持续高G对豚鼠前庭耳石器的影响及预习服防护措施的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高G环境是航空航天活动中常见的对人体有较大影响的因素之一。随着航
    空航天技术及人体防护措施的发展,飞行人员需要承受的G值越来越大,宇航
    员在发射阶段也常需要承受高G值的作用。然而,以往航空航天医学工作者主
    要着眼于高G值对心脑血管系统的影响及防护等方面,对直接感受高G值作用
    的前庭耳石器的影响却没有引起足够的重视。耳石器是否能承受如此高的G值
    而正常工作?这是一个值得深入探讨的问题。因为如果高G值造成耳石器的损
    害,可引发眩晕、空间定向障碍等,造成严重后果。另外,如果宇航员在发射
    阶段造成了耳石器的损害,是否会与航天适应综合征(Space adaptation
    syndrome,SAS)发病有关等也不得而知。因此,探讨、明确高G是否会造成耳
    石器损伤具有十分重要的理论和现实意义。另外,如果耳石器受到损伤,在防
    护上也存在一系列问题。这是因为,由于耳石器解剖,生理上的特殊性,使其
    不可能象对心脑血管系统那样从装备等方面进行防护,可能的方法只能是通过
    锻炼等手段,提高其对高G值作用的耐受值。预适应是生物界普遍存在的一种
    现象,对于保护各系统器官具有一定积极意义。前庭系统是否也存在预适应现
    象,其是否可提高豚鼠对高G值作用的耐受值,从而对高G作用所致前庭功能
    损害起到一定的防护作用?这也是一个值得深入探讨的问题。
    
    
     染凹车医人学博士学位论义
     本文采用行为学、形态学、细胞生物学、分子生物学等手段,观察了
     +ltoy oin暴露对豚鼠前庭耳石器的影响以及Z 8天的预习服对其防护作用。
     主要结果如下:
     1.+lmy初in的暴露(、l地组)可5!起22/28门狐)豚鼠行为学的异
     常,包括自发眼震、眼位偏斜、头位震颤、头位偏斜、身体转圈、侧滚转等;
     而在给子+lffiy SInin的暴露前经过预习服(预习服组)的行为异常率只有14/28
     (h)。提示高G可造成豚鼠前庭功能紊乱,预习服具有一定的防护作用。
     2.采用光镜、电镜形态学观察方法发现:光镜下八op组和预习服组均有
     一定程度细胞空泡化。电镜下显示:+ltoy组于+ltoy暴露后0.sh呈现两种性质
     的耳石改变:①耳石消失及耳石再生前体一一球状物的出现:②耳石的变性融
     合,即耳石失去原有形态,融合为一个整体。24h后表现为耳石膜明显增厚;
     高倍镜下证实其主要为哑铃状不成熟耳石。预习服组于+l%y暴露后队sh表现
     为耳石有裂纹出现和层状化,24h后呈现出耳石质地疏松和微细孔状结构出
     现。另外两组豚鼠均有纤毛粘连和倒伏。左右耳未见差别。
     3.应用原位末端标记的方法(11jNlilM法)在两组均检测到可疑凋亡细胞,
     两组之间未见明显区别。对照组未见凋亡细胞。
     4.应用核酸原位杂交技术,发现预习服组在+hey暴露后 HSP70 InRNA表达
     明显增强,其次为+l地直接暴露组,对照组最弱。
     5.应用免疫组织化学方法,发现细胞骨架蛋白cytokeratin在各组间没有
     变化,actin在各组均呈阴性反应。
     6.应用免疫组织化学方法。发现两组ChAT染色均明显高于对照组,不过
     两组之间未见明显差别。
     7.观察到不仅支持细胞可以分泌产生耳石前体——球状物,而且1型细胞
     也可以产生,证实丰富了前庭生理学中有关耳石再生来源的理论。
     扼此,提出高G引起豚鼠行为表现异常的主要机理是:①高过载环境下,耳
     石重量相对增加,引起耳石层与下方胶质层切线力增大,其问结合受到损害,从而
     《
    
     第四军医大学博士学位论文
     耳石移位和/或耳石、囊斑上皮细胞代谢障碍,引起一系列病变,导致行为学表现
     异常;②高过载环境下,心肺工作效率下降,血氧饱和度下降,组织能量代谢
     障碍是引起一系列囊斑病变,导致行为表现异常的又一原因:③内耳血供的一
     些特点(如缺乏侧枝循环)和囊斑上皮细胞对缺氧等的高敏感性加剧了囊斑病变,
     对行为学表现异常起到了恶化促进作用;④高过载环境下,外周传入信息增
     加,中枢乙酚胆碱升高,也是行为学表现异常的因素之一。预习服防护机理在
     于:恤6G值环境下,耳石层与胶质层之间结合发生改变,如结合更紧密等,
     从而在高过载作用时不易受损,病变减轻:②组织对缺氧耐受性增加,不易发
     生能量代谢障碍;@一系列保护因子如HSNQ[lltNA表达增强,发挥其对组织细
     胞的保护作用。通过以上途径,囊斑病变减轻,行为学表现异常明显改善
People are often exposed to high G environment in aerospace activities. Sometimes
    the G values they are subjected to may be even more than 10G. Can otolith organs not be damaged and work properly in this environment? The answer to this question is critical to solve the problems such as vertigo, spatial disorientation, space adaptation syndrome(SAS) etc.
    In this work, guinea pigs' vestibular disorders, the ultrastructure of the macula, the apoptosis cells, the expression of HSP70 mRNA, cytokeratin and actin in macula of the utricle, and the ChAT activities in VNC(vestibular necleon complex)were observed after they were exposed to +10Gy for 5mia A countermeasure of 8 days pre-habituation in 2G force-field was also tested. The results are as follows:
    1. Abnormalities of behavior, vestibule-spinal reflex (VSR) and vestibule-ocular
    
    
    
    reflex (VOR) were found in 22/28 of the guinea pigs after exposed to +10Gy for 5min(+10Gy group), which included head tremble, head deviation, spontaneous nystagmus, eye deviation, body roll and looping. All the symptoms disappeared within 30 rain. Among them, head tremble was of the highest incidence. In the group which was exposed to 2G environment for 8 days before being exposed to 10Gy(habituation group), only 14/28 showed vestibular disorders, which was statistically significant lower compared with that of +10Gy group.
    2. In +10Gy group, 0.5h later after lOGy exposure, two kinds of otoconia ultrastructure changes were observed: ヾisappearance of the otoconia and appearance of its precursor 棗global substance; ヾegeneration and fusion of the otoconia, including the disappearance of its classical prism-like structure and fusing into a larger one. 24h later, the incrassation of the utricle macula was prominent, and large dumb-bell shaped immature otoconia were observed in a high-power view. In habituation group, emergence of flaws and porous of otoconia were observed 0. 5h and 24h later respectively after lOGy exposure. Conglutination and sloping of the hair cell cilia were observed in both +10Gy group and habituation group. By using transmission electron microscope(TEM), plasmolysis and cell nucleus condensation were observed prominent in +10Gy group, while in habituation group, only a few cells showed cell nucleus condensation. By using HE staining method, both groups showed the cell swelling and vacuolation. The differences in ultrastructure changes between right and left utricles were non-significant.
    3. By using a TUNEL(terminal-deoxynucleotidyl transferase mediated d~LTP nick end labeling) method, The apoptosis hair cells were detected in both T10Gy and habituation groups, but absent in control group.
    4. The expression of HSP70 (by in situ hybridization methods) in habituation group is the strongest, +10Gy group was the second, and the control group was the weakest.
    5. No significant differences of expression of cytokeratin in macula were found
    
    
    
    among +10Gy, habituation and control groups by inmunohistochemistry technique. Negative reaction of actin was observed among above three groups.
    6.The ChAT(choHne acetytransferase) activities in VNC in brain stem were investigated by immunohistochemistry technique. The relative gamma of staining showed that the content of ChAT in VNC of the +lOGy group and habituated group were significant higher than that in control group, but no significant differences were found between the +10Gy and habituation groups.
    7. The precursor of otoconia global substance can be generated from both supporting cells and type I hair cells.
    According to the results, the following points may contribute to the mechanism of high G induced vestibular disorders: ?the otoconia displacement and/or its metabolic disorder, which was caused by high G induced damage of conjunction between the otoconia layer and gelatin layer;@under high G environment, the inefficiency of cardiopulmonary system, reduction in blood oxygen saturation, and metabolic disorder of energy in related tissues were another reason causing behavior abnormalities;?the hi
引文
1. Anniko M. Development of otoconia American Journal of Otolaryngology, 1980, 1: 400-410.
    2. Ansari B, Coates PJ, Greenstein BD, and Hall PA. In situ end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states. J Pathol, 1993,170(1) : 1-8.
    3. Arrott AP, Young LR, M. I. T . Canadian vestibular experiments on the spacelab-l mission. 4. Vestibular reactions to lateral acceleration follwing ten days of weightlessness. Exp Brain Res, 1986,64:279-283.
    4. Benson A.J. and T.H.Vieville. European vestibular experiments on the spacelab-1 mission. 6. yaw axis vestibulo-ocular reflex. Exp Brain Res, 1986,64:279-283.
    5. Bernard Cohen, Inessa Kozlovskaya, Theodore Raphan, David solomon, Denice Helwig, Nathaniel Cohen, Michael Sirota and Sergei Yakushin. Vestibuloocular reflex of rhesus monkeys after spaceflight. J.Apl. Physiol. 1992,73(2) , suppl: 121s-131s.
    6. Bienhold H Flohr. Role of cholinergic synapses in vestibular compensation. Brain Res, 1980,195:476-478.
    7. Bracchi F., T. Gualtierotti, A. Morabito, and E Rocca. Multiday recordings from the primary neurons of statroreceptors of the labyrinth of the bull frog. Acta Otolaryngol, 1975,334 (suppl) :5-27.
    8. Burke RE,Fahn S. Choline acetyltransferase activity of the principal vestibular nuclei of rat, studied by micropunch technique. Brain Res. 1985,328:196-199.
    9. Burke RE and Fahn S. Studies of somatostain-induced barrel rotation in rats. Regul Peptides, 1983,7:207-220.
    10. Carson D, Ribeiro J. Apoptosis and disease. Lancet, 1993, 341:1251.
    11. C. de Waele, M. Muhlethaler, P. P. Vidal. Neurochemistry of the central vestibular pathways. Brain Research Reviews, 1995,20:24-46.
    12. Conlee JW, Parks TN. Age-and position-dependent effects of monaural acoustic deprivation in nucleus magnocellularis of the chicken. J Comp Neurol, 1981,202:373-84.
    13. Dai-M, Raphan-T, Kozlovskaya-I and Cohen-B. Vestibular adaptation to space in monkeys. Otolaryngol-Head-Neck-Surg, 1998,119(1) : 65-77.
    14. Egusa Kentaro, Huang Cheng-chun, Haeldad Joseph. Heat shock proteins in acute otitis media Laryngoscope, 1995,105(1) :708-713.
    15. Friedmannl(ed), Ultrastructural atlas of the inner ear. London:Butterworths, 1984. 245-69.
    16. Gavrieli Y, Sherman Y, and Sasson B. S. A. Identification of programmed cell
    
     death in situ via specific labeling of nuclear DNA fragmentatioa J Cell Biol, 1992, 119:493-501.
    17. Gold R, Schmied M, Giegerich G. Breitschopf H, Hartung HP, Toyka KV and Lassmann H. Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques. Lab Invest, 1994, 71(2) : 219-225.
    18. Gray L Smith Z, Rubel El. Developmental and experimental changes in dendritic symmetry in nucleus laminaris of the chick. Brain Res, 1982,244:360-4.
    19. Gstoettner W, Burian M. Vestibular nuclear complex in the guinea pig: A cytoarchitectonic study and map in three planes. J Comp Neurol, 1987, 257:176-188.
    20. Gyllensten L, Malmfors T. Myelinization of the optic nerve and its dependence on visual function:A quantitative investigation in mice. J Embryol Exp Morph, 1963,11 (part 1) : 255-66.
    21. Hara H. Changes in the utricular otoconia of the chick embryo developed under 2G-gravity. Nippon Jibiinkoka Gakkai kaiho, 1993,96:969-6.
    22. Harada Y.Metabolic disorder, absorption area and formation area of the statoconia. J. Clinl Electron Microscopy, 1982,15:1-18.
    23. Harada, Y. Formation area of the statoconia SEM/1979/Ⅲ, PP. 963-966. SEM Inc:AMF O'Hare, Ⅲ.
    24. Harada Y, Kasuga S, Mori N. The process of otoconia formation in guinea pigs utricular supporting cells. Acta Otolaryngol (Stockh), 1998, 118:74-79.
    25. High G physiological protection training. AD-A235 181, APR, 23 1991.
    26. Hofstetter-Degen K, Weizig J, Baumgarten R voa Oculovestibular interactions under microgravigy. Clin Invest, 1993,10:749-756.
    27. Hosey MM, Diversity of structure, signalling and regulation within the family of muscarinic cholingergic receptors, FASEB J., 1992,6:845-852.
    28. Howland HC,Ballarino J. Is the growth of otolith controlled by its weight? In:Gualtierotti T, ed. The vestibular system:function and morphology. New York:Springer Verlag, 1981. 77-87.
    29. Huygen PML, Fischer AJEM, Kuijpers W. The vestibular function of the manganese deficient rat. Acta Otolaryngol (Stockh), 1986,101:19-26.
    30. Jaattela M, Wissing D, Bauer PA, Li Gloria C. Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J,1992,11 (10) : 3507-3512.
    31. Kaufman GD , Anderson JH, Beitz AJ. Fos-defined activityin rat brainstem following centripetal accceleratioa J Neurosci, 1992, 12 (11) : 4489-4500.
    32. Kawamata S, Igarashi Y. The fine structure of the developing otolithic organs of the rat.Acta Otolaryngol (Stockh), 1993,504 (Suppl): 30-7.
    
    
    33. Kazunori Nishizaki, Tadashi Yoshino, Yorihisa Orita et al. TUNEL staining of inner ear structures may reflect autolysis, not apoptosos. Hear. Res., 1999,130:131-136.
    34. Keefe JR. Experiment K-313;Rat and quail autogenesis. In final reports of U. S. Rat experiments flown on the soviet satellite cosmos 1129. NASA TM-81299,1979.
    35. Kenyon R V,Kerschmann R, Sgarioto R, Jun S, and Vellinger J. Normal vestibular function in chicks after partial exposure to microgravity during development . J Ves Res, 1995,4:289-298.
    36. Kerr JFR,Wyllie AH,Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972,26:239.
    37. Kido T, Sekitani t, Yamashita H, et al.The otolithic organ in the developing chick embryo:scanning electron microscopy study on the utricular macula Acta Otolaryngol (Stockh), 1993,113:128-36.
    38. Kim YM, De Vera ME,Watkins SC, and Billiar TR. Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-α-induced apoptosis by inducing heat shock protein 70 expressioa J Bio Chan, 1997,272(2) : 1402-1411.
    39. Kozlovskaya I.B., B. M. Babaev, V.A.Barmin, I. N. Beloozerova, Ya V. Kreidich, and M. Sirota. The effect of weighlessness on motor and vestibular-motor reactions. Physiologist, 1984,27:111-4.
    40. Kozlovskaya I.B., E.A.Ilyin, M.G.Sirota, V. I. Korolkov, B.M.Babayev, I.N. Beloozerova, and S. B. Yakushin. Studies of space adaptation syndrome in experiments on primates performed on board of Soviet biosattellite "cosmos-1887. " Physiologist, 1989,32:45-48.
    41. Kozlovskaya I. B., V. A. Bannin, Yu. V. Kreidich and A. A. Repin. The effects of real and simulated microgravity on vestibulo-oculomotor interactioa Physiologist, 1986,28:51-6.
    42. Krasnov I B. The otolith apparatus and cerebellar nodulus in rats developed under 2C gravity. Physiology, 1991,34 (suppl 1) :206-7.
    43. Lacour M,Sun JR,Harlay F. Kinematic analysis of locomotion in unilateral vestibular neurectomized cats. J Ves Res, 1997,7:101-118.
    44. Lim Dj. The development and structure of the otconia. In: FriedmannI(ed), Ultrastructural atlas of the inner ear. London: Butterworths, 1984. 245-69.
    45. Lim HH, Jenkins OH, Myers MW, Miller JM, Altschuler RA. Detection of HSP72 synthesis after acoustic overstimulation in rat cochlea. Hear Res., 1993, 69(1) : 146-150.
    46. Lim DJ, Stith JA,Stockwell CW, Oyama J. Observations on saccules of rats exposed to long-term hypergravity. Aerospace Med, 1974,45:705-10.
    47. Llorens J, Dememes D, Sans A. The behavioral syndrome caused by 3,3'-iminodipropionitrile and related nitriles in the rat is associated with
    
     degeneration of the vestibular sensory hair cells. Toxicol Appl Pharmacol, 1993,12:199-210.
    48. Lund JS, Lund RD. Development of synaptic patterns in the superior colliculus of the rat. Brain Res, 1972,42:1-20.
    49. Lychakov DV. Functional and adaptive changes in the vestibular apparatus in space flight. The physiologist, 1991,34(suppl 1) :S204-S205.
    50. Marlinsky VV. The effect of somatosensory stimilation on second-order and efferent vestibular neurons in the decerebrate decerebellate guinea pig. Neuroscience, 1995,69:661-669.
    51. Matsuoka I, Ito J, Sara M, and Takaori S. Possible neurotransmitters involved in excitatory and inhibitory effects from inferior olive to controlateral lateral vestibular nucleus, Adc. Otorhinolaryngol., 1983,30:58-63.
    52. Mingjia Dai, Leigh McGarvie. Inessa Kozlovskaya, Theodore Raphan and Bernard Cohen. Effects of spaceflight on oculer counterrolling and the spatial oriention of the vestibular system. Exp Brain Res. 1994,102:45-56.
    53. M. J. Correia, A. A. Perachio, J. D. Dickman, I.B. Kozlovskaya, M. G. Sirota, S. B. Yakushin, a nd I. N. Beloozerova changes in mokey horizontal semicircular canal afferent responses after spaceflight. J Appl physiol., 1992,73(2) , suppl :112s-120s.
    54. Moll R et al. Cell, 1982, 31:11-24.
    55. Neely JG, Thompson AM, and Gower DJ. Detection and loclization of heat shock protein 70 in the normal guinea pig cochlea. Hear Res, 1991,52(2) : 403-406.
    56. Nishizaki K et al. ORL, 1995,57:87-93.
    57. Noriaki Takeda,Arata Horri,Atsuhiko Uno, Masahiro Morita,Takatoshi Mochizuki, Atsushi Yamatodani, and Takeshi Kubo. A ground-based animal model of space adaptation syndrome. J. Ves. Res., 1996,6:403-409.
    58. Ockels W J, Furrer R, and Messerschmid E. Simulation of space adaptation syndrome on earth. Exp Brain Res., 1990,79:661-663.
    59. Omen C.M., and M. J. Kulbaski. Spacef light affects the 1-g postrotatory vestibulo-ocular reflex. Adv Oto-Rhino-laryngol, 1988,42:5-8.
    60. Ossenkopp K-P, Eckel LA, Hargreaves El, et al. Sodium arsani late-induced vestibualr dysfunction in meadow voles(microtus pennsylvanicus): effects on posture, spontaneous locomotor activity and swimming behaviour. Behav Brain Res, 1992,47:13-22.
    61. Ott JF, Platt C, Early abrupt recovery from ataxia during vestibular compensation in goldfish. J Exp Biol, 1988,444(3) :308-319.
    62. Pack AK, Slepecky NB. Cytoskeletal and calcium-binding proteins in the mammalian organ of corti: cell type-specific proteins displaying longitudal and radial gradients. Hear Res,1995(1) ,91:119-135.
    63. Pedrozo H A., Schwartz Z., luther M. et al. A mechanism of adaptation to
    
     hypergravity in the statocyst of Aplysia californica Hear Res., 1996,102:51-62.
    64. Raviola E, Wisel TN.An animal model of myopia N Engl J Med., 1985,312:1609-15.
    65. R.L.Dehart. Fundamentals of Aerospace Medicine. 245-315. Philadelphia: Lea Febiger, 1985.
    66. Role LW, Diversity in primary structure and function of neuronal nicotinic acetylcholine receptor channels, Curr.opin. Neurobiol., 1992,2:254-262.
    67. Ross MD. Implications of otconial changes in microgravity. Physiology, 1987,30(suppl l):s90-3.
    68. Ross MD. Morphological changes in rat vestibular system system following weightlessness.J Ves Res., 1993,3:241-51.
    69. Ross MD. A spaceflight study of synaptic plasticity in adult rat vestibular maculas. Acta Otolaryngol, 1994,516(suppl) :3-14.
    70. Ross MD. Implications of otconial changes in microgravity. Physiology, 1987,30(suppl l):s90-3.
    71. Ross MD, Donovan K, Chee 0. Otoconial morphology in space-flown rats. Physiology, 1985,28(Suppl 1) :s219-20.
    72. Salamat MS, Ross MD ,Peacor DR, et al. Otoconial formation in the fetal rat. Ann Otol, 1980, 89(2) : 229-238.
    73. Sanchez-Fernandez J, Rivera-Pomar J. A scanning electron microscopy study of human otoconia genesis. Acta Otolaryngol (Stockh), 1984,97:479-88.
    74. Schaefer KP and Meyer DL. Compensatory mechanisms following labyrinthine lesions in the guinea pig. A simple model of learning. In: JP Zippel(Ed), Memory and Transfer of Information. New York:Plenum, 1973. 203-232.
    75. Schmid I, Uittenbogart CH, and Giorgi JV. Sensitive method for measuring apoptosis and cell surface phenotype in human thymocytes by flow cytometry. Cytometry, 1994,15(1) : 12-20.
    76. Schwarz DWF,Satoh K,Schwarz IE et al.Cholinergic innervation of the rat's labyrinth. Exp Brain Res, 1986,64:19-26.
    77. Sirota M.G., B.M.Babayev, I. B. Beloozverova, A.N.Nyrova, S.B.Yakushin and I. B. Kozlovskaya Neuronal activity of nucleus vestibularis during coordinated movement of eyes and head in microgravitation. Physiologist, 1988,31(suppl 1) :s8-s9.
    78. Slepecky NB, Ulfendahc Mats. Actin-binding and microtubule-associated proteins in the organ of Corti. Hear Res, 1992,57(1) :201-205.
    79. Sondag H N P M, De Jong H A A, and Oosterveld W J. Altered behaviour of hamsters by prolonged hypergravity: adaptation to 2. 5G and re-adaptation to 1G. Acta Otolaryngol, 1996,116:192-197.
    80. Sondag H N P M., De Jong H A A., Van Marie J., and Oosterveld W J. Effects of
    
     sustained acceleration on the morphological properties of otoconia in Hamsters. Acta Otolaryngol, 1995,115:227-230.
    81. Sosula L,Glow PH. Increase in number of synapses in the inner plexiform layer of light-deprived rat retinae:Quantitative electron microscopy. J Comp Neurol, 1971,141:427-52.
    82. Suzuki H, Ikeda k, Takasaka T, et al. Biologicalcharacteristics of the globular substance in the otoconial mernbrane of the guinea pig. Hearing Res, 1995. 90: 212-218.
    83. Takada M, Suzuki H, ikeda K, et al. PH regulationof the globular substance in the otoconial membrane of the guinea pig inner ear. Hearing Res, 1998, 124: 91-98.
    84. Takumida M et al. ORL, 1995,57:100-104.
    85. Tomei I.D et al.Pro Natl Acad Sci USA, 1993,90:853.
    86. Vinnikov Y. The role of gravity in the phylogeny of structure and function in animal sensors of spatial, and their predicted action in weightlessness. Life Sci Space Res. 1974, XII:59-176.
    87. Vinnikov Ya A,Gazenko OG, Titova LK et al. The structural and functional organization of the vestibuler appartus of rats exposed to weightlessness for 20d on board the sputnik "Kosmos-782". Acta Otolaryngol, 1979,87:90-96.
    88. Vinnikov Y. The development of the vestibular apparatus under conditions of weightlessness. Arkhiv/anatomii, gistologii i emblyriologii ii LXX 1976; No. 1, Washington NASA TTF-16987.
    89. Vogel H, Kass JR. European vestibular experiments on the spacelab-1 mission. 7. Ocular counterrolling measurements pre-and post-flight. Exp Brain Res, 1986,64:284-290.
    90. Von Baumgarten RJ, Simmonds RC, Boyd JF. Effects of prolonged weightlessness on the swimming pattern of fish aboard skylab 3. ASEM, 1975,46:902-6.
    91. Wang YH, Borkan SC. Am J Physiol, 1996,270(6 pt 2) :F1057-1065.
    92. Watt D.G. D., K.E Money, R. L. Bondar, R. B. Thirsk, M. Garneau, and P. Seully-Poser. Canadian medical experiments on Shuttle Flight41-G. Can. Aeronaut. Space J., 1985,31:215-226.
    93. Watt D. CG. The vestibulo-ocular reflex and its possible roles in space motion sickness. ASEM. 1987:58,Suppl:A170-A174.
    94. Webster DB, Webster M. Neonatal sound deprivation affects brainstem auditory nculei. Arch Otolaryngol, 1977,103:392-6.
    95. Whyte M,Evan G.The last cut is the deepest. Nature, 1995,376:17.
    96. Wiesel T, Hubel D. Single cell response in striate cortex of kittens daprived of vision in one eye. J Neurophysiol, 1963,26:1003-17
    97. Wiessel T, Hubel D. Comparison of the effects of unilateral and bilateral eye
    
    closure on cortical unit responses in kittens. J Neurophysiol, 1965, 28 :1029-1040.
    98. Wijsman Jan H, Jonker Richard R, Keijzer Rob, De Veldeeee Cornelis JH, Cornelisse Cees J, Van Dierendonck Jan Hein. A new method to detect apoptosis in paraffin sections: in situ end-labelling of fragmented DNA. J Histochem and Cytochem, 1993, 41 (1) :7-12.
    99. Willem Bles and Bernd de Graaf. Postural consequences of long duration centrifugation. J Ves Res, 1993, 3:87-95.
    100. Wilson VJ, Melvill JG. Mamalian vestibular physiology. New York:Plenum, 1979.
    101. Wojiciech Gorczyca et al. Perimental Cell Res, 1993, 207:202.
    102. Woolf NJ, Butcher LL. Cholinergic systems in the rat brain Ⅳ. descending projections of the pontomesencephalic tegmentum, Brain Res, Bull, 1989, 23, 519-540.
    103. Yakovleva IY, kornilova LN, Serix GD, Tarasov IK, Alekseev VN, Results of vestibular function and spatial perception of the cosmonauts for the 1st and 2nd exploitation on station of salut 6. Space Biol (Russia), 1982, 1:19-22.
    104. Young LR. Space and the vestibuler system:what has been learned. J Ves Res, 1993, 3: 203-206.
    105.陈阳,前庭神经系统神经递质及受体的研究进展.国外医学耳鼻咽喉科学分册,1998,22(4):194-196.
    106.航空医学编委会.航空医学.北京:人民军医出版社,1992.223-224.
    107.郎海南,刘延,范尔钟,李颖.豚鼠前庭感觉上皮损伤中细胞凋亡的观察.耳鼻咽喉-头颈外科,1997,4(5):300-303.
    108.李晓丹.细胞凋亡.国外医学生理,病理科学与临床分册,1997,17(3):231-234.
    109.李德才,心脏应激与基因表达.医学综述,1999,5(1):16-17.
    110.刘正.晕机病发病调查,易感性预测,适应性获得及神经生理机理研究.解放军总医院博士学位论文.1998,7.
    111.凌明圣.热休克蛋白研究进展.国外医学分子生物学分册,1993,15:227-230.
    112.沈勤,吴扬,李炳源等.旋转刺激对大鼠中枢单胺类神经递质的影响.航天医学与医学工程 1994,7(2):100-103.
    113.空军司令部军训部.苏二七飞行人员专项体能训练教材.2000.4.
    114.孙久荣.单侧前庭神经切断后猫运动方式的改变.动物学报,1997,49:18-24.
    115.孙久荣.前庭代偿中猫的头部和颈部姿势的改变.生理学报,1997.43:163-169.
    116.吴兴裕主编.航空航天生物动力学.陕西:陕西科学技术出版社,19.89-90.
    117.徐先荣,张改华,傅桂琴等.豚鼠运动病模型的建立及其客观评判指标.空军总医院学报,1996,12(1):8-10.
    118.于立身,刘森,王奎年等.前庭功能检查技术.北京:人民军医出版社,1994.
    119.周永清,毕爱芳.中,内耳热休克蛋白70家族研究进展,国外医学耳鼻咽喉科学分册,1999,23(3):154-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700