星载扫描干涉合成孔径雷达系统及信号处理技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星载扫描干涉合成孔径雷达(Scan-InSAR)是将扫描合成孔径雷达(ScanSAR)的宽测绘带特性与干涉合成孔径雷达(InSAR)的高程测量能力相结合的一种宽幅高程测量技术。利用扫描干涉合成孔径雷达的处理结果可获得宽测绘带内的高程信息,有利于快速实现全球高程测绘;也可在较短时间内得到同一区域的地表变化信息。本文对扫描干涉合成孔径雷达的系统参数及相关的信号处理方法进行了深入研究。论文的主要工作及创新性贡献有:
     (1)研究了常用的ScanSAR成像算法,包括SPECAN算法、全孔径算法和ECS算法。分析了各算法的相位保持特性;深入研究了用于ScanSAR成像的ECS算法,推导了成像过程中信号相位的变化,分析了距离scaling函数对成像结果的影响,分析了该算法的图像伸缩特性;对各种算法的特点和适用条件进行了对比。
     (2)研究了干涉SAR数据处理方法。提出了一种改进的最大频谱配准算法,该算法利用chirp-z变换和自适应改变估计窗长的方法降低噪声对估计结果的影响,在保证估计准确度的同时控制最大频谱法的运算量,实验证明该算法比原算法的运算量更少且适用于低相干复图像配准。
     (3)研究了星载扫描干涉合成孔径雷达的信号特点。分析了扫描干涉合成孔径雷达信号的自相关函数特性和功率谱密度函数特性;深入研究了“方位扫描同步”现象,包括其成因、对相干系数的影响及估计方法,并结合实例进行了验证;研究了方位向配准误差对相干系数的影响。
     (4)分析了星载扫描干涉合成孔径雷达的系统参数。分析了影响相位误差的各种因素,详细分析了多普勒中心差异、方位向斜坡及方位扫描同步对方位向频谱偏移的影响;分析了扫描干涉合成孔径雷达系统的测高精度;研究了扫描干涉合成孔径雷达对轨道特性和方位扫描同步的要求;深入分析了S波段扫描干涉合成孔径雷达系统对偏航牵引的要求。
     (5)深入研究了扫描干涉合成孔径雷达数据处理方法。针对ScanSAR数据的方位向不连续性,提出了“拼接拟合-分解插值”的配准方案,实现了ScanSAR复图像的配准;针对ASAR WSS复图像中各数据线对应的“零多普勒时间”易出现不规则变化的特点,提出了“多驻留数据块联合处理与利用零多普勒时间不规则点分段处理”相结合的去除平地效应方法;提出了扫描干涉合成孔径雷达的数据处理流程。
Spcace-borne Scan Interferometric Synthetic Aperture Radar (Scan-InSAR) is anew technique for wide swath elevation measurement. It is a combination of thewide swath property of ScanSAR and the elevation measurement ability ofInterferometric SAR. With the Scan-InSAR results, the elevation information of awide swath area can be obtained, which is greatly benefit to global topography; onthe other hand, monitoring the surface change of some area can be realized in shorterperiod. The Scan-InSAR system parameters and relative signal processing methodsof Scan-InSAR are studied in an all-round and systematical way in this dissertation.
     The main work and innovations of the dissertation are as follows:
     (1) Some imaging algorithms for ScanSAR mode are investigated, includingSPECAN algorithm, Full Aperture algorithm and Extended Chirp Scaling algorithm.The phase preserving properties are analyzed. Some aspects of the ECS algorithmfor ScanSAR mode are investigated deeply, such as the signal phase variation, theinfluence of range scaling function on the result and the ability of extending andshrinking image. The characteristics and applicable conditions of the threealgorithms are contrasted.
     (2) Interferometric SAR data processing methods are investigated. Animproved maximum spectrum peak co-registration method is proposed. The methoduse chirp-z transform and the adaptive variation of the estimation window width toreduce the computation load as well as ensure the estimation accuracy.Experimental results show that the method has lower computation load and it issuitable for low coherence data co-registration.
     (3) The characteristics of Scan-InSAR signal are investigated. The properties ofsignal Auto Correlation Function and Power Spectrum Density are derived in theory.The Azimuth Scan Pattern Synchronization (ASPS) is investigated deeply, includingthe origin, the influence on coherence and the estimation method, which is validatedwith real data; the influence of the azimuth miscoregistration on the coherence isderived.
     (4) The system parameters of Scan-InSAR are analyzed. The factors affectingphase errors are analyzed. The origins of azimuth spectrum shift in Scan-InSAR areanalyzed in detail, including Doppler Centroid difference, influence of azimuth slopeand ASPS. The elevation measurement accuracy of Scan-InSAR system is analyzed.The requirements of orbit maintenance and ASPS are brought forward. Therequirement of yaw steering for S-band ScanSAR system is analyzed in detail.
     (5) The Scan-InSAR data processing methods are investigated deeply. Aco-registration method called "mosaic fitting- separating interpolation" is proposedto fit for the discontinuous in azimuth direction of ScanSAR data; A flatten methodis proposed to resolve the problem of the irregular variation of the "zero Dopplertime" in the ASAR WSS data. The Scan-InSAR data processing scheme is proposed.
引文
[1] J.C. Curlander, R. N. McDonough. Synthetic Aperture Radar: Systems and Signal Processing. New York: John Wiley & Sons, Inc. 1991
    [2] G. Franceschetti, R. Lanari. Synthetic Aperture Radar Processing. New York: CRC Press LLC. 1999
    [3] 张澄波.综合孔径雷达—原理、系统分析与应用.北京:科学出版社.1989
    [4] 魏钟铨.合成孔径雷达卫星.北京:科学出版社.2001
    [5] D. R. Williams. Magellan Mission to Venus. http://nssdc.gsfc.nasa.gov/planetary/magellan.html.
    [6] From-website. SPACECRAFT-Cassini Orbiter Instruments-RADAR. http://saturn.jpl.nasa.gov/spacecraft/instruments-cassini-radar.cfm.
    [7] R.K. Moore, J.P. Claassen, Y. H. Lin. Scanning Spaceborne Synthetic Aperture Radar with Integrated Radiometer. IEEE Trans. Aerosp. Eletron. Syst, vol. 17, No. 3, 1981, pp. 410-420.
    [8] K. Tomiyasu. Conceptual Performance of a Satellite Borne, Wide Wwath Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sensing, vol. GE-19, 1981, pp. 108-116.
    [9] A. Currie, M. A. Brown. Wide Swath SAR. IEE Proceedings-F, vol.139, No.2, Apr.1992, pp. 123-135.
    [10] A.P. Luscombe. Taking a Broader View: Radarsat Adds Scansar to Its Operations. in Proc. IGARSS'88. 1988. Edinburgh, Scotland, pp. 1027-1032
    [11] Envisat ASAR Products Handbook. European Space Agency. 28 March, 2006
    [12] J. Mittermayer, V. Alberga, S. Buckreuss, and et al. TerraSAR-X predicted performance, in Proc. SPIE 2002. Sept.2002. Greece, pp.22-27
    [13] From-website. Advanced Land Observing Satellite "Daichi"(ALOS). http://www.jaxa.jp/projects/sat/alos/index_e.html.
    [14] H.A. Zebker, R. M. Goldstein. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research, 91(B5), 1986, pp. 4993-4999.
    [15] 王超,张红,刘智.星载合成孔径雷达干涉测量.北京:科学出版社.2002
    [16] S. Hensley, P. Rosen, E. Gurrola. Topographic Map Generation from the Shuttle Radar Topography Mission C-band SCANSAR Interferometry. in Proc. SPIE 2000. Dec. 2000, pp. 179-189
    [17] R. Bamler, D. Geudtner, B. Schattler, and et al. RADARSAT ScanSAR Interferometry. in Proc. IGARSS'99. 1999: IEEE, pp.1517-1521
    [18] R. Cordey, T. Pearson, Y. L. Desnos, and et al. ASAR Wide-Swath Single-look Comlex Products: Processing and Exploitation Potential. in Proc. FRINGE 2003 Workshop. 2003. Frascati, Italy,
    [19] ESA-website. http://earth.esa.int/wsswg/background.html.
    [20] From-website. ENVISAT ASAR-ASAR Wide Swath Single Look Complex (ASA_WSS_1P) http://envisat.esa.int/object/index.cfm?fobjectid=4218.
    [21] R. Hanssen. Envisat ASAR Wide-Swath Interferometry: Atmosphere studies (progress). http://earth.esa.int/wsswg/results.html, 2003.
    [22] B. Chapron. Ocean Applications http://earth.esa.int/wsswg/results.html, Presentations from the 1st Progress Meeting.
    [23] R. Cordey, T. Pearson, Y.-L. Desnos, and et al. Envisat Wideswath SLC Products: Processing & Exploitation Potential. http://earth.esa.int/wsswg/results.html, Presentation at Fringe 2003.
    [24] D. Small, S. Jonsson, A. Schubert, and et al. ScanSAR InSAR Processing of ASAR Wide Swath SLC (WSS) Products. in Presentation of FRINGE 2005 Workshop. 2005. Frascati, Italy,
    [25] R. Cordey, T. Pearson, B. R. Tell, and et al. ASAR Wide-Swath Single-look Complex Products: Processing and Demonstration Status. in Proc. 2004 Envisat & ERS Symposium. 2004. Salzburg, Austria,
    [26] A.M. Guarnieri, C. Prati, F. Rocca. Interferometry with ScanSAR. in Proc. IGARSS'95. 1995: IEEE, pp.550-552
    [27] A.M. Guarnieri, C. Prati. ScanSAR Focusing and Interferometry. IEEE Trans. Geosci. Remote Sensing, vol.34, July, 1996, pp. 1029-1038.
    [28] R. Bamler. Adapting Precision Standard SAR Processors to ScanSAR. in Proc. IGARSS'95. 1995: IEEE, pp.2051-2053
    [29] R. Bamler, M. Eineder. ScanSAR processing using standard high precision SAR Algorithms. IEEE Trans. Geosci. Remote Sensing, Vol. 34, No.1, 1996, pp. 212-218.
    [30] A. Moreira, B. Schattler, J. Mittermayer. Azimuth and Range Scaling for SAR and ScanSAR Processing. in Proc. IGARSS'96. 1996: IEEE, pp.1214-1216
    [31] A. Moreira, J. Mittermayer, R. Scheiber. Extended Chirp Scaling Algorithm for Air- and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes. vol. 34, No. 5, 1996, pp. 1123-1136.
    [32] J. Mittermayer, A. Moreira, G. Davidson, and et al. High Precision Processing of SIR-C ScanSAR Data. in Proc. IGARSS'96. 1996: IEEE, pp.1217-1220
    [33] F. Wong, D. Stevens. Phase-Preserving Processing of ScanSAR Data with a Modified Range Doppler Algorithm. in Proc. IGARSS'97. 1997. Singapore: IEEE, pp.725-727
    [34] R. Lanari, S. Hensley, R Rosen. Chirp z-transform Based SPECAN Approach for Phase-preserving ScanSAR Image Generation. in lEE Proceedings Radar, Sonar and Navigation. 1998, pp.254-261
    [35] R. Lanari, S. Hensley, P. Rosen. Modified SPECAN Algorithm for ScanSAR Data Processing. in Proc. IGARSS'98. 1998. Seattle, USA: IEEE, pp.636-638
    [36] A.M. Guarnieri, F. Rocca, R Guccione, and et al. Optimal Interferometric ScanSAR Focusing. in Proc. IGARSS'99. 1999: IEEE, pp. 1718-1720
    [37] A.M. Guarnieri, E Guccione. Optimal "Focusing" for Low Resolution ScanSAR. IEEE Trans. Geosci. Remote Sensing, 39, 3, 2001, pp. 479-491.
    [38] J. Mittermayer, A. Moreira. The Extended Chirp Scaling Algorithm for ScanSAR Interferometry. in 3rd European Conference on Synthetic Aperture Radar, EUSAR'2000. 23-25 May, 2000. Munich, Germany, pp. 197-200
    [39] W. Jie, Z. Yinqing, L. Chunsheng. Refined Extended Chirp Scaling Algorithm for Spaceborne ScanSAR Imaging, in Proc. IGARSS'05. 2005. Seoul, Korea: IEEE, pp.4677-4680
    [40] J. Holzner, R. Bamler. Burst-mode and ScanSAR Interferometry. IEEE Trans. Geosci. Remote Sensing, vol.40, No.9, 2002, Sept. 2002. pp. 1917-1934.
    [41] A. M. Guarnieri, Y. L. Desnos. Wide Baseline Interferometry with Very Low esolution SAR Systems. in Proc. IGARSS'98. 1998, pp. 1898-1900
    [42] A. M. Guarnieri, F. Rocca. Combination of Low- and High -Resolution SAR Images for Differential Interferometry. IEEE Trans. Geosci. Remote Sensing, vol.37, No.4, 1999, pp. 2035-2049.
    [43] A. M. Guarnieri, P. Guccione, P. Pasquali, and et al. Multi-mode ENVISAT ASAR Interferometry: Techniques and Preliminary Results. IEE Proceedings-Radar Sonar Navig., vol.150, No.3, 2003, pp. 193-200.
    [44] A. M. Guarnieri, C. Cafforio, P. Guccione, and et al. ENVISAT ASAR ScanSAR Interferometry. in Proc. IGARSS'03. 2003: IEEE, pp.1124-1126
    [45] F. K. LI, R. M. Goldstein. Studies of Multibaseline SpaceborneInterferometric Synthetic Aperture Radars. IEEE Trans. Geosci. Remote Sensing, vo.28, No.l, 1990, pp. 88-97.
    [46] E. Rodriguesz, J. M. Martin. Theory and Design of Interferometric Synthetic Aperture Radars. IEE Proceedings-F, vol.139, No.2, 1992, pp. 147-159.
    [47] H. A. Zebker, J. Villasenor. Decorrelation in Interferometric Radar Echoes. IEEE Trans. Geosci. Remote Sensing, vol.30, No.5, 1992, pp. 950-959.
    [48] R. Bamler, D. Just. Phase Statistics and Decorrelation in SAR Interferograms. in Proc. IGARSS'93. 1993. Tokyo, Japan: IEEE,
    [49] V. Mrstik, G. VanBlaricum, G. Cardillo, and et al. Terrain Height Measurement Accuracy of Interferometric Synthetic Aperture Radars. IEEE Trans. Geosci. Remote Sensing, vol.34, No.1, 1996, pp. 219-228.
    [50] 袁孝康.干涉式合成孔径雷达的理论与设计约束.上海航天,1999年第五期,1999,pp.7-14.
    [51] 胡庆东,毛士艺,洪.文.干涉合成孔径雷达系统的最优基线.电子学报,vol.27,No.5,1999,pp.93-95.
    [52] 袁孝康.干涉式合成孔径雷达的测高精度分析.空间电子技术,第2期,1999,pp.22-29.
    [53] 乔蓉蓉.星载合成孔径雷达多模式系统研究与信号处理.中国科学院电子学研究所,博士学位论文,2000年.
    [54] I. G. Cumming, F. Wong. The Effect of ScanSAR Parameters on Interferogram Quality. in Proc. IGARSS'98. 1998. Seattle USA: IEEE, pp.2674-2676
    [55] R. Bamler. ScanSAR Interferometry for RASARSAT-2 and RADARSAT-3. Can. J. Remote Sensing, Vol.30, No.3, 2004, pp. 437-447.
    [56] C. Cafforio, D. D'aria, R Guccione, and et al. Scan Pattern Synchronization in ENVISAT Wide Swath Mode. in Proc. FRINGE 2005 Workshop. 2005. Frascati, Italy,
    [57] R Guccione. Interferometry with ENVISAT Wide Swath ScanSAR Data. IEEE Geosci. Remote Sensing Letters, vol.3, NO.3, July,2006.
    [58] C. Cafforio, P. Guccione, A. M. Guarnieri. ASAR Wide-Swath mode: system and processing optimization, in ENVISAT Validation Review. Dec, 2002.: ESA-ESRIN,
    [59] R.K. Hawkins, P. Vachon. Modelling SAR scalloping in burst mode products from RADARSAT-1 and ENVISAT. in Proc. CEOS Workshop on SAR. Sept. 2002. London: ESA Publication SP-520,
    [60] 明峰.星载ScanSAR辐射校正关键技术研究.中国科学院电子学研究所,博士论文,2005.
    [61] R. Bamler. Optimum Look Weighting for Burst-mode and ScanSAR Processing. IEEE Trans. Geosci. Remote Sensing, vol.33, No.3, 1995, pp. 722-725.
    [62] M. Sack, M.R. Ito, I. G. Cumming. Application of Efficient Linear FM Matched Filtering Algorithms to SAR Processing. IEE Proceedings-F, Vol.132, No.1, Feb. 1985, pp. 45-57.
    [63] 丁丁,王贞松,荆麟角,and et al.星载ScanSAR成像研究.遥感学报,vol.6,No.4,2002年,pp.259-265.
    [64] R.K. Raney, H. Runge, R. Bamler, and et al. Precision SAR Processing Using Chirp Scaling. IEEE Trans. Geosci. Remote Sensing, vol.32, No.4, 1994, pp. 786-799.
    [65] R.K. Raney. A New and Fundamental Fourier Transform Pair. in Proc. IGARSS'92. 1992: IEEE, pp. 106-107
    [66] S.N. Madsen. Estimating the Doppler Centroid of SAR Data IEEE Trans. Aerosp. Eletron. Syst., vol.25, No.2, 1989, pp. 134-140.
    [67] C. Cafforio, P. Guccione, A. M. Guamieri. Doppler Centroid Estimation for ScanSAR Data. IEEE Trans. Geosci. Remote Sensing, vol.42, No. 1, 2004, pp. 14-23.
    [68] H. Runge, R. Bamler. PRF Ambiguity Resolving For SAR. in Proc. IGARSS'89. 1989. Canada: IEEE, pp.2572-2575
    [69] C. S. Purry, K. Dumper, G. C. Verwey, and et al. Resolving Doppler Ambiguity For ScanSAR Data. in Proc. IGARSS'00. 2000. Honolulu, Hawaii,USA: IEEE, pp.2272-2274
    [70] 丁丁.SAR自聚焦、星载ScanSAR成像和有源相控阵天线研究.中国科学院电子学研究所,博士论文,2001.
    [71] F. Gatelli, A. M. Guarnieri, F. Parizzi, and et al. The Wavenumber Shift in Interferometry. IEEE Trans. Geosci. Remote Sensing, vol.32, No.4, 1994, pp. 855-865.
    [72] R. Bamler, R Hartl. Synthetic Aperture Radar Interferometry. Invers Problems 14, 1998, pp. R1-R54.
    [73] J. Holzner. Signal Theory and Processing for Burst-mode and ScanSAR Interferometry. Oberpfaffenhofen, Germany: DLR, Forschungsbericht 2004-06
    [74] R. Touzi, A. Lopes, J. Bruniquel, and et al. Coherence Estimation for SAR Imagery. IEEE Trans. Geosci. Remote Sensing, vol.37, No.1, 1999, pp. 135-149.
    [75] 陶鹍.干涉合成孔径雷达数据处理及仿真研究.中国科学院电子学研究所,博士学位论文,2003年.
    [76] A.K. Gabriel, R. M. Goldstein. Crossed Orbit Interferometry: Theory and Experimental Results from SIR-B. Int. J. Remote Sensing, vol.9, No.5, 1988, pp. 857-872.
    [77] Q. Lin, J.F.Vesecky. New Approaches in Interferometric SAR Data Processing. IEEE Trans. Geosci. Remote Sensing, vol.30, No.3, May 1992, pp. pp.560-567.
    [78] G. Formaro, G. Franceschetti, E. S. Marzouk. A New Approach for Image Registration in Interferometric Processing. in Proc. IGARSS'94. 1994, pp.1983-1985
    [79] 刘国祥,丁晓利,李志林,and et al.星载SAR复数图像的配准.测绘学报,vol.30,No.1,2001年2月,pp.60-66.
    [80] 曾琪明,解学通.基于谱运算的复相关函数法在干涉复图像配准中的应用.测绘学报,vol.33,No.2,2004年5月,pp.127-131.
    [81] 汪鲁才,王耀南,毛建旭.基于相关匹配和最大谱图像配准相结合的InSAR复图像配准方法.测绘学报,vol.32,No.4,2003年11月,pp.320-324.
    [82] 陶鹍,杨汝良.利用残余点优选InSAR干涉相位条纹图的研究.电子与信息学报,vol.25,No.9,2003,pp.1200-1205.
    [83] R.M. Goldstein, H.A. Zebker, C. L. werner. Satellite Radar Interferometry: Two-Dimensional Phase Unwrapping. Radio Science, vol.23, 1988, pp. 713-720.
    [84] D.C. Ghiglia, M. D. Pritt. Two-Dimensional Phase Unwrapping: Theory, Algotithms, and Software. New York: John Wiley and Sons. 1998
    [85] D. Small, C. L. Werner, Daniel, and et al. Registration of ERS-1 SLC Products for SAR Interferometry. in Proc. 4th GEOSAR Workshop. May 26-28,1993. Loipersdorf, Austria: ESA, pp.63-66
    [86] 朱岱寅,朱兆达,谢求成.一种基于局部频率估计的地形自适应干涉图滤波器.电子学报,vol.30,No.12,2002年12月,pp.1853-1856.
    [87] 王一丁,涂国防.基于目标宽度特征的脉间跳频雷达距离精确成像.中国科学院研究生院学报,vol.22,No.1,2005年1月,pp.46-50.
    [88] 程佩青.数字信号处理教程.北京:清华大学出版社.1995年8月
    [89] R. Bamler. Interferometric Stereo Radargrammetry: Absolute Height Determination from ERS-ENVISAT Interferograms. in Proc. IGARSS'00. 2000. Honolulu, Hawaii,USA: IEEE,
    [90] J. Holzner. Analysis and Statistical Characterization of Interferometric SAR Signals Based on the Power Spectral Density Function. IEEE Trans. Geosci. Remote Sensing, vol.42, No.5, 2004, pp. 1116-1121.
    [91] J. Holzner. Analysis of Interferometric Signals Based on Coherence and Power Spectral Density. in Proc. IGARSS'03.2003: IEEE, pp. 1196-1198
    [92] R. Scheiber, A. Moreira. Coregistration of Interferometric SAR Images Using Spectral Diversity. IEEE Trans. Geosci. Remote Sensing, vol.38, No.5, Sep.2000, pp. 2179-2191.
    [93] 张秋玲.基于分布式卫星的InSAR技术研究.中国科学院电子学研究所,博士论文,2003.
    [94] L. Brule, D. Delisle, H. Baeggli, and et al. RADARSAT-2 Program Update. in Proc. IGARSS'05. 2005. Seoul, Korea: IEEE, pp.9-11
    [95] From-website. http://envisat.esa.int/category/index.cfm?fcategoryid=61. Envisat orbit, 2006.
    [96] H. Runge. Benefits of antenna yaw steering for SAR. in Proc. IGARSS'91. 1991: IEEE, pp.257-261
    [97] D. Just, B. Schattler. Doppler-characteristics of the ERS-1 yaw steering mode. in Proc. IGARSS'92. 1992: IEEE, pp.1349-1352
    [98] H. Fiedler, E. Boerner, J. Mittermayer, and et al. Total Zero Doppler Steering-A New Method for Minimizing the Doppler Centroid. IEEE Geosci. Remote Sensing Letters, 2005.
    [99] R.K. Raney. Doppler Properties of Radars in Circular Orbits. Int. J. Remote Sensing, vol.7, No.9, 1986, pp. 1153-1162.
    [100] 胡东辉,彭海良.高分辨率SAR卫星姿态与成像的关系.中科院电子所,科技报告,1994.
    [101] M. Bara, R. Scheiber, A. Broquetas, and et al. Interferometric SAR Signal Analysis in the Presence of Squint. IEEE Trans. Geosci. Remote Sensing, Vol.38, No.5, 2000, pp. 2164-2178.
    [102] J. Holzner. Can SPECAN Be Made Phase Preserving? Futher options for Interterometric Burst-mode and ScanSAR Processing. in Proc. EUSAR'2004. 2004, pp.31-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700