Sclerotiorin衍生物的合成及杀菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学农药对解决世界粮食问题做出了非常突出的贡献,在未来相当长的一段时间里,仍将是农药的主体。然而,同一种农药或是相同作用机制农药的长期及大量施用,使得各种商品化农药的药效有着不同程度的下降、甚至失活,对农业、农民造成了巨大的损失。这就要求我们去开发具有新型结构骨架、新型作用靶标的农药来满足现代农业生产的需要。
     以天然产物为先导化合物而进行的农药分子设计,是近年来农药开发的一个重要组成部分。如吡咯类和甲氧基丙烯酸酯类杀菌剂,其具有独特作用机理,不仅活性高,且与已知杀菌剂无交互抗性。而天然产物sclerotiorin及其类似物表现出了非常广泛的生物活性,在农用杀菌方面具有很好的潜力。所以,本文以sclerotiorin为先导化合物,进行结构改造,以期合成一系列高杀菌活性的衍生物。
     1、本文系统总结了天然产物azaphilone、sclerotiorin及其类似物的结构、合成及生物活性等方面的研究进展。
     2、设计合成了6种结构类型共129个新型的sclerotiorin衍生物,所有合成的化合物均采用1H NMR和HRMS等手段进行了结构表征,并且获得了部分代表性化合物的晶体结构,对该类化合物的结构作了进一步的确定。
     3、本文以sclerotiorin为先导化合物,首先对C-3位进行了结构改造,采用培养基法在20 ppm浓度下对腐霉菌(Pythium dissimile)、番茄早疫病菌(Alternaria solani)、葡萄灰霉菌(Botryotinia fuckeliana)和小麦赤霉病菌(Gibberella zeae)进行了活性筛选。活性测试表明,化合物Ⅱ-10对腐霉菌(Pythium dissimile)具有比较优异的杀菌活性。然后再以Ⅱ-10作为先导,对C-5位进行了结构改造,发现了化合物Ⅲ-1具有高效、广谱的杀菌活性;当测试浓度低至2 ppm时,部分化合物对腐霉菌仍表现出了超过80%的抑制活性。再以化合物Ⅲ-1作为二次先导,对C-7位的羟基进行乙酰化合成化合物Ⅲ-2,发现杀菌活性有所丧失,说明羟基的存在对活性有利;对C-2位的氧用氮来取代合成化合物Ⅲ-3,杀菌活性略有所下降,说明在C-2位引入氮原子对活性也是不利的;所以我们在保留C-7位羟基不变的前提下,对C-1位和C-5位作了进一步的结构改造,发现化合物Ⅳ-2中C-1位甲基的引入导致杀菌活性基本丧失;化合物Ⅳ-1中C-5位引入甲基使得杀菌活性有了进一步的提高,值得一提的是,该化合物对蚕豆单胞锈菌病菌(Uromyces viciae-fabae)、腐霉菌(Pythium dissimile)-.番茄早疫病菌(Alternaria solani)和小麦赤霉病菌(Gibberella zeae)都超过80%的抑制,体现了进一步研究的价值。
     4、以上所有化合物通过进一步的杀菌活性筛选,发现合成的sclerotiorin衍生物在弱碱性环境下杀菌活性丧失,在阳光下化合物的半衰期很短(t1/2<2 h),增加化合物的稳定性是后续工作的重点。同时,我们发现天然产物karrikinolide具有和sclerotiorin类似的双环结构,但具有更好的稳定性。因此,希望引入呋喃并吡喃的结构,在提高稳定性的同时获得良好的杀菌活性。
     5、本文初步总结sclerotiorin衍生物的结构和杀菌活性关系,为后续设计、合成更高生物活性衍生物提供理论指导。
Chemical pesticides have contributed a lot to solve the food problem in the world, which would also dominate the market of pesticides in the foreseeable future. However, the efficiency of many commercial pesticides has variably decreased due to the long and broad use of a single pesticide or several pesticides with the same modes of action, which has brought a great loss for agriculture. To satisfy the increasing agricultural production needs, it's highly desirable to develop new pesticides with novel skeletons or new target sites.
     Recently, it's an important trend for the development of new pesticides with natural products as lead compounds. For example, fungicides with pyrrole or acrylic ester skeletons have unique modes of action, high bioactivity and no cross resistance with currently used fungicides. Considering the broad bioactivity of Sclerotiorin derivatives and their potential as fungicides, herein, we would like to synthesize a series of Sclerotiorin derivatives with highly fungicidal activity through structure modification.
     1. This thesis has systematically summarized the structures, synthesis and bioactivities of azaphilone and Sclerotiorin derivatives.
     2. We have designed and synthesized 6 different types and 129 new Sclerotiorin derivatives. All of them have been characterized by 1H NMR and HRMS, and some of them were confirmed by x-ray crystal structures.
     3. In this thesis, we began with the structural modification for C-3 site with Sclerotiorin as lead compound and bioactivity screening under the concentration of 20ppm for various bacteria, such as Pythium dissimile, Alternaria solani, Botryotinia fuckeliana and Gibberella zeae. The results showed that compound 11-10 had better fungicidal acitivity for Phytophthora infestans and Pythium dissimile. WithⅡ-10 as lead compound, we further modified C-5 site, and compound III-1 was found to have excellent and broad fungicidal activity. With compound III-1 as second lead compound, further acylation of the hydroxyl group for C-7 site has shown no activity at all, which showed that hydroxyl group at C-7 site is benefical for its bioactivity. The substitution of oxygent at C-2 site with nitrogen for compound III-3 has shown little bioactivity drop and the nitrogen atom at C-2 site is unbenefical for its activity. Keeping hydroxyl group at C-7 site, we further modified the C-l and C-5 sites, and compoundsⅣ-1 andⅣ-2 were obtained. However, the introduction of methyl group at C1 site has significantly decreased the bioactivity. The introduction of methyl group at C-5 site in compound IV-1 has further improved its fungicidal acitivity. It was noted that, compoundⅣ-1 could realized 99% suppressing for Uromyces viciae-fabae, Pythium dissimile, Alternaria solani and Gibberella zeae, which showed the value for further studies.
     4. All these compounds were screened with fungicial activity, and these compounds would lose their fungicidal activity under basic conditions, and have short half-life period under sunshine. The subsequent emphasis would focus on the increasing of their stabilities. Meanwhile, we found the natural product karrikinolide has similar bicyclic skeleton with sclerotiorin, which also has very good stability and bioactivity. Thus, we hope to obtain their derivatives with good fungicidal activity and high stability by introducing the furo[2,3-c]pyran skeleton.
     5. This thesis firstly summarized the structure and fugicidal acitivty of sclerotiorin derivatives, which offered theorical guide for further design and synthesis of sclerotiorin derivatives with higher bioactivity.
引文
[1]张礼和.化学进展丛书-化学学科进展[M],北京:化学工业出版社,2005:153-154.
    [2]唐振华.昆虫抗药性及其治理[M].北京:中国农业出版社,1993.
    [3]王爱娥.农药市场分析[J].2009:22
    [4]Osmanova Natalia, Schultze Wulf, Ayoub Nahla. Azaphilones:a class of fungal metabolites with diverse biological activities. Phytochemistry Reviews.2010,9(2),315-342.
    [5]Endo A, Kuroda M. Citrinin, an inhibitor of cholesterol synthesis. J Antibiot.1976, 29,841-843.
    [6]Natsume M, Takahashi Y, Marumo S. Chlamydosporelike cell-inducing substances of fungi:close correlation between chemical reactivity with methylamine and biological activity. Agric Biol Chem.1988,52,307-331.
    [7]Dong J, Zhou Y, Li R, Zhou W, Li L, Zhu Y, Huang R, Zhang K. New nematicidal azaphilones from the aquatic fungus Pseudohalonectria adversaria YMF1.01019. FEMS. Microbiol Lett.2006,264,65-69.
    [8]Nakajima H, Kimura Y, Hamasaki T. Spiciferinone, an azaphilone phytotoxin produced by the fungus Cochiliobolus spicifer. Phytochemistry.1992,31,105-107.
    [9]Beed FD, Strange RN, Onfroy C, Tivoli B. Virulence for faba bean and production of ascochitine by Ascochyta fabae. Plant Pathol.1994,43,987-997.
    [10]Seibert SF, Eguereva E, Krick A, Kehraus S, Voloshina E, Raabe G, Fleischhauer J, Leistner E, Wiese M, Prinz H, Alexandrov K, Janning P, Waldmann H, Koenig GM. Polyketides from the marine-derived fungus and their potential to inhibit protein phosphatases. Org Biomol Chem.2006,4,2233-2240.
    [11]Haraguchi H, Taniguchi M, Motoba K, Shibata K, Oi S, Hashimoto K. Chrysodin, an antifungal antimetabolite. Agric Biol Chem.1990,54,2167-2168.
    [12]Muroga Y, Yamada T, Numata A, Tanaka R. Chaetomugilins I-O, new potent cytotoxic metabolites from a marine-fish-derived Chaetomium species. Stereochemistry and biological activities. Tetrahedron.2009,65,7580-7586.
    [13]Yoshida E, Fujimoto H, Baba M, Yamazaki M. Fournew chlorinated azaphilones, helicusins A-D, closelyrelated to 7-epi-sclerotiorin, from an ascomycetous fungus, Talaromyces helicus. Chem. Pharm. Bull.1995,43,1307-1310.
    [14]Qian-Cutrone J, Huang S, Chang LP, Pirnik DM, Klohr SE,Dalterio RA, Hugill R, Lowe S, Alam M, Kadow KF. Harziphilone and fleephilone, two new HIV REV/RRE binding inhibitors produced by Trichoderma harzianum. JAntibiot.1996,49,990-997.
    [15]Kono K, Tanaka M, Ono Y, Hosoya T, Ogita T, Kohama T. S-15183a and b, new sphingosine kinase inhibitors, produced by a fungus. J Antibiot.2001,54,415-420.
    [16]Matsuzaki K, Tanaka H, Omura S. Isochromophilones I and II, novel inhibitors against gp120-CD4 binding produced by Penicillium multicolor FO-2338. Ⅱ. Structure elucidation. J Antibiot.1995,48,708-713.
    [17]Matsuzaki K, Tahara H, Inokoshi J, Tanaka H, Masuma R, Omura S. New brominated and halogen-less derivatives and structure-activity relationship of azaphilones inhibiting gp120-CD4 binding. J Antibiot.1998,51,1004-1011.
    [18]Nam JY, Son KH, Kim HK, Han MY, Kim SU, Choi JD, Kwon BM. Sclerotiorin and isochromophilone IV:inhibitors of Grb2-Shc interaction, isolated from Penicillium multicolor F1753. J Microbiol. Biotechnol.2000,10,544-546.
    [19]Arai N, Shiomi K, Tomoda H, Tabata N, Yang DJ, Masuma R, Kawakubo T, Omura S. Isochromophilones III-VI, inhibitors of acyl-CoA:cholesterol acyltransferase produced by Penicillium multicolor FO-3216. J Antibiot.1995,48,696-702.
    [20]Michael AP, Grace EJ, Kotiw M, Barrow RA. Isochromophilone IX, a novel GABA-containing metabolite isolated from a cultured fungus, Penicillium sp. Aust J Chem. 2003,56,13-15.
    [21]Marumo S, Nukina M, Kondo S, Tomiyama K. Lunatoic acid A, a morphogenic substance inducing chlamydospore-like cells in some fungi. Agric. Biol. Chem.1982,46, 2399-2401.
    [22]Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol.2006,43,143-148.
    [23]Ryan C., Sang Y. L., Dale L. B.. Total synthesis of chlorofusin, its seven chromophore diastereomers, and key partial structures J. Am. Chem. Soc.2008,130, 12355-12369.
    [24]Laakso J. A., Raulli R., McElhaney-Feser G. E., Actor P., Underiner T. L., Hotovec B. J., Mocek U., Cihlar R. L.. CT2108A and B:new fatty acid synthase inhibitors as antifungal agents. J. Nat. Prod.2003,66,1041-1046.
    [25]Kanokmedhakul S., Kanokmedhakul K., Nasomjai P., Louangsysouphanh S., Soytong K., Isobe M., Kongsaeree P., Prabpai S., Suksamrarn A.. Antifungal Azaphilones from the fungus Chaetomium cupreum CC3003. J. Nat. Prod.2006,69,891-895.
    [26]Yang S. W., Chan T. M., Terracciano J., Loebenberg D., Patel M., Gullo V., Chu M.. Sch 1385568, a new azaphilone from Aspergillus sp. J. Antibiot.2009,62,401-403.
    [27]Quang DN, Hashimoto T, Nomura Y, Wollweber H, Hellwig V, Fournier J, Stadler M, Asakawa Y. Cohaerins A and B, azaphilones from the fungus Hypoxylon cohaerens, and comparison of HPLC-based metabolite profiles in Hypoxylon sect. Annulata. Phytochemistry.2005,66,797-809.
    [28]Quang DN, Harinantenaina L, Nishizawa T, Hashimoto T, Kohchi C, Soma GI, Asakawa Y. Inhibition of nitric oxide production in RAW 264.7 cells by azaphilones from xylariaceous fungi. Biol Pharm Bull.2006,29,34-37.
    [29]Hashimoto T., Tahara S., Takaoka S., Tori M., Asakawa Y. Structures of Daldinins A-C, Three novel Azaphilone derivatives from ascomycetous fungus Daldinia concentrica. Chem. Pharm. Bull.1994,42,2397-2399.
    [30]Hashimoto T, Asakawa Y. Biologically active substances of Japanese inedible mushrooms. Heterocycles.1998,47,1067-1110.
    [31]Quang DN, Hashimoto T, Tanaka M, Stadler M, Asakawa Y. Cyclic azaphilones daldinins E and F from the ascomycete fungus Hypoxylon fuscum(Xylariaceae). Phytochemistry.2004,65,469-473.
    [32]Phonkerd N, Kanokmedhakul S, Kanokmedhakul K, Soytong K, Prabpai S, Kongsearee P. Bis-spiro-azaphilones and azaphilones from the fungi Chaetomium cochliodes VTh01 and C. cochliodes CTh05. Tetrahedron.2008,64,9636-9645.
    [33]Duncan SJ, Grueschow S, Williams DH, McNicholas C, Purewal R, Hajek M, Gerlitz M, Martin S, Wrigley SK, Moore M. Isolation and structure elucidation of chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp. J Am Chem Soc.2001,123, 554-560.
    [34]Duncan SJ, Cooper MA, Williams DH. Binding of an inhibitor of the p53/MDM2 interaction to MDM2. Chem Commun.2003,3,316-317.
    [35]魏万国.肿瘤抑制因子p53失活复性物质Chlorofusin的全合成研究[D].上海:上海有机所,2005.
    [36]王艳丽.天然产物Chlorofusin全合成中主要片段的合成[D].河北:河北科技大学,2010.
    [37]Ding G, Liu S, Guo L, Zhou Y, Che Y. Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J Nat Prod.2008,71,615-618.
    [38]Campoy S, Rumbero A, Martin JF, Liras P. Characterization of a hyperpigmenting mutant of Monascus purpureus IB1:identification of two novel pigment chemical structures. Appl Microbiol Biotechnol.2006,70,488-496.
    [39]Toki S, Tanaka T, Uosaki Y, Yoshida M, Suzuki Y, Kita K, Mihara A, Ando K, Lokker NA, Giese NA, Matsuda Y. RP-1551s, a family of azaphilones produced by Penicillium sp., inhibit the binding of PDGF to the extracellular domain of its receptor. J Antibiot.1999,52,35-244.
    [40]Tomoda H, Matsushima C, Tabata N, Namatame I, Tanaka H, Bamberger MJ, Arai H, Fukazawa M, Inoue K, Omura S. Structure-specific inhibition of cholesteryl ester transfer protein by azaphilones. J Antibiot.1999,52,160-170.
    [41]Quang DN, Hashimoto T, Stadler M, Radulovic N, Asakawa Y. Antimicrobial azaphilones from the fungus Hypoxylon multiforme. Planta Med.2005,71,1058-1062.
    [42]Takahashi M, Koyama K, Natori S. Four new azaphilones from Chaetomium globosum var.flavo-viridae. Chem Pharm Bull.1990,38,625-628.
    [43]Yasukawa K, Takahashi M, Natori S, Kawai KI, Yamazaki M, Takeuchi M, Takido M. Azaphilones inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mice. Oncology.1994,51,108-112.
    [44]Park JH, Choi GJ, Jang KS, Lim HK, Kim HT, Cho KY, Kim C. Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbial Lett.2005,252,309-313.
    [45]Anke H, Kemmer T, Hofle G. Deflectins, new antimicrobial azaphilones from Aspergillus deflectus. J Antibiot.1981,34,923-928.
    [46]Gray RW, Whalley WB. The chemistry of fungi. Part LXIII. Rubrorotiorin, a metabolite of Penicillium hirayamae Udagawa. J Chem Soc.1971,21,3575-3577.
    [47]Kanokmedhakul S, Kanokmedhakul K, Nasomjai P, Louangsysouphanh S, Soytong K, Isobe M, Kongsaeree P, Prabpai S, Suksamrarn A. Antifungal Azaphilones from the fungus Chaetomium cupreum CC3003. J Nat Prod.2006,69,891-895.
    [48]Pairet L, Wrigley SK, Chetland I, Reynolds EE, Hayes MA, Holloway J, Ainsworth AM, Katzer W, Cheng XM. Azaphilones with endothelin receptor binding activity produced by Penicillium sclerotiorum:taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot.1995,48,913-923.
    [49]Quang DN, Stadler M, Fournier J, Tomita A, Hashimoto T. Cohaerins C-F, four azaphilones from the xylariaceous fungus Annulohypoxylon cohaerens. Tetrahedron.2006, 62,6349-6354.
    [50]Thines E, Anke H, Sterner O. Trichoflectin, a bioactive azaphilone from the ascomycete Trichopezizella nidulus. J Nat Prod.1998,61,306-308.
    [51]Akihisa T, Tokuda H, Ukiya M, Kiyota A, Yasukawa K, Sakamoto N, Kimura Y, Suzuki T, Takayasu J, Nishino H. Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chem Biodiversity,2005,2,1305-1309.
    [52]Manchand PS, Whalley WB, Chen FC. Isolation and structure of ankaflavine. New pigment from Monascus anka. Phytochemistry.1973,12,2531-2532.
    [53]Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H. Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (Red-Mold Rice) and their chemopreventive effects. J Agric Food Chem.2005,53,562-565.
    [54]Kanokmedhakul S, Kanokmedhakul K, Nasomjai P, Louangsysouphanh S, Soytong K, Isobe M, Kongsaeree P, Prabpai S, Suksamrarn A. Antifungal Azaphilones from the fungus Chaetomium cupreum CC3003. J Nat. Prod.2006,69,891-895.
    [55]Stadler M, Akne H, Dekermendjian K, Reiss R, Sterner O, Witt R. Novel bioactive azaphilones from fruit bodies and mycelial cultures of the Ascomycete Bulgaria inquinans (FR.). Nat. Prod. Lett.1995,7,7-14.
    [56]Muroga Y, Yamada T, Numata A, Tanaka R. Chaetomugilins, new selectively cytotoxic metabolites, produced by a marine fish-derived Chaetomium species. J Antibiot. 2008,61,615-622.
    [57]Curtin T.P., Reilly J.. Sclerotiorine, a Chlorinated Metabolic Product of Penicillium Sclerotiorum, Van Beyma. Nature,1940,146,335.
    [58]Watanabe H.. On the structure of sclerotiorine I. Yakugaku Zasshi,1952,72, 807-811.
    [59]Birkinshaw J. H.. Biochemistry of micro. ovrddot. organisms. LXXXIX. Metabolic products of Penicillium multicolor with special reference to sclerotiorin. Biochemical Journal.1952,52,283-288.
    [60]Bade RA, Page H, Robertson, Alexander, Turner K, Whalley WB. Chemistry of fungi. ⅩⅩⅧ. Sclerotiorin and its hydrogenation products. Journal of the Chemical Society. 1957,4913-4924.
    [61]Harris Adelaide, Robertson Alexander, Whalley WB. Chemistry of fungi. XXXI. Structure of rosenonolactone. Journal of the Chemical Society.1958,1799-1807.
    [62]Yamamoto Yuzuru, Yamamoto Takeo, Imai Sumie, Nishikawa Noriko. Metabolic products of Penicillium implicatum. Kanazawa Daigaku Yakugakubu Kenkyu Nempo.1958,8,11-13.
    [63]Birkinshaw J. H., Chaplen P.. Biochemistry of micro, ovrddot. organisms. CV. Chemical degradation of sclerotiorin. Biochemical Journal.1958,69,505-509.
    [64]Yamamoto Yuzuru, Nishikawa Noriko. Metabolic product of Penicillium implicatum. Ⅱ. Structure of sclerotiorin. Yakugaku Zasshi.1959,79,297-302.
    [65]Dean F. M., Staunton J., Whalley W. B.. Chemistry of fungi. XXXVI. Revised structure for sclerotiorin. Journal of the Chemical Society.1959,3004-3009.
    [66]Whalley W. B., Ferguson G., Marsh W. C., Restivo R. J.. The chemistry of fungi. Part LXVIII. The absolute configuration of (+)-sclerotiorin and of the azaphilones. J. Chem. Soc., Perkin 1,1976,1366-1369.
    [67]Chidananda C., Rao L., Sattur A. P. Sclerotiorin, from Penicillium frequentans, a potent inhibitor of aldose reductase. Biotechnol. Lett.,2006,28,1633-1636.
    [68]Chidananda C., Sattur A. P.. Sclerotiorin, a novel inhibitor of lipoxygenase from Penicillium frequentans. J. Agric. Food Chem.2007,55,2879-2883.
    [69]Wang Xiaoru, Sena Filho, Jose G., Hoover, Ashley R., King, Jarrod B., Ellis, Trevor K., Powell, Douglas R., Cichewicz, Robert H.. Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an Atlantic forest soil-derived Penicillium citreonigrum. Journal of Natural Products.2010,73,942-948.
    [70]Chono R., King R. R., Whalley W. B. The Synthesis of sclerotiorin and of an analogue of rotiorin. Chem. Comm.1969,1512-1513.
    [71]Suzuki T. et al. Synthesis of 7-acetyloxy-3,7-dimethyl-7,8-dihydro-6H-isochromene-6,8-dione and its analogues. J. Heterocyclic Chem.2001,38,1409-1417.
    [72]Sang Yeul Lee, Ryan C. Clark, and Dale L. Boger. Total Synthesis, Stereochemical Reassignment, and Absolute Configuration of Chlorofusin. J Am. Chem. Soc. 2007,129(32),9860-9861.
    [73]Wei W. G., Yao Z. J. Synthesis studies toward chloroazaphilone and vinylogous y-pyridones:two common natural products core structures. J. Org. Chem.2005,70, 4585-4590.
    [74]Wei W. G. et al. Bromoetherification-based strategy towards the spirocyclic chromophore of chlorofusin. Tetrahedron Lett.,2006,47,4171-4174.
    [75]Jianglong Zhu, Andrew R. Germain, and John A. Porco, Jr. Synthesis of Azaphilones and Related Molecules by Employing Cycloisomerization of o-Alkynylbenzaldehydes. Angew. Chem. Int. Ed.2004,43,1239-1239.
    [76]Wan-Guo Wei, Yong-Xia Zhang and Zhu-Jun Yao. Efficient construction of novel a-keto spiro ketal and the total synthesis of (±)-terreinol. Tetrahedron.2005,61, 11882-11886.
    [77]Jianglong Zhu, Nicholas P. Grigoriadis, Jonathan P. Lee, and John A. Porco, Jr. Synthesis of the Azaphilones Using Copper-Mediated Enantioselective Oxidative Dearomatization. J. Am. Chem. Soc.2005,127,9342-9343.
    [78]Ryan C. Clark, Sang Yeul Lee, and Dale L. Boger. Total Synthesis of Chlorofusin, Its Seven Chromophore Diastereomers, and Key Partial Structures. J. Am. Chem. Soc.2008, 130,12355-12369.
    [79]Andrew R. Germain, Daniel M. Bruggemeyer, Jianglong Zhu, Cedric Genet, Peter O'Brien, and John A. Porco, Jr.. Synthesis of the Azaphilones (+)-Sclerotiorin and (+)-8-OMethylsclerotiorinamine Utilizing (+)-Sparteine Surrogates in Copper-Mediated Oxidative Dearomatization. J. Org. Chem.2011,76,2577-2584.
    [80]Maurice A. Marsini, Kristoffer M. Gowin, and Thomas R. R. Pettus. Total Synthesis of (±)-Mitorubrinic Acid. Org. Lett.2006,8(16),3481-3483.
    [81]Sun Xue-long, Hiroaki Takayanagi, Keiichi Matsuzaki, Haruo Tanaka, Kimio Furuhata, Satoshi Omura. Synthesis and Inhibitory Activities of Isochromophilone Analogues against gp120-CD4 Binding. JAntibiot.1996,49,689-692.
    [82]Yi-Ming Chiang, Edyta Szewczyk, Ashley D. Davidson, Nancy Keller, Berl R. Oakley, and Clay C. C. Wang. A Gene Cluster Containing Two Fungal Polyketide Synthases Encodes the Biosynthetic Pathway for a Polyketide, Asperfuranone, in Aspergillus nidulans. J. Am. Chem. Soc.2009,131,2965-2970.
    [83]De Lange, J. H.; Boucher, C. Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S. Afr. J. Bot.1990,56, 700-703.
    [84]Flematti G. R., Ghisalberti E. L., Dixon K. W., Trengove R. D.. A Compound from Smoke That Promotes Seed Germination. Science.2004,305,977.
    [85]Gavin R. Flematti, Adrian Scaffidi, Kingsley W. Dixon, Steven M. Smith, and Emilio L. Ghisalberti. Production of the Seed Germination Stimulant Karrikinolide from Combustion of Simple Carbohydrates.J. Agric. Food Chem.2011,59,1195-1198.
    [86]Flematti G. R., Ghisalberti E. L., Dixon K. W., Trengove R. D. Synthesis of the seed germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-one. Tetrahedron Lett.2005,46, 5719-5721.
    [87]Goddard-Borger E. D., Ghisalberti E. L., Stick R. V.. Synthesis of the Germination Stimulant 3-Methyl-2H-furo[2,3-c]pyran-2-one and Analogous Compounds from Carbohydrates. Eur.J. Org. Chem.2007,3925-3934.
    [88]Sun K., Chen Y., Wagerle T., Linnstaedt D., Currie M., Chmura P., Song Y., Xu M. Synthesis of butenolides as seed germination stimulants. Tetrahedron Lett.2008,49, 2922-2925.
    [89]Nagase R., Katayama M., Mura H., Matsuo N., Tanabe Y.. Synthesis of the seed germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-ones utilizing direct and regioselective Ti-crossed aldol addition. Tetrahedron Lett.2008,49,4509-4512.
    [90]Kazumasa Matsuo, Mitsuru Shindo. Efficient synthesis of karrikinolide via Cu(II)-catalyzed lactonization. Tetrahedron.2011,67,971-975.
    [91]Gavin R. Flematti, Ethan D. Goddard-Borger, David J. Merritt, Emilio L Ghisalberti, Kingsley W. Dixon, Robert D. Trengove. Preparation of 2H-Furo[2,3-c]pyran-2-one Derivatives and Evaluation of Their Germination Promoting Activity. J. Agric. Food Chem.2007,55,2189-2194.
    [92]Gavin R. Flematti, Adrian Scaffidi, Ethan D. Goddard-Borger, Charles H. Heath, David C. Nelson, Lucy E. Commander, Robert V. Stick, Kingsley W. Dixon, Steven M. Smith. Emilio L. Ghisalberti. J. Agric. Food Chem.2010,58,8612-8617.
    [1]Maurice A. Marsini, Kristoffer M. Gowin, Thomas R. R. Pettus. Total Synthesis of (±)-Mitorubrinic Acid. Org. Lett.2006,8(16),3481-3483.
    [2]Chono R., King R. R., Whalley W. B. The Synthesis of sclerotiorin and of an analogue of rotiorin. Chem. Comm.1969,1512-1513.
    [3]Suzuki T. et al. Synthesis of 7-acetyloxy-3,7-dimethyl-7,8-dihydro-6H-isochromene-6,8-dione and its analogues. J. Heterocyclic Chem.2001,38,1409-1417.
    [4]Sang Yeul Lee, Ryan C. Clark, and Dale L. Boger. Total Synthesis, Stereochemical Reassignment, and Absolute Configuration of Chlorofusin. J Am. Chem. Soc.2007,129(32), 9860-9861.
    [5]Wei W. G., Yao Z. J. Synthesis studies toward chloroazaphilone and vinylogous y-pyridones:two common natural products core structures. J. Org. Chem.2005,70, 4585-4590.
    [6]Wei W. G. et al. Bromoetherification-based strategy towards the spirocyclic chromophore of chlorofusin. Tetrahedron Lett.,2006,47,4171-4174.
    [7]Jianglong Zhu, Andrew R. Germain, and John A. Porco, Jr. Synthesis of Azaphilones and Related Molecules by Employing Cycloisomerization of o-Alkynylbenzaldehydes. Angew. Chem. Int. Ed.2004,43,1239-1239.
    [8]Wan-Guo Wei, Yong-Xia Zhang and Zhu-Jun Yao. Efficient construction of novel a-keto spiro ketal and the total synthesis of (±)-terreinol. Tetrahedron.2005,61, 11882-11886.
    [9]Jianglong Zhu, Nicholas P. Grigoriadis, Jonathan P. Lee, and John A. Porco, Jr. Synthesis of the Azaphilones Using Copper-Mediated Enantioselective Oxidative Dearomatization. J. Am. Chem. Soc.2005,127,9342-9343.
    [10]Ryan C. Clark, Sang Yeul Lee, and Dale L. Boger. Total Synthesis of Chlorofusin, Its Seven Chromophore Diastereomers, and Key Partial Structures. J. Am. Chem. Soc.2008, 130,12355-12369.
    [11]Andrew R. Germain, Daniel M. Bruggemeyer, Jianglong Zhu, Cedric Genet, Peter O'Brien, and John A. Porco, Jr.. Synthesis of the Azaphilones (+)-Sclerotiorin and (+)-8-OMethylsclerotiorinamine Utilizing (+)-Sparteine Surrogates in Copper-Mediated Oxidative Dearomatization. J. Org. Chem.2011,76,2577-2584.
    [12]R. N. Mirrington, G. I. Feutrill. orcinol monomethyl rther. Org. Synth.1988,6, 859-862.
    [13]Godfrey I. M., Sargent M. V., Etix J. A. Preparation of methoxyphenols by Baeyer-Villiger oxidation of methoxybenzaldehydes. J. Chem. Soc., Perkin 1,1974, 1353-1354.
    [14]Usami Yoshihide, Nakagawa-Goto Kyoko, Lang Jing-Yu, Kim Yoon, Lai Chin-Yu, Goto Masuo, Sakurai Nobuko, Taniguchi Masahiko, Akiyama Toshiyuki, Morris-Natschke Susan L.. et al. Antitumor Agents.282.2'-(R)-O-Acetylglaucarubinone, a Quassinoid from Odyendyea gabonensis As a Potential Anti-Breast and Anti-Ovarian Cancer Agent. JNat. Prod.2010, 73(9),1553-1558.
    [15]Athanasellis Giorgos, Detsi Anastasia, Prousis Kyriakos, Igglessi-Markopoulou Olga, Markopoulos John. A novel access to 2-aminofuranones via cyclization of functionalized y-hydroxy-a,β-butenoates derived from N-hydroxybenzotriazole esters of a-hydroxy acids. Synthesis. 2003,13,2015-2022.
    [16]Zhou Ningzhang, Wang Li, Thompson David W., Zhao Yuming. OPE/OPV H-mers: synthesis, electronic properties, and spectroscopic responses to binding with transition metal ions. Tetrahedron.2011,67(1),125-143.
    [17]Ding Changhua, Babu Govindarajulu, Orita Akihiro, Hirate Takayoshi, Otera Junzo. Synthesis and photoluminescence studies of siloles with arylene ethynylene strands. Synlett.2007,16, 2559-2563.
    [18]Castanon Sandra L., Beristain Miriam F., Ortega Alejandra, Gomez-Sosa Gustavo, Munoz Eduardo, Perez-Martinez Ana Laura, Ogawa Takeshi, Halim M. Faisal, Smith Francis, Walser Ardie, et al. The synthesis, characterization and third-order nonlinear optical character of poly(2,5-dipropargyloxybenzoate) containing a polar aromatic diacetylene. Dyes and Pigments.2011, 88(2),129-134.
    [19]Miki Yoshihiro, Momotake Atsuya, Arai Tatsuo. The photochemical characteristics of aromatic enediyne compounds substituted with electron donating and electron withdrawing groups. Organic & Biomolecular Chemistry.2003,1(15),2655-2660.
    [20]Xu Ya Ping, Hu Rong Hua, Cai Ming Zhong. A facile synthesis of terminal arylacetylenes via Sonogashira coupling reactions catalyzed by MCM-41-supported mercapto palladium(O) complex. Chinese Chemical Letters.2008,19(7),783-787.
    [21]Shao Guang, Orita Akihiro, Nishijima Koji, Ishimaru Kanako, Takezaki Makoto, Wakamatsu Kan, Gleiter Rolf, Otera Junzo. Synthesis and spectroscopic studies of arylethynylsilanes. Chemistry--An Asian Journal.2007,2(4),489-498.
    [22]Wang Yue, Huang Bin, Sheng Shouri, Cai Mingzhong. A novel and efficient synthesis of terminal arylacetylenes via Sonogashira coupling reactions catalyzed by MCM-41-supported bidentate phosphine palladium(O) complex. Journal of Chemical Research.2007,12,728-732.
    [23]Park Jong Hyub, Bhilare Sachin V., Youn So Won. NHC-Catalyzed oxidative cyclization reactions of 2-alkynylbenzaldehydes under aerobic conditions:synthesis of O-heterocycles. Organic Letters.2011,13(9),2228-2231.
    [24]Chen Yifeng, Li Guijie, Liu Yuanhong. Gold-Catalyzed Cascade Friedel-Crafts/Furan-Yne Cyclization/Heteroenyne Metathesis for the Highly Efficient Construction of Phenanthrene Derivatives. Advanced Synthesis & Catalysis.2011,353,392-400.
    [25]Roy Sudipta, Roy Sujata, Neuenswander Benjamin, Hill David, Larock Richard C.. Palladium-and Copper-Catalyzed Solution Phase Synthesis of a Diverse Library of Isoquinolines. Journal of Combinatorial Chemistry.2009,11(6),1061-1065.
    [26]Zhu Jianglong, Germain Andrew R., Porco John A. Jr.. Synthesis of azaphilones and related molecules by employing cycloisomerization of o-alkynylbenzaldehydes. Angewandte Chemie, International Edition.2004,43(10),1239-1243.
    [1]Peter Jeschke. The unique role of halogen substituents in the design ofmodern agrochemicals. Pest. Manag. Sci.2010,66,10-27.
    [2]须志平,邵旭升.卤素取代基在现代农药设计中的独特地位(下)[J].世界农药,2011,01,12-19.
    [3]Bovonsombat Pakorn, Rujiwarangkul Rungkarn, Bowornkiengkai Thanathip, Leykajarakul Juthamard. a-Bromination of linear enals and cyclic enones. Tetrahedron Letters.2007,48, 8607-8610.
    [4]Bellur Esen, Langer Peter. Synthesis of functionalized 2-alkylidene-tetrahydrofurans based on a [3+2] cyclization/bromination/palladium(0) cross-coupling strategy. European Journal of Organic Chemistry.2005,22,4815-4828.
    [5]Todoriki Reiko, Ono Machiko, Tamura Shinzo. Preparation of 3-substituted quinolines. II. Preparation and cyclodehydration of a-alkyl-and a-phenyl-β-arylaminoacrolein derivatives. Heterocycles.1986,24(3),155-69.
    [6]Jensen Mark S., Hoerrner R. Scott, Li Wenjie, Nelson Dorian P., Javadi Gary J., Dormer Peter G., Cai Dongwei, Larsen Robert D.. Efficient Synthesis of a GAB A A a2,3-Selective Allosteric Modulator via a Sequential Pd-Catalyzed Cross-Coupling Approach. Journal of Organic Chemistry. 2005,70(15),6034-6039.
    [7]Li Wenjie, Cai Dongwei, Hoerrner R. Scott, Jensen Mark S., Larsen Robert D., Petasis Nicos A.. Preparation of substituted imidazopyrimidines. PCT Int. Appl.2003, WO 2003080621.
    [8]Buhler Holger, Bayer Andreas, Effenberger Franz. A convenient synthesis of optically active 5,5-disubstituted 4-amino-and 4-hydroxy-2(5H)-furanones from (S)-ketone cyanohydrins. Chemistry--A European Journal.2000,6(14),2564-2571.
    [9]Tam Tim Fat, Leung-Toung Regis, Wang Yingsheng, Zhao Yanquing. Preparation of fluorinated derivatives of deferiprone as iron chelators for treating iron-overload diseases including neurodegenerative disorders. PCT Int. Appl.2008, WO 2008116301.
    [10]Springer Dane M., Luh Bing-Yu, Goodrich Jason, Bronson Joanne J.. Anti-MRSA cephems. Part 2 C-7 cinnamic acid derivatives. Bioorganic & Medicinal Chemistry.2003,11(2),265-279.
    [11]Campbell Kenneth N., Ackerman Joseph F., Campbell Barbara K.. γ-Pyrones. Ⅱ. Synthesis of 4-piperidinols from pyrones. Journal of Organic Chemistry.1950,15,337-342.
    [12]Wan-Guo Wei, Zhu-Jun Yao. Synthesis Studies toward Chloroazaphilone and Vinylogous Y-Pyridones:Two Common Natural Product Core Structures. J. Org. Chem.2005,70, 4585-4590.
    [1]Rajagopal R., Jarikote D. V., Lahoti R. J., Daniel Thomas, Srinivasan K. V.. Ionic liquid promoted regioselective monobromination of aromatic substrates with N-bromosuccinimide. Tetrahedron Letters.2003,44(9),1815-1817.
    [2]Ghaffar Abdul, Jabbar Abdul, Siddiq Muhammad. N-Bromosuccinimide-silica gel:a selective monobromination reagent for aromatic amines and phenols. Journal of the Chemical Society of Pakistan.1994,16(4),272-274.
    [3]Brueckner David, Hafner Frank-Thorsten, Li Volkhart, Schmeck Carsten, Telser Joachim, Vakalopoulos Alexandros, Wirtz Gabriele. Dibenzodioxocinones-A new class of CETP inhibitors. Bioorganic & Medicinal Chemistry Letters.2005,15,3611-3614.
    [4]Mewshaw Richard E., Edsall Richard J. Jr., Yang Cuijian, Manas Eric S., Xu Zhang B., Henderson Ruth A., Keith James C. Jr., Harris Heather A.. Exploiting Two Binding Orientations of the 2-Phenylnaphthalene Scaffold To Achieve ERβ Selectivity. Journal of Medicinal Chemistry.2005,48, 3953-3979.
    [5]Jianglong Zhu, Andrew R. Germain, and John A. Porco, Jr. Synthesis of Azaphilones and Related Molecules by Employing Cycloisomerization of o-Alkynylbenzaldehydes. Angew. Chem. Int. Ed.2004,43,1239-1239.
    [6]Yang Rui-Yang, Ali Syed M., Ashwell Mark A., Kelleher Eugene, Palma Rocio, Westlund Neil. Preparation of substituted tetrazole compounds as HSP90 inhibitors for treating cell proliferative disorder. PCT Int. Appl.2009, WO 2009049305.
    [7]Zhao Min, Helms Brett, Slonkina Elena, Friedle Simone, Lee Dongwhan, DuBois Jennifer, Hedman Britt, Hodgson Keith O., Frechet Jean M. J., Lippard Stephen J.. Iron Complexes of Dendrimer-Appended Carboxylates for Activating Dioxygen and Oxidizing Hydrocarbons. Journal of the American Chemical Society.2008,130(13),4352-4363.
    [8]Mihigo Shetonde O., Mammo Wendimagegn, Bezabih Merhatibeb, Andrae-Marobela Kerstin, Abegaz Berhanu M.. Total synthesis, antiprotozoal and cytotoxicity activities of rhuschalcone VI and analogs. Bioorganic & Medicinal Chemistry.2010,18(7),2464-2473.
    [9]Al-Maharik Nawaf, Botting Nigel P.. A new short synthesis of coumestrol and its application for the synthesis of [6,6a,11a-13C3]coumestrol. Tetrahedron.2004,60,1637-1642.
    [10]Smith Cameron J., Ali Amjad, Chen Liya, Hammond Milton L., Anderson Matt S., Chen Ying, Eveland Suzanne S., Guo Qiu, Hyland Sheryl A., Milot Denise P., et al.2-Arylbenzoxazoles as CETP inhibitors:Substitution of the benzoxazole moiety. Bioorganic & Medicinal Chemistry Letters. 2010,20,346-349.
    [11]Poirier, Jean Marie, Vottero Catherine. Mononitration of phenols using metallic nitrates. Tetrahedron.1989,45(5),1415-1422..
    [12]Asghari Jila, Ghiaci Mehran. Dealkylation of alkyl and aryl ethers with AlCl3-Nal in the free solvent condition. Solid State Phenomena.2003,2,90-91.
    [13]Ghiaci Mehran, Asghari Jila. Dealkylation of alkyl and aryl ethers with AlCl3-NaI in the absence of solvent. Synthetic Communications.1999,29,973-979.
    [14]Cartwright N. J., Jones J. Idris, Marmion Diana. Synthesis of γ-resorcylic acid (2,6-dihydroxybenzoic acid). Journal of the Chemical Society.1952,3499-3502.
    [1]黄清臻,周广平,徐之明等.影响农药药效的一些因素[J].农药科学与管理,1995,16(3),31-33.
    [2]王志刚,海秀平,许永红等.家蝇对两种拟除虫菊酯杀虫剂抗性稳定性[J].中国媒介生物学及控制杂志,2006,17(4),35-40
    [3]杨向黎.小议影响农药药效发挥的因素[J].农化新世纪,2008,(10).
    [4]马金芳.影响农药药效的主要因素[J].农村科技,2009,(3).
    [5]黄清臻,贾琳,付强,马婧,李宏.影响杀虫剂药效的因素[J].中华卫生杀虫药械.2008,(1).
    [1]Gavin R. Flematti, Ethan D. Goddard-Borger, David J. Merritt, Emilio L. Ghisalberti, Kingsley W. Dixon, Robert D. Trengove. Preparation of 2H-Furo[2,3-c]pyran-2-one Derivatives and Evaluation of Their Germination Promoting Activity. J. Agric. Food. Chem.2007,55,2189-2194.
    [2]Flematti G. R., Ghisalberti E. L., Dixon K. W., Trengove R. D.. Synthesis of the seed germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-one. Tetrahedron Lett.2005,46, 5719-5721.
    [3]Goddard-Borger E. D., Ghisalberti E. L., Stick R. V.. Synthesis of the Germination Stimulant 3-Methyl-2H-furo[2,3-c]pyran-2-one and Analogous Compounds from Carbohydrates. Eur. J. Org. Chem.2007,3925-3934.
    [4]Sun K., Chen Y., Wagerle T., Linnstaedt D., Currie M., Chmura P., Song Y., Xu M.. Synthesis of butenolides as seed germination stimulants. Tetrahedron Lett.2008,49, 2922-2925.
    [5]Nagase R., Katayama M., Mura H., Matsuo N., Tanabe Y.. Synthesis of the seed germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-ones utilizing direct and regioselective Ti-crossed aldol addition. Tetrahedron Lett.2008,49,4509-4512.
    [6]Kazumasa Matsuo, Mitsuru Shindo. Efficient synthesis of karrikinolide via Cu(Ⅱ)-catalyzed lactonization. Tetrahedron.2011,67,971-975.
    [7]Deussen Heinz-Josef, Jeppesen Lone, Schaerer Norbert, Junager Finn, Bentzen Bjorn, Weber Beat, Weil Volker, Mozer Sandor Josef, Sauerberg Per. Process Development and Scale-Up of the PPAR Agonist NNC 61-4655. Organic Process Research & Development.2004,8(3),363-371.
    [8]Dai Wei-Min, Mak Wing-Leung. Structural effect on Eu(fod)3-catalyzed rearrangement of allylic esters. Chinese Journal of Chemistry.2003,21(7),772-783.
    [9]潘振良,孙希孟,殷明文.IBX在有机合成中的应川研究进展[J].河南化工,2008,(2).
    [10]苏熠东,郑云红,李援朝.IBX在有机合成中的研究进展[J].化学试剂,2005,(12).
    [11]柳枫,胡惟孝,刘学峰.高碘氧化剂IBX的制备和应用进展[J].浙江化工,2005,(4).
    [9]Denmark, Scott E. et al. Lewis Base Catalyzed, Enantioselective Aldol Addition of Methyl Trichlorosilyl Ketene Acetal to Ketones. Journal of Organic Chemistry.2005. 70(13),5235-5248.
    [13]Matcha Kiran, Ghosh Subrata. A stereocontrolled approach for the synthesis of 2,5-diaryl-3,4-disubstituted furano lignans through a highly diastereoselective aldol condensation of an ester enolate with an a-chiral center:total syntheses of (-)-talaumidin and (-)-virgatusin. Tetrahedron Letters.2008,49(21),3433-3436.
    [14]Wu Yingming, Zhang Hongbin, Zhao Yuanhong, Zhao Jingfeng, Chen Jingbo, Li Liang. A New and Efficient Strategy for the Synthesis of Podophyllotoxin and Its Analogues. Organic Letters.2007,9(7),1199-1202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700