人体内成分无创光谱检测中测量条件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体内各种化学成分是评价人体健康状况的重要信息,是多种疾病诊断与疗效判定的重要指标,及时检测这些化学成分含量十分重要。由于有创检测方法存在各种弊端,因此以近红外光谱检测技术为代表的无创检测方法成为国际上的研究热点之一。
    但是,诸多关键的共性问题限制了该方法的实际应用。本文以影响人体内成分无创光谱测量的关键因素—测量条件问题作为突破口,对近红外光谱测量中影响测量精度的测量条件问题进行了一系列深入的研究。
    本研究从理论分析着手,首次系统地研究基于人体内成分光谱检测的测量条件方法论及其构成要素;通过实验研究多种测量条件变化对光谱测量的影响,提出再现测量条件是提高近红外光谱稳定性和重复性的前提,探讨测量条件问题研究的必要性与重要性。
    为了消除或减小测量条件对人体内成分无创近红外光谱测量的影响,首次提出基于人体特征的测量条件再现原理,研制出智能化测量条件再现系统;该系统利用图像处理、接触压力测量等方法实现测头位置的确定,通过伺服定位装置实现测头的重复定位。该系统的精度分析和实验研究结果表明:测量条件再现系统的应用能大大减小测量位置及接触压力变化对光谱测量的影响,提高光谱测量的稳定性和重复性。
    针对上述测量条件再现系统中最佳初始接触压力确定问题,根据光纤测头与被测部位接触压力形成的特点,基于皮肤及皮下组织的生物力学特性,首次提出并建立了接触压力的有限元-蒙特卡罗模型(CP-F-M模型);并将该模型的仿真结果和实验结果相结合,指导最佳初始接触压力值确定的实验方案设计。
    最后,针对测量条件再现系统应用效果分析,研制出无创人体血糖浓度近红外光谱测量系统,并开展了预临床实验研究。研究结果表明:应用测量条件再现系统可以减少甚至消除测量条件的改变而引起的测量误差;在应用测量条件再现系统的前提下,对所测得的近红外光谱进行一定的预处理后,将近红外光谱分析技术应用于无创血糖浓度测量是可行的。
    预临床实验结果展现出近红外光谱技术在无创人体内成分检测中有广阔的临床应用前景,本文的研究成果为该方法的成功实施奠定了理论和实验基础
The various chemical components present in human body carry important information on health status. Such chemical information also serves as an important indicator to a number of clinical diagnostics and therapeutic effect. Therefore, timely analysis of these chemical concentrations has special meaning for modern health care. Invasive measurement is unfavorable when compared with non-invasive methods. Hence, Near-infrared spectroscopy receives global attention as a principal non-invasive diagnostic means.
    As a matter of fact, many key common issues severely constrain the practical application of this technique. This dissertation discusses the measurement conditions, which are primary factors affecting spectral measurement of human body composition, as a breakthrough to this problem. Measurement conditions affecting measuring accuracy in near-infrared spectral measurement are to be systematically discussed in details.
    In this dissertation, starting with theoretical analysis, we forward the methodology concerning body composition measurement conditions with spectroscopy methods as well as systematic description of its essential factors. Experiments are done to examine the influence of various measurement conditions on spectral measurement. It is concluded that reproducing measurement conditions is prerequisite to enhancing stability and repeatability in spectral measurement. A discussion of the necessity and importance of measurement conditions is also given.
    To eliminate or reduce the influence of measurement conditions on near-infrared spectral measurement of human body composition, measurement reproducing theory and smart system towards human body properties are put forwards originally. Image processing, and contact pressure measurement methods are employed to determine the position of probe in the system. Servo relocation device is utilized to relocate the probe position. Accuracy analysis and experimental results reveal that application of measurement conditions reproducing system can significantly reducing spectral difference arising from probe position and contact pressure. The stability and repeatability for spectra measurement can be improved accordingly.
    For the optimum initial contact pressure in the above measurement condition reproducing system, a contact pressure finite element monte carlo model is forwarded and constructed for the first time, which is based on the formation characteristics of contact pressure between optic fiber probe and the probing part as well as bio-mechanical properties of skin and subcutaneous tissue. Simulation results of the model are combined with experimental outcomes and serve as a guide to experimental design strategy to determine optimum initial contact pressure.
    Finally, non-invasive blood glucose concentration measurement system by near-infrared spectroscopy is set up according to effectiveness analysis of measuring conditions reproducing system. Clinical experiments are also conducted. Our study reveals: the application of measurement conditions reproducing system can reduce or even eliminate the measuring errors brought by measurement condition variation.
    
    With the application of measurement condition reproducing system, near-infrared spectroscopy technique proves to be feasible in blood glucose sensing after the NIR spectra undergo certain mathematical pretreatment.
    Pre-clinical experimental results demonstrate the great clinical prospect for near-infrared spectroscopy application in non-invasive human body composition analysis technique. Theory and experimental results disclosed by this dissertation laid solid basis for the successful application of this method
引文
[1] 唐元升,张秀珍,韩殿存,人体医学参数与概念,济南:济南出版社,1996,295~325
    [2] Wayne F M, Non-invasive automatic glucose sensor system, United States Patent, 3958560, May 25,1976
    [3] Zeller et al., Blood glucose measurement by infrared spectrometry, The International Journal of Artificial Organs,1989,12(2):129~135
    [4] Peuchant et al., Determination of serum cholesterol by near-infrared reflectance spectrometry, Anal. Chem.,1987,59:1918~1819
    [5] Yang W S, Non-invasive method and apparatus for measurement blood glucose concentration, United States Patent,5267152, Nov 30,1993
    [6] Koashi,et al., Method and apparatus for non-invasive measurement of blood sugar level, United States Patent,5533509, July 9,1996
    [7] Xu KX,Yamasaki Yutaka,Uenoyama Harumi,et al., Apparatus and method for optically measuring concentrations of components, United States Patent,5602647,Feb.11,1997
    [8] Kruse Jarres, Physiocochemical determinations of glucose in vivo, J.Clin.Chem.Clin. Biochem., 1988, 26(4): 210-218
    [9] Yoon Gilwon, Non-invasive monitoring of blood glucose,Pacific Rim Conference on Lasers and Electro-Optics, CLEO-Technical Digest 4,1999,1233-1234
    [10] Khalil Omar S., Progress in non-invasive optical diagnostics, Proceedings of SPIE-The International Society for Optical Engineering, 2000,2-14
    [11] Nils Kaiser,Method for determining the contents of metabolic products in the blood,US Patent, 4,169,676,Oct.2, 1979
    [12] Jobsis F F,Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,Science, 1977, 198: 1264~1267
    [13] Claus D?hne et al., Spectrophotometric method and apparatus for the non-invasive determination of glucose in body tissues,US Patent, 4655225,Apr.7, 1987
    [14] McNichols R J, Coté G L, Optical glucose sensing in biological fluid: an overview, Journal of Biomedical Optics, 2000,5(1): 5~16
    [15] Waynant R W, Chenault VM,Overview of non-invasive fluid glucose measurement using optical techniques to maintain glucose control in diabetes mellitus, LEOS Newsletter,1998,4:3~6
    [16] Coté G L, Noninvasive optical glucose sensing - An overview. Journal of Clinical Engineering, 1997, 22(4):253~259
    
    
    [17] Cameron B D ., Cote G L, Polarimetric detection of chiral chemicals in biological fluids, Proceedings of SPIE, 1997,2982: 308~313
    [18] Cameron B D, Gorde H, Cote G L, Development of an optical polarimeter for in vivo glucose monitoring, Proceedings of SPIE, 1999,3599: 43~49
    [19] Baba J S, Investigation of pH and temperature on optical rotatory dispersion for noninvasive glucose monitoring, Proceedings of SPIE, 2001, 4263:25-33
    [20] Chou C, Han C Y, Kuo W C, et al., Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter, Applied Optics,1998,37(16): 3553~3557
    [21] Coté G L, Cameron B D, Noninvasive polarimetric measurement of glucose in cell culture media, Journal of Biomedical Optics, 1997, 2(3):275~281
    [22] Kanger J S, de Mul frits F.M.,Otto C., Non-invasive detection of glucose using Raman spectroscopy, Proceedings of SPIE, 1999,3570:123~129
    [23] Xu J, Ford J F, Mann C K, et al., Raman measurement in bioreactor materials, Proceedings of SPIE, 1997,2976:10~19
    [24] Berger A J, Koo T W, Itzkan I, et al., Multicomponent blood analysis by near-infrared Raman spectroscopy, Applied Optics, 1999, 38(13):2916~2926
    [25] Berger A J, Wang Y, Feld M S, Rapid, non-invasive concentration measurements of aqueous biological analytes by near infrared Raman spectroscopy, Applied Optics, 1996,35: 209~212
    [26] Zhao Z M, Myllyla R.Photoacoustic determination of glucose concentration in whole blood by a near-infrared laser diode. Proceedings of SPIE, 2001, 4256:77~83
    [27] Duncan Arlene, Hannigan John,Freeborn Scott S. et al., Portable non-invasive blood glucose monitor, International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Proceedings 2,1995,455~458
    [28] Zhao Z M, Myllyl? R, The effect of optical scattering on pulsed photoacoustic measurement in weakly absorbing liquid, Measurement Science and Technology, 2001,12: 2172~2177,
    [29] Quan K M, Christison G B, MacKenzie H A, et al.,Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom, Physics in Medicine and Biology, 1993,38:1911~1922
    [30] Christison G B, MacKenzie H A , Laser photoacoustic determination of physiological glucose concentrations in human whole blood, Medical and Biological Engineering and Computing, 1993, 31: 248~290
    [31] Mackenzie H A, Christison G B, Hodgson P et al., A laser photoacoustic sensor for analyte detection in aqueous systems, Sensors and Actuators B, 1993,11: 213~220
    [32] Shen Y C, Lu Z H, Stephen S, et al., Measurement of the optical absorption coefficient of a liquid by use of a time-resolved photoacoustic technique, Applied Optics, 2000,39(22):4007~4012
    
    
    [33] Bednov A A, Karabutov A A, Savateeva E V, et al., Monitoring glucose in vivo by measuring laser-induced acoustic profiles, Proceedings of SPIE, 2000,3916: 9~18
    [34] Zhao Z M, Pulsed photoacoustic techniques and glucose determination in human blood and tissue, Ph.D thesis, University of Oulu, May, 2002
    [35] Bruulsema J T, Hayward J E, Farrell T J, et al.,Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient, Optics Letters, 1997,22(3):190~192
    [36] Heinemann L, Kr?mer U, Kl?tzer H M, et al., Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests, Diabetes Technology & Therapeutics, 2000,2(2): 211~220
    [37] Robert D R, A portable non-invasive blood glucose meter, Oak-Ridge Conference,1993, 312A: 1244
    [38] Robert D R. Osenthal, Instrument for non-invasive measurement of blood glucose, US Patent, 5,077,476, Dec.31, 1991
    [39] Mark A A, Gary W S, Determination of physiological levels of glucose in an aqueous matrix with digitally filtered Fourier transform near-infrared, Spectra.Anal.Chem.,1990, 62(14): 1457~ 1464
    [40] Kevin H H, Mark A A,Gary W S, Temperature-insensitive near-infrared spectroscopic measurement of glucose in aqueous solutions, Applied Spectroscopy, 1994,48(4):477~483
    [41] Pan S T, Chung H, Mark A A, Near-infrared spectroscopic measurement of physiological glucose levels in variable matrics of protein and triglycerudes, Analytical Chemistry, 1996,68(7): 1124~1134
    [42] Blank T B,Ruchti T L, Lorenz A D, et al., Clinical results from a non-invasive blood glucose monitor, Presented at the Photonics West 2002 Meeting, San Jose,CA, Jan.19-25,2002
    [43] Hazen K H, Welch M, Ruchti T L, et al., Construction of a family of tissue simulating phantoms for glucose determination using diffuse reflectance near-IR spectroscopy, Presented at the Federation of Analytical Chemistry and Spectroscopy Societies Meeting, Detroit, Oct.7-12,2001
    [44] Robinson M R, Eaton R P, Haaland D M, et al. Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation, Clin. Chem., 1992, 38:1618~1622
    [45] Heise H M, Bittner A, Multivariate calibration for physiological samples using infrared spectra with choice of different intensity data, J. Mol. Struct., 1995, 348:127~130
    [46] Burmeister J J, Arnold M A, Small G W, Noninvasive blood glucose measurements by near infrared transmission spectroscopy across human tongues, Diabetes Technology & Therapeutics, 2000, 2: 5~16
    
    
    
    [47] Stephen F, Malin T L, et al. Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy, Clin. Chem., 1999,45:1651~1658
    [48] Amerov, et al., Method and device for non-invasive blood glucose measurement, Proceedings of SPIE, 1999, 3599: 33~42
    [49] Saptari, et al., Sensitivity analysis of near infrared glucose absorption signals: Toward noninvasive blood glucose sensing, Proceedings of SPIE, 2000, 4163: 45~54
    [50] Gowda, et al., Development of an implantable skin port sensor for use as an in vivo optical glucose sensing platform, Proceedings of SPIE-The International Society for Optical Engineering, 2001, 4263: 11~19
    [51] 沈耀春,王春,H.A.Mackenzie等,一种新型的检测血糖含量的方法,南京大学学报(自然科学),2000,36(5):632~635
    [52] 沈韬,彭卿,翁诗甫等,傅立叶变换中红外光谱法用于非损伤性血糖测定的研究,光谱学与光谱分析,1996,16(3):39~42
    [53] 李明菊,沙宪政,王秀章,无创性血糖的光谱检测及临床研究状况,国外医学生物医学工程分册,2000,23(5):291~299
    [54] 程广斌,沙宪政,王秀章,无创性血糖检测技术,国外医学生物医学工程分册,1997,20(6):343~347
    [55] 常红,王涌天,蒋月娟等,基于光信息处理技术的无创血糖测量方法,光学技术,1998,(6):55~57
    [56] 黄岚,丁海曙,王广志。用近红外漫反射光谱无损检测血糖的初步研究,光谱学与光谱分析,2002,22(3):387~391
    [57] 王峰,李炜,林方等,用近红外光谱技术实现生物组织含氧量的无损检测,清华大学学报自然科学版,1999,39(7):16~19
    [58] 莫希,孙树星,余修海等,人体血糖浓度连续、无创、定量检测的数理模型,生物医学工程学杂志,1991,8(2):137~142
    [59] Markolf H N 著,张镇西译,激光与生物组织的相互作用—原理及应用,西安:西安交通大学出版社,1999,45~120
    [60] 赵友全,范世福,曹文新,生物组织光学特性参数及其描述,国外医学生物医学工程分册,2000,23(2):76~80
    [61] 谢树森,生物组织光学性质的测量原理与技术,中国生物医学工程学报,1997,16(4):327~332
    [62] Wilson B C, Adam G A, Monte Carlo model for the absorption and flux distributions of light in tissue, Med. Phys., 1983;10:824~830
    [63] Jacques S L, Alter C A, Prahl S A, Angular dependence of He-Ne laser light scattering by human dermis, Lasers Life Sci.,1987,1:309~333
    
    
    [64] Parsa P, Jacques S L, Nishioka N S, Optical properties of rat liver between 350 and 2200nm, Appl. Opt., 1989, 28:2325~2330
    [65] Ishimura A, Diffusion of light in turbid media, Appl Opt., 1989,28:2210~2215
    [66] Aronson R, et al., Photon diffusion coefficient in an absorbing medium, Journal of Optical Society Am. A, 1999,16(5):1066~1071
    [67] Wang L H, et al., Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory, Computer Methods and Programs in Biomedicine, 2000, 61: 163~170
    [68] Wang R K, et al., Modeling optical properties of soft tissue by fractal distribution of scatterers, Journal of Modern Optics, 2000, 47(1):103~120
    [69] Venugopalan V, et al., Radiative transport in the diffusion approximation: an Extension for highly absorbing media and small source-detector separations, The American Physical Society, 1998, 58(2):2395~2407
    [70] 张西芹等,生物组织中光子迁移的统计性质研究,光学学报,2000,20(2): 224~228
    [71] Gardner C M, Welch A J, Monte Carlo simulation of light transport in tissue: unscattered absorption events, Appl. Opt., 1994,33:2743~2745
    [72] 孙威,应金品,李江等,用蒙特卡罗方法研究生物组织中的光分布,光学学报,1994,14(1):97~101
    [73] 骆清铭,龚辉,刘贤德等,生物组织中激光传输规律的模拟与检验,光子学报,1995,24(2):125~129
    [74] 林方,丁海曙,苏畅,Monte-Carlo方法研究生物组织内部的光能分布,清华大学学报自然科学版,2000,40(3):20~23
    [75] 薛玲玲,王新宇,张春平等,生物组织的光分布研究,光子学报,2000,29(10):885~889
    [76] Wu J, et al., Analytical model for extracting intrinsic fluorescence in turbid media, Applied Optics, 1993, 32(19):3585~3595
    [77] 张西芹,邢达,超声调制生物介质中光子自相关性质的研究,激光生物学报,2001,10(2):88~91
    [78] 张航,应金品,周斌和等,用遗传算法重构生物组织的光学特性参数,中国生物医学工程学报,2001,20(5):430~435
    [79] 林凌,李刚,王燕秋等,人体脂肪和肌肉组织光学特性的活体检测,光电子 激光,2001,12(4):425~429
    [80] 程树英,沈鸿元,用蒙特卡罗法研究面光源在血液中的传播,光电子 激光,2002,13(1):94~97
    [81] Gardner C M, et al., Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence, Applied Optics, 1996, 35(10):1780~1792
    
    
    [82] 钱盛友,邢达,生物组织中有限束宽光吸收的蒙特卡罗模拟,激光生物学报,2002,11(2):93~97
    [83] Wang L H, et al., Hybrid model of Monte Carlo simulation diffusion theory for light reflectance by turbid media, J. Optical Society Am. A, 1993, 10:1746~1752
    [84] ASTM, Standard practices for infrared, multivariate, quantitative analysis, Doc. E1655~94. In ASTM Annual book of standards, Vol.03.06, West Conshohochen. PA, USA, 1995
    [85] 许禄,化学计量学方法,北京:科学出版社,1997
    [86] 陆婉珍,袁洪福,徐广通等,现代近红外光谱分析技术,北京:中国石化出版社,2000
    [87] 朱尔一,杨芃原,化学计量技术及应用,北京:科学出版社,2000
    [88] Gabriely I, Kaplan J, Wozniak R,et al., Transcutaneous glucose measurement using near- Infrared spectroscopy during hypoglycemia, Diabetes Care, 1999, 22: 2026~2032
    [89] Tenhunen J, Kopola H, Myllylauml, Non-invasive glucose measurement based on selective near infrared absorption, requirements on instrumentation and spectral range, Measurement: Journal of the International Measurement Confederation,1998, 24: 173~177
    [90] Marbach R, Heise H M, Optical diffuse reflectance accessory for measurements of skin tissue by near-infrared spectroscopy, Appl. Opt., 1995,34: 610~621
    [91] Arnold M A, Noninvasive glucose monitoring, Curr Opin Biotechnol, 1996, 7: 46~49
    [92] Brumeister J, Arnold M A, Small G. Human noninvasive measurement of glucose using mear infrared spectroscopy[Abstract], Pittcon, 1998, New Orleans, LA, March 1-5, 1998
    [93] 王德昌,傅洪滨,王一兵,人体皮肤组织学彩色图谱,济南:山东科学技术出版社,1999
    [94] Burmeister J J, Arnold M A, Evaluation of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy, Clin. Chem., 1999, 45: 1621~1627
    [95] Willard H, Merritt L, Dean J, et al., Instrumental methods of analysis, Wadsworth, Belmont, 1981, 6th ed., p.73
    [96] Mark L H, Griffiths R P, Analysis of noise in Fourier transform infrared spectra, Applied Spectroscopy, 2002,56(5): 633~639
    [97] Isaksson T, Griffiths R P,Optimal absorbance for transmission or reflection spectra measured under conditions of constant detector noise in the presence of stray radiation, Applied Spectroscopy, 2002,56(7):916~919
    [98] Hirschfeld T, Honigs D, Hieftje G, Optimizaition of sample absorbance for quantitative analysis in the presence of pathlength error in the IR and NIR regions, Applied Spectroscopy, 1985,39(3):430~433
    [99] Honigs D E, Hieftje G M, Hirschfeld T, An optimization of detector-noise-limited infrared multiwavelength determinations, Applied Spectroscopy, 1985,39(2):253~256
    
    
    [100] Li Qingbo, Xu Kexin, et al., Selection of Pathlength for quantitative analysis with near-infrared spectroscopy, Analytical Chemistry, submitted
    [101] Anderson R R, The optics of human skin, J. Invest. Dermatol., 1981,77:13~19
    [102] Su Yixiong,Wang Wenbo, Xu Kexin, Jiang Chengzhi, Optical properties of skin, Proc. SPIE, 2002,4916:299~304
    [103] Heise H M, Non-invasive monitoring of metabolites using near infrared spectroscopy: state of the art, Horm Metab Res, 1996,28(10): 527~534
    [104] Marbach R, et al., Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip, Applied Spectroscopy, 1993,47:875~881
    [105] Chan E K, Sorg B, Protsenko D, et al., Effects of compression on soft tissue optical properties, IEEE Journal on Selected Topics in Quantum Electronics,1996,2:943~950
    [106] Shangguan H, Prahl S A, Jacques S L, et al., Pressure effects on soft tissues monitored by changes in tissue optical properties, in Laser-Tissue Interaction IX, S. L. Jacques Ed., Proc. SPIE 1998,3254, 366~371
    [107] Simpson J L R, Kohl M, et al., Effect of temperature on the optical properties of ex vivo human dermis and subdermis, Phys. Med. Biol., 1998,43:2479~2489
    [108] Jagemann K, Fischbacher C, Danzer K, et al. Application of near-infrared spectroscopy for non-invasive determination of blood/tissue glucose using neural networks, Z Phys Chem,1995,191:179~190
    [109] Heise H M, Marbach R, Koschinsky T H, et al. Noninvasive blood glucose sensors based on near-infrared spectroscopy, Artif. Organs., 1994,18:439~447
    [110] Marbach R, Koschinsky T H, Gries F A, et al. Noninvasive blood glucose assay by near- infrared diffuse reflectance spectroscopy of the human inner lip, Appl Spectrosc.,1993, 47: 875~ 881
    [111] Malin S F, Ruchti T L, Blank T B, et al. The noninvasive measurement of glucose by near- infrared diffuse reflectance spectroscopy, Clin Chem., 1999,45:1651~1658
    [112] Hazen K H, Glucose determination in biological matrices using near-infrared spectroscopy, PhD Dissertation, Iowa City, IA: University of Iowa. 1995,315p
    [113] Cameron B D, Gorde H W, Satheesan B, et al. The use of polarized laser light through the eye for noninvasive glucose monitoring, Diabetes Technol Ther., 1999, 1(2):135~143
    [114] Steffes PG, Laser-based measurement of glucose in the ocular aqueous humor: An efficacious portal for determination of serum glucose levels, Diabetes Technol Ther., 1999, 1:129~133
    [115] Borchert M S, Storrie-Lombardi M C, Lambert J L, A non-invasive glucose monitor: preliminary results in rabbits, Diabetes Technol Ther.,1999,1: 145~151
    
    
    [116] You J, Li W X, Zhang D, Hierarchical palmprint identification via multiple feature extraction, Pattern Recognition, 2002,35(4):847~859
    [117] Gengler B, The future of the palmprint, Network Security, 1999(12):5
    [118] Asker M B,Gerben T B V, Sabih H G, et al., A correlation-based fingerprint verification system, ProRISC 2000 Workshop on Circuits, Systems and Signal Processing, Veldhoven, The Netherlands, Nov.2000,1~8
    [119] Rosenthal R D, Paynter L N, Rockville M, Non-invasive measurement of blood glucose, U.S., U.S. Pat., 5028787, Jul.2,1991
    [120] Barnes R H, Brasch J W, Non-invasive determination of glucose concentration in body of patients, U.S., U.S. Pat., 5070874, Dec.10,1991
    [121] 小足克衛,横田博,糖類濃度の分光学的測定法,日本,特许公报,特公平8-27235,Mar.21,1996
    [122] Robinson M R, A robust accurate non-invasive analyte monitor, U.S. PCT, PCT/US94/09694, WO 95/06431, March 9,1995
    [123] Frones V, Chaussidon J, An interpretation of the evolution with temperature of the v2 + v3 combination band in water, J.Chem.Phys., 1978, 68, 4667~4671
    [124] Laufer J, Simpson R, Kohl M, et al., Effect of temperature on the optical properties of ex vivo human dermis and subdermis, Phys. Med. Biol., 1998,43, 2479~2489
    [125] Kelly J J, Kelly K A, Barlow C H, Tissue temperature by near-infrared spectroscopy, In Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media, SPIE 1995, 2389:818~828
    [126] Haaland D, et al., Reagentless near-infrared determination of glucose in whole blood using multivariate calibration, Applied Spectroscopy, 1992,46:1575~1578
    [127] Wilkins E, Atanasov P, Glucose monitoring: state of the art and future possibilities, Med. Eng. Phys., 1996,18(4): 273~288
    [128] Robert N F, Nathaniel A W, Tan Huwei,et al., Transfer of multivariate calibration models: a review, Chemometrics and Intelligent Laboratory Systems, 2002,64:181~192
    [129] Kubo Hiroko, Mitsumura Yoshio, Uenoyama Harumi, Xu Kexin, Method and apparatus for measuring concentration by light projection, U.S.Patent,6147749, Nov.14,2000
    [130] Miroslv Trajkocic, Mark Hedley, Fast hierachical matching of an arbitrarily oriented template, Pattern Recognition Letters, 1993,14(2): 95~101
    [131] 李介谷,施鹏飞,图像处理技术,上海:上海交通大学出版社,1988
    [132] Dvornichenko V N, Bounds on correlation function with application to registration, IEEE Trans. Pattern Anal. Machine Intell.1983,5(2):206~213
    
    
    
    [133] Goshtasby A, Gage S H, Bartholic I F, A two-stage cross correlation approach to template matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984,6(3):374~378
    [134] Brown L G.A survey of image registration techniques. ACM Computing Surveys,1992, 24 (4):325~376
    [135] Ding L, Goshtasby A, Satter M, Volume image registration by template matching, Image and Vision Computing,2001,19:821~832
    [136] Zimmers E W, Marathe C, Wang J H, Subpixel measurement of digital image registration based on polynomial regression, In Proc.Int.Conf. Automation, Robotics & Computer Vision, 1994,1:400~403
    [137] Parker J Anthony, Kenyon Robert V, Donald E Toxel, Comparison of interpolating methods for image resampling, IEEE Trans on Medical imaging. 1983,MI-2(1)31~39
    [138] Gleason S S, Hunt A M.Subpixel measurement of image features based on paraboloid surface fit, Bruce G B, Frederick M W. Machine Vision Systems Integration in Industry, Proc. SPIE, 1991,1386:135~144
    [139] Tian Q, Huhns M N. Algorithms for subpixel registration. Computer Vision, Graphics, and Image Processing(CVGIP).1986,35(2):220~233
    [140] Manduchi R, Mian G A, Accuracy analysis for correlation-based image registration algorithms, ISCAS(International Society for Computer Aided Surgery). 1993: 834~837
    [141] Ingemar J C, Kruskal J B, Wallach D A, Predicting and estimating the accuracy of a subpixel registration algorithm, IEEE Trans on Pattern Analysis and Machine Intelligence, 1990,12(8):721~734
    [142] Hill L, Vlachos T, On the estimation of global motion using phase correlation for broadcast applications, IEE Int. Con. On Image Processing and its Application(IPA 1999):721~725
    [143] Tang W, Shen Z, Li Z, et al. Using phase correlation approach to correct images, Proc SPIE, 1995;2561:526~532
    [144] Kuglin C D, Hines D C, The phase correlation image alignment method, In Proc.1975 Int. Conf. Cybernetics and Society, New York,NY,1975,163~165
    [145] Reddy B S,Chatterji B N, An FFT-based technique for translation, rotation, and scale-invariant image registration, IEEE Trans. on Image Processing, 1996;3(8): 1266~1270
    [146] Joseph L.Horner, Peter D.Gianino, Phase-only matched filtering, Applied Optics. 1984;23(6): 812~816
    [147] de Castro E, Morandi C, Registration of translated and rotated images using finite Fourier transforms, IEEE Transactions on Pattern analysis and machine intelligence,1987, PAMI-9 (5): 700~703
    
    
    
    [148] Daubechies I, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans.On Information Theory,1990,36(5):962~1005
    [149] Corvi M, Nicchiotti G, Multiresolution image registration, In Proceeding 1995 IEEE International Conference on Image Processing, Washington, D.C. Oct. 23~26, 1995
    [150] Elsner P, Berardesca E, Wilhelm K P, et al., eds., Bioengineering of the skin: skin biomechanics, CRC Press, Boca Raton, London, New York, Washington D.C., 2002
    [151] 章燕程,杨美林,高英茂等,组织学与胚胎学,北京:中国医药科技出版社,1989
    [152] Buchanan G R著,董文军,谢伟松译,有限元分析,北京:科学出版社,2002
    [153] 王勖成,邵敏,有限单元法基本原理与数值方法(第二版),北京:清华大学出版社,1997
    [154] 丁国富,王金诺,基于接触有限元模型的虚拟手指力建模研究,计算机仿真,2000,17(4):21~23
    [155] 夸克工作室,有限元分析基础篇,北京:清华大学出版社,2002
    [156] 朱伯芳著,有限单元法原理与应用(第二版),北京:中国水利水电出版社,1998
    [157] Akin J E著,张纪刚等译,有限元法的应用与实现,北京:科学出版社,1992
    [158] Nebel C J, Soft tissue modeling from 3D scanned data, IFIP Conference Proceedings, Kluwer, Switzerland, 2001,196
    [159] Chen T D, Zeltzer D, Pump it up, computer animation of a biomechanically based model of muscle using the finite element method, Computer Graphics,1992,26(2):89~97
    [160] Lucero C J, Munhall G K, A model of facial biomechanics for speech production, J. Acoust. Soc.Am., 1999,106(5):2834~2842
    [161] Larabee W F, A finite element model of skin deformation, I.Biomechanics of skin and soft tissue: A review, Laryngoscope,1986,96:399~405
    [162] Bischoff J E, Arruda E M, Grosh K, Finite element modeling elastic constitutive model, Journal of Biomechanics, 2000,33:645~652
    [163] Jeffrey E B, Ellen M A, Karl G, Finite element modeling of human skin using an isotropic, nonlinear elastic constitutive model, Journal of Biomechanics, 2000, 33:645~652
    [164] Duck F A, Physical properties of tissue: a comprehensive reference book, Academic Press Inc., San Diego
    [165] Feng S, Zeng F A, Chance B, Photon migration in the presence of a single defect, a perturbation analysis, Applied Optics, 1995,34:3826~3837
    [166] 陆燧丽,毛慈波,光在组织中传输的光强分布的蒙特卡罗模拟,华中理工大学学报,1995,23(7):1~5
    [167] 王建岗,王桂英,徐至展,光在分层散射介质中传输行为的蒙特卡罗模拟研究,光学学报,2000,20(3):346~350
    
    
    [168] 卢毅权,李正佳,光在多层生物组织中传输的蒙特卡罗模拟,华中理工大学学报,2000, 28(3):102~104
    [169] 林煜,双层生物组织中光分布的蒙特卡罗模拟,激光杂志,1997,18(1):52~55,
    [170] 孙威等,用蒙特卡罗方法研究生物组织中的光分布,光学学报,1994,14(1):97~101,
    [171] Tinet E et al., Fast Semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media, Journal of Optical Society of America A, 1996,3(9):1903~1915
    [172] 丁海曙,王峰,苏畅等,近红外光子在生物组织中迁移的仿真及应用,清华大学学报自然科学版,1999;39(9):
    [173] 骆清铭等,生物组织中激光传输规律的模拟与检验,光子学报,1995,24(2):125~129
    [174] Arnold M L, McNeill F E, Prestwich W V, et al., System design for in vivo neutron activation analysis measurements of manganese in the human brain: based on Monte Carlo modeling, Applied Radiation and Isotopes, 2000,53:651~656
    [175] Prahl A S, Light transport in tissue, Ph.D thesis, The University of Texas at Austin, December 1988
    [176] Wang L H, Jacques S L, Zheng L Q, MCML-Monte Carlo modeling of photon transport in multi-layered tissues, Comput. Methods Programs Biomed, 1995,(47):131~146
    [177] Wang L H, Jacques S L,Zheng L Q, CONV-Convolution for responses to a finite diameter photon beam incident on multi-layered tissues, Computer Methods and Programs in Biomedicine, 1997,(54):141~150
    [178] Prahl S A, Keijzer M, Jacques S L, et al., A Monte Carlo model of light propagation in tissue, Proc.SPIE IS 1989,5:102~111
    [179] Troy T L, Thennadil S N,Optical properties of human skin in the NIR wavelength range of 1000-2200nm, Journal of Biomedical Optics, 2001,6(2):167~176
    [180] Simpson C R, Kohl M, Essenpreis M, et al., Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique, Phys.Med. Biol.,1998,43:2465~2478
    [181] Graaff R, Dassel C M, Koelink M H, et al., Optical properties of human dermis in vitro and in vivo, Appl.Opt., 1993,32:435~447
    [182] Laufer J, Simpson C R, Kohl M, et al., Effect of temperature on the optical properties of ex vivo human dermis and subdermis, Phys.Med.Biol., 1998, 43:2479~2489
    [183] Tuchin V V, Tissue Optics-Light scattering methods and instruments for medical diagnosis, SPIE Press, The International Society for Optical Engineering, Bellingham, Washington, USA, 2000, 3~98
    
    
    
    [184] van Gemert M J C, Jacques S L, Sterenborg H J, et al., Skin Optics, IEEE Transactions on Biomedical Engineering, 1989,36(12):1146~1154
    [185] Hopkins G W, Mauze G. R, In-vivo NIR diffuse-reflectance tissue spectroscopy of human subjects, Hewlett-Packard Company, Report 1999
    [186] Cheong W F, Prahl S A, Welch A J, A review of the optical properties of biological tissues, IEEE J.Quantum.Electron., 1990,26(12):2166~2185
    [187] Yaroslavskii I V, Tuchin V V, Light propagation in multilayer scattering media: Modeling by the Monte Carlo method, Optics and Spectroscopy(USSR), 1992,72(4):505~509
    [188] Tuchin V V, Light scattering study of tissues, Physics-Uspekhi, 1997,40(5):495~515
    [189] Wilson B C, Jacques S L, Optical reflectance and transmittance of tissues: principles and applications, IEEE Journal of Quantum Electronics, 1990,26(12):2186~2199
    [190] Saidi I S,Transcutaneous optical measurement of hyperbilirubinemia in neonates,Ph.D. dissertation, 1992, Rice University, Houston, TX, USA
    [191] Meglinski I V, Matcher S J, Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in visible and near-infrared spectral region, Physiciol.Meas., 2002, 23: 741~753
    [192] Graaff R, Aarnoudse G J, Zijp J R, et al., Reduced light scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations, Appl. Opt. 1992, 31: 1370~1376
    [193] Tuchin V V, Immersion effects in tissues, Proc. SPIE 2000,4162, 1~12
    [194] Jacques S L, McAuliffe D J, The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation, Photochemistry & Photobiology, 1991,53,769~75
    [195] Yaroslavsky A N, Yaroslavsky I V, Goldbach T, et al., Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements, J. Biomed. Opt., 1999, 4(1): 47~53
    [196] Jacques S L, Origins of tissue optical properties in the UVA, Visible, and NIR regions, OSA TOPS on Advances in Optical Imaging and Photon Migration, eds. RR Alfano, JG Fujimoto, publ. Optical Society of America, 1996,2:364~369
    [197] Jacques S L, Tissue fluorescence, Proceedings of SPIE, 1995, 2371: 2~13
    [198] Tuchin V V, Controlling of tissue optical properties, Proc. SPIE, 2000,4001:30~53
    [199] Tuchin V V, Tissue image contrasting using optical immersion technique, Proc. SPIE, 2000,4224:8
    [200] Tuchin V V, Opitcal and spectroscopy of immersed tissue and blood, Proc. SPIE, 2002, 4536
    [201] http://chinahealthcare.net/
    
    
    [202] Jenifer F.Walker, The waiting game, Diabetes Forecast, June 1998,52~57
    [203] The Diabetes Control and Complications Trial Research Group, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes , mellitus, N Engl J Med,1993,329: 977~986
    [204] The Diabetes Control and Complications Trial Research Group, Lifetime benefits and costs of intensive therapy as practiced in the Diabetes Control and Complications Trial, JAMA,1996, 276: 1409~1415
    [205] Colwell J A, Dudley J D, McDonald J M, et al. Consensus statement on self-monitoring of blood glucose, Diabetes Care, 1987,10:95~99
    [206] Li K L, Haung H S, Lin J D, et al. Comparing self-monitoring blood glucose devices, Lab Med., 1994, 25:585~591
    [207] Ginsberg B H, An overview of minimally invasive technologies, Clin Chem, 1992,38: 1596~1600
    [208] http://www.cygn.com/monitor
    [209] Rao G, Glikfeld P, Guy R H, Reverse iontophoresis: development of a noninvasive approach for glucose monitoring, Pharm Res, 1993,10:1751~1755
    [210] Sternberg F, Meyerhoff C, Mennel F J, et al., Subcutaneous glucose concentration: its real estimation and continuous monitoring, Diabetes Care, 1995,18:1266~1269
    [211] Ilya, Fine, Rehovot, I L, Non-invasive method and system of optical measurements for determining the concentration of a substance in blood, US Patent 6400972, June 04, 2002
    [212] Berman, Herbert L R, Jeffrey N, Self-contained method for determining blood glucose levels from an IR beam reflected from the surface of the skin, US Patent 6424849, July 23, 2002
    [213] Qu J, et al., Monte Carlo modeling studies of the effect of physiological factors and other analytes on the determination of glucose concentration in vivo by near infrared optical absorption and scattering measurements, Journal of Biomedical Optics, 1997,2(3):319~325
    [214] Arnold M A,Small G W, Measuring blood sugar with a beam of light, Easier monitoring of diabetes is focus of symposium, Boston, Aug.15-22,2002
    [215] Pasikatan M C, Steele J L, Spillman C K, et al., Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials, J. Near Infrared Spectrosc, 2001,9:153~164
    [216] http://www.newhealth.com.cn/
    [217] 戚仁铎,王友赤,诊断学,第四版,北京:人民卫生出版社,1996,477~478
    [218] Marbach R, Heise H M, On the efficiency of algorithms for multivariate linear calibration used in analytical spectroscopy, Trends Anal. Chem., 1992,11:270~275
    
    
    [219] Stone M, Brooks R J, Continuum regression, cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression, J. Royal Stat. Soc. B,1990,52:237~269
    [220] Lorber A, Kowalski B R, Alternatives to Cross-Validatory Estimation of the Number of Factors in Multivariate Calibration, Applied Spectroscopy, 1990, 44(9): 1464~1470
    [221] Tsaksson T, Naes T, The effect of multiplicative scatter correction(MSC) and linearity improvement in NIR spectroscopy, Appl.Spectrosc,1988,42:1273~1284
    [222] Helland I S , Naes T, Isaksson T, Related version of the multiplicative scatter correction method for preprocessing spectroscopic data, Chemom. Intell. Lab. Sys., 1995, 29: 233~241
    [223] Volmer M, Infrared Spectroscopy in clinical chemistry using chemometric calibration techniques, Ph.D thesis, Groningen University, Sep.2001
    [224] Jouan R D, Massart D L, Leardi R, et al., Genetic algorithms as a tool for wavelength selection in multivariate calibration, Anal Chem,1995,67:4295~4301
    [225] Bangalore A S, Shaffer R E, Small G W, et al., Genetic algorithm- based method for selecting wavelengths and model size for use with partial least squares regression, Application to near-infrared spectroscopy,Analytical Chemistry, 1996, 68 (23):4200~4212
    [226] Broadhurst D, Goodacre R, Jones A, et al., Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression with applications to pyrolysis mass spectroscopy, Anal Chim Acta.,1997, 348:86
    [227] Arcos M J, Ortiz M C, Villahoz B, et al., Genetic-algorithm-based wavelength selection in multicomponent spectrometric determination by PLS application on indomethacin and acemethacin in mixture, Anal Chim Acta., 1997, 339: 63~77
    [228] 王宏,智能算法在近红外无创伤人体血糖浓度检测中的应用,天津大学硕士论文,2002年6月
    [229] 邢文训,谢金星,现代优化计算方法,北京:清华大学出版社,1999
    [230] 张文修,梁怡,遗传算法的数学基础,西安:西安交通大学出版社,2000
    [231] Coley D A, An introduction to genetic algorithms for scientist and engineers, Singapore: World Scientific,1999
    [232] Fearn T, Davies T, Genetic algorithms: the evolutionary solution to an old problem, Spectroscopy Europe, 1997, 9:25~27
    [233] Beasley D, Bull R D, Martin R R, An overview of genetic algorithms. Part 1, Fundamentals, University of Cardiff, Cardiff, UK: Department of computing mathematics, 1993
    [234] Goldberg D E, Genetic algorithms in search, optimization and machine learning, New York: Addison-Wesley,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700