.
    [3]Christensen NE, Gorczyca I. Calculated Structural Phase-Transitions of Aluminum Nitride under Pressure [J]. Phys Rev B,1993,47:4307-4314.
    [4]Verma UP, Bisht PS. Ab-initio study of AlN in zinc-blende and rock-salt phases [J]. Solid State Sci,2010.12:665-669.
    [5]Xia Q, Xia H, Ruoff AL. Pressure-Induced Rock-Salt Phase of Aluminum Nitride-a Metastable Structure at Ambient Condition [J]. J Appl Phys,1993, 73:8198-8200.
    [6]Yamashita H, Fukui K, Misawa S, et al. Optical-Properties of Ain Epitaxial Thin-Films in the Vacuum Ultraviolet Region [J]. J Appl Phys,1979,50: 896-898.
    [7]Fara A, Bernardini F, Fiorentini V. Theoretical evidence for the semi-insulating character of AIN [J]. J Appl Phys,1999,85:2001-2003.
    [8]李海翼.磁控溅射沉积氮化铝薄膜及其光学性能的研究[D].南昌;南昌大学,2010.
    [9]李瑞霞.氮化铝薄膜制备及性能研究[D].成都;西华大学,2009.
    [10]周杨.磁过滤电弧离子镀制备氮化铝薄膜的研究[D].西安;西安工业大学,2007.
    [11]Dollet A, Casaux Y, Chaix G, et al. Chemical vapour deposition of polycrystalline AIN films from AlC13-NH3 mixtures. Analysis and modelling of transport phenomena [J]. Thin Solid Films,2002,406:1-16.
    [12]Temkin H, Nikishin S, Wilson S, et al. DIELECTRIC FUNCTION OF AIN GROWN ON Si (111) BY MBE [J]. Materials Research Society,1999,572: 231-236.
    [13]Ishihara M, Yamamoto K, Kokai F, et al. Aluminum nitride thin films prepared by radical-assisted pulsed laser deposition [J]. Vacuum,2000,59:649-656.
    [14]Kusaka K, Taniguchi D, Hanabusa T, et al. Effect of sputtering gas pressure and nitrogen concentration on crystal orientation and residual stress in sputtered AlN films [J]. Vacuum,2002,66:441-446.
    [15]Zhu M, Chen P, Fu RKY, et al. AIN thin films fabricated by ultra-high vacuum electron-beam evaporation with ammonia for silicon-on-insulator application [J]. Appl Surf Sci,2005,239:327-334.
    [16]Men CL, Lin CL. A comparison of pulsed-laser-deposited and ion-beam-enhanced-deposited AlN thin films for SOI application [J]. Mater Sci Eng B-Solid State Mater Adv Technol,2006,133:124-128.
    [17]Pavlov PV, Zorin El, Tetelbau.Di, et al. Phase-Transformations at Bombardment of Ai and Fe Polycrystalline Films with B+, C+, N+, P+, and as+ Ions [J]. Phys Status Solidi A-Appl Res,1973,19:373-378.
    [18]Rauschenbach B, Kolitsch A, Richter E. Formation of AlN by Nitrogen Ion-Implantation [J]. Thin Solid Films,1983,109:37-45.
    [19]Belii IM, Komarov FF, Tishkov VS, et al. Formation of Chemical Compounds by Ion-Bombardment of Thin Transition-Metal Films [J]. Phys Status Solidi A-Appl Res,1978,45:343-352.
    [20]Osterle W, Dorfel I, Urban I, et al. XPS and XTEM study of A1N formation by N2(+) implantation of aluminium [J]. Surf Coat Technol,1998,102:168-174.
    [21]Shim YK, Kim YK, Lee KH, et al. The properties of AlN prepared by plasma nitriding and plasma source ion implantation techniques [J]. Surf Coat Technol, 2000,131:345-349.
    [22]Chakraborty J, Mukherjee S, Raole PM, et al. Feasibility study of aluminium nitride formation by nitrogen plasma source ion implantation on aluminium [J]. Mater Sci Eng A-Struct Mater Prop Microstruct Process,2001,304:910-913.
    [23]Gredelj S, Gerson AR, Kumar S, et al. Characterization of aluminium surfaces with and without plasma nitriding by X-ray photoelectron spectroscopy [J]. Appl Surf Sci,2001,174:240-250.
    [24]Matthews AP, Iwaki M, Horino Y, et al. Investigation of the Effects of Room-Temperature Nitrogen Implantation on the Precipitation of Aluminum Nitride [J]. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms,1991,59:671-675.
    [25]Wu XD, Dijkkamp D, Ogale SB, et al. Epitaxial Ordering of Oxide Superconductor Thin-Films on (100) Srtio3 Prepared by Pulsed Laser Evaporation [J]. Appl Phys Lett,1987,51:861-863.
    [26]高国棉,陈长乐,王永仓,et al.脉冲激光沉积(PLD)技术及其应用研究[J].空军工程大学学报,2005,6:77-81.
    [27]周永宁.纳米薄膜作为锂离子电池材料的性质与反应机理研究[D].上海;复旦大学,2009.
    [28]http://groups.ist.utI.pt/rschwarz/rschwarzgroup_files/PLD_files/PLD.htm.
    [29]Liao HM, Sodhi RNS, Coyle TW. Surface-Composition of AlN Powders Studied by X-Ray Photoelectron-Spectroscopy and Bremsstrahlung-Excited Auger-Electron Spectroscopy [J]. J Vac Sci Technol A-Vac Surf Films,1993, 11:2681-2686.
    [30]Schoser S, Brauchle G, Forget J, et al. XPS investigation of AlN formation in aluminum alloys using plasma source ion implantation [J]. Surf Coat Technol, 1998,104:222-226.
    [31]Mhatre UR, Kothari DC, Guzman L, et al. Study of nitrogen implanted in aluminium at various doses [J]. Materials and Manufacturing Processes,1995, 10:171-182
    [32]Manova D, Dimitrova V, Fukarek W, et al. Investigation of d.c.-reactive magnetron-sputtered AlN thin films by electron microprobe analysis, X-ray photoelectron spectroscopy and polarised infra-red reflection [J]. Surf Coat Technol,1998,106:205-208.
    [33]Chen C, Yang YC, Zeng F, et al. Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device [J]. Appl Phys Lett,2010,97:083502.
    [34]Pinnow CU, Ufert KD. Method for improving the thermal characteristics of semiconductor memory cells [P]. America:US 2006/0109708 Al,2006-Oct. 28.
    [1]Zhou P, Lv HB, Yin M, et al. Performance improvement of CuOx with gradual oxygen concentration for nonvolatile memory application [J]. J Vac Sci Technol B,2008,26:1030-1032.
    [2]Zhou P, Yin M, Wan HJ, et al. Role of TaON interface for CuxO resistive switching memory based on a combined model [J]. Applied Physics Letters, 2009,94:053510.
    [3]Aratani K, Ohba K, Mizuguchi T, et al. A Novel Resistance Memory with High Scalability and Nanosecond Switching [C]. IEEE, proceedings of the IEEE International Electron Devices Meeting, Washington, DC,2007: 783-786.
    [4]Schindler C, Szot K, Karthauser S, et al. Controlled local filament growth and dissolution in Ag-Ge-Se [J]. Phys Status Solidi-Rapid Res Lett,2008,2: 129-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700