双功能L-脯氨酰胺类有机催化剂的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自2000年, Barbas和List报道了L-脯氨酸可以高效催化对映选择性的羟醛缩合反应以来,大量的L-脯氨酸衍生物被合成出来,其中包括L-脯氨酰胺衍生物,这些催化剂被广泛应用到对映选择性的羟醛缩合反应,Michael加成反应和Mannich反应中。最近出现的催化剂有些只需2mol%的用量,即可得到>99%ee。虽然取得了如此巨大的进步,但是目前大部分催化剂对反应底物的依赖性较大。近来,Lewis酸和Lewis碱的组合在不对称催化反应中也有了新的进展。
     本文以L-脯氨酸为原料,经过酯化,氨解,缩合三步反应合成了一端为有机碱另一端为Lewis酸的双功能L-脯氨酰胺类有机催化剂。
     (1) L-脯氨酸甲酯的合成。在甲醇作溶剂,室温条件下,通过L-脯氨酸与二氯亚砜的反应合成了L-脯氨酸甲酯,产率为83.2%。
     (2) N-(2-氨乙基)-L-脯氨酰胺的合成。在甲醇作溶剂,室温条件下,通过L-脯氨酸甲酯与过量的(5倍)乙二胺的氨解反应合成了N-(2-氨乙基)-L-脯氨酰胺,产率为80.0%。
     (3)双功能L-脯氨酰胺类有机催化剂1的合成。在二氯甲烷作溶剂,室温条件下,通过N-(2-氨乙基)-L-脯氨酰胺与水杨醛的缩合反应合成了目标产物1,产率为27.5%。
     (4)双功能L-脯氨酰胺类有机催化剂2的合成。在二氯甲烷作溶剂,室温条件下,通过N-(2-氨乙基)-L-脯氨酰胺与3, 5-二叔丁基水杨醛的缩合反应合成了目标产物2,产率为31.0%。
     另外,在本实验中发现:除了目标产物1和2,吡咯环上的仲胺基也会与水杨醛/3, 5-二叔丁基水杨醛发生缩合反应,生成一种双杂环的新化合物。
Since 2000, the early discovery of List and Barbas that L-proline was used as the catalyst for the enantioselective direct aldol reaction, several L-proline derivatives, including L-prolinamide derivatives, have been synthesized and applied for highly enantioselective direct aldol reaction, Michael addition and Mannich reaction. So far, catalyst loading as low as 2mol% and enantioselectivity up to >99% ee were achieved with some of the most recent catalysts. However, even with these great advances, the activity of most organocatalysts was dependent on the substrates. Recently, the development of new organocatalysts by combining a Lewis acid and a Lewis base has focused much attention.
     In this thesis, L-proline as an ingredient, bifunctional L-prolinamide derivative organocatalysts were synthesized via the esterification reaction, ammonolysis reaction and condensation reaction.
     (1) The synthesis of L-proline methyl ester : L-proline methyl ester was prepared via the esterification reaction at ambient temperature between L-proline and thionyl chloride in methanol in 83.2% yield.
     (2) The synthesis of N-(2-aminoethyl)-L-prolinamide: N-(2-aminoethyl)-L- prolinamide was prepared via the ammonolysis reaction at ambient temperature between L-proline methyl ester and excess ethylendiamine in methanol in 80.0% yield.
     (3) The synthesis of bifunctional L-prolinamide derivative organocatalyst 1: the product 1 was synthesized via the condensation reaction at ambient temperature between salicylaldehyde with N-(2-aminoethyl)-L-prolinamide in CH2Cl2 in 27.5% yield.
     (4) The synthesis of bifunctional L-prolinamide derivative organocatalyst 2: the product 2 was synthesized via the condensation reaction at ambient temperature between 3,5-di-t-butylsalicylaldehyde with N-(2-aminoethyl)-L-prolinamide in CH2Cl2 yield 31.0%.
     In addition, an interesting phenomenon was observed in our experiment. Besides the products 1 and 2, we also detected the formation of diheterocyclic compounds, which formed in the condensation reaction between secondary amine in pyrrole ring and salicylaldehyde/3,5-di-t-butylsalicylaldehyde.
引文
[1]傅滨,肖玉梅,覃兆海等.有机催化剂在不对称合成中的应用.有机化学,2006, 26(7): 899-905
    [2]程传玲,赫二军,李伟.脯氨酸及其衍生物有机小分子催化剂的研究进展.化学试剂, 2007, 29(3): 147-150
    [3] Wang W., Wang J., Li H. A simple and efficient L-prolinamide-catalyzedα-selenenylation reaction of aldehydes. Org.Lett., 2004, 6(16): 2817-2820
    [4] Tang Z., Yang Z. H., Gong L. Z. et al. Small peptides catalyze highly enantioselective direct aldol reactions of aldehydes with hydroxyacetone: unprecedented regiocontrol in aqueous media. Org. Lett., 2004, 6(13): 2285-2287
    [5] Berkessel A., Koch B., Lex J. Proline-derived n-sulfonylcarbox amides: readily available, highly enantioselective and versatile catalysts for direct aldol reactions. Adv. Synth. Catal, 2004, 346(10) : 1141-1146
    [6] Cobb A. J. A., D. Steven M., Ley V. et al. Organocatalysis with proline derivatives: improved catalysts for the asymmetric Mannich, nitro-Michael and aldol reactions. Org. Biomol. Chem., 2005, 3: 84-96
    [7] Zu L. S., Wang J., Wang W. et al. A recyclable fluorous (S)-pyrrolidine sulfonamide promoted direct, highly enantioselective michael addition of ketones and aldehydes to nitroolefins in water. Org. Lett., 2006, 8(14): 3077-3079
    [8] Tsogoeva S. B., Jadtap S. B. Trends in asymmetric michael reactions catalysed by tripeptides in combination with an achiral additive in different solvents. Eur. J. Org. Chem., 2004, 69(12): 4014-4019
    [9] Tsogoeva S. B., Jadtap S. B. et al. 4-trans-Amino-proline based di- and tetrapeptides as organic catalysts for asymmetric C–C bond formation reactions.Tetrahedron: Asymmetry., 2006, 17(6): 989-992
    [10] Tang Z., Jiang F., Gong L. Z. et al. Enantioselective direct aldol reactions catalyzed by L-prolinamide derivatives. PNAS., 2004, 101(16): 5755-5760
    [11] Tang Z., Jiang F., Gong L. Z. et al. A highly efficient organocatalyst for direct aldol reactions of ketones with aldedydes. J. Am. Chem. Soc., 2005, 127(25): 9285-9289
    [12] Raj M., Singh V. K. Highly enantioselective direct aldol reaction catalyzed by organic molecules. Org. Lett., 2006, 8(18): 4097-4099
    [13] Chen J. R., Lu H. H., Xiao W. J. Readily tunable and bifunctional L-prolinamide derivatives: design and application in the direct enantioselective aldol reactions. Org. Lett., 2005, 7(20): 4543-4545
    [14] Chen J. R., Lu H. H., Xiao W. J. Sterically and electronically tunable and bifunctional organocatalysts: design and application in asymmetric aldol reaction of cyclic ketones with aldehydes. J. Org. Chem., 2006, 71(21): 8198-8202
    [15] Jiang M., Zhu S. F., Gong L. Z. et al. Asymmetric aldol reactions catalyzed by new spiro diamine derivatives. Tetrahedron: Asymmetry, 2006, 17(3): 384-387
    [16] Samanta S., Liu J. Y., Zhao C. G. C2-symmetric bisprolinamide as a highly efficient catalyst for direct aldol reaction. Org.Lett., 2005, 7(23): 5321-5323
    [17] Samanta S., Zhao C. G. Asymmetric direct aldol reaction of 1,2-diketones and ketones mediated by proline derivatives. Tetrahedron. Letters., 2006, 47(20): 3383-3386
    [18] Guizzetti S., Benaglia M., Pignataro L. et al. A multifunctionalproline-based organic catalyst for enantioselective aldol reactions. Tetrahedron: Asymmetry , 2006, 17(19): 2754-2760
    [19] Guizzetti S., Benaglia M., Pignataro L. et al. Enantioselective direct aldolreaction“on water”promoted by chiral organic catalysts. Org. Lett., 2007, 9(7): 1247-1250
    [20] Mase N., Nakai Y., Barbas III C. F. et al. Organocatalytic direct asymmetric aldol reactions in water. J. Am. Chem. Soc., 2006, 128(3): 734-735
    [21] Hayashi Y., S., Aratake T. Combined proline–surfactant organocatalyst for the highly diastereo- and enantioselective aqueous direct cross-aldol reaction of aldehydes. Angew. Chem. Int. Ed., 2006, 45(21): 5527-5529
    [22] Wu Y. Y., Zhao G., Wang S. W. Highly efficient and reusable dendritic catalysts derived from N-prolylsulfonamide for the asymmetric direct aldol reaction in water. Org. Lett., 2006, 8(20): 4417-4420
    [23] Ongeri S., Piarulli U., Jackson R. F. W. et al. Optimization of new chiral ligands for the copper-catalysed enantioselective conjugate addition of Et2Zn to nitroolefins by high-throughput screening of a parallel library. Eur. J. Org. Chem., 2001, 803-807
    [24] Luo Z. B., Gong L. Z. Novel achiral biphenol-derived diastereomeric oxovanadium(iv) complexes for highly enantioselective oxidative`coupling`of`2-naphthols.`Angew. Chem. Int. Ed., 2002, 41(23): 4532-4535
    [25] Somei H., Asano Y., Yoshida T. et al. Dual activation in a homolytic coupling reaction promoted by an enantioselective dinuclear vanadium(IV) catalyst. Tetrahedron Letters, 2004, 45 (9): 1841-1844
    [26] Belokon Y. N.,Dmitry D. Ch., Borkin A. et al. Chiral Ti(IV) complexes of hexadentate Schiff bases as precatalysts for the asymmetric addition of TMSCN to aldehydes and the ring opening of cyclohexene oxide. Tetrahedron: Asymmetry, 2006, 17 (16): 2328-2333
    [27] Ruck R. T. , Jacobsen E. N. Asymmetric hetero-ene reactions of trimethylsilyl enol ethers catalyzed by tridentate schiff base chromium(iii) complexes.Angew. Chem. Int. Ed., 2003, 42(24): 4771-4774
    [28] Sammis G. M., Jacobsen E. N. Highly enantioselective catalytic conjugate addition of cyanide toαβ-unsaturated imides. J. Am. Chem. Soc., 2003, 125(15) : 4442-4443
    [29] Jacobsen E. N. Asymmetric catalysis of epoxide ring-opening reactions. Acc. Chem. Res., 2000, 33(6): 421-431
    [30] Yoon T. P., Jacobsen E. N. Privileged chiral catalysts. Science, 2003, 299(5613): 1691-1693
    [31] Annamalai V., Kozlowski M. C. Catalysis of the michael addition reaction by late transition metal complexes of BINOL-derived salens. J. Org. Chem., 2003, 68 (5): 1973-1981
    [32] Itoh K.,Kanemasa S. Enantioselective michael additions of nitromethane by a catalytic double activation method using chiral lewis acid and achiral amine catalysts. J. Am. Chem. Soc., 2002, 124(45): 13394-13395
    [33] Handa S., Gnanadesikan V., Matsunaga S. et al. syn-Selective catalytic asymmetric nitro-mannichreactions using a heterobimetallic Cu-Sm-schiff base complex. J. Am. Chem. Soc., 2007, 129(16): 4900-4901
    [34] Lin Y-M., Boucau J. L., Li Z. T. et al. A lewis acid-lewis base bifunctional catalyst from a new mixed ligand. Org. Lett., 2007, 9(4): 567-570
    [35] Szollosi G., Kun,I. Bartk M. Heterogeneous asymmetric reactions. part 24.heterogeneous catalytic enantioselective hydrogenation of the C=N group over cinchonaAlkaloid modified palladium catalyst. Chirality, 2001, 13(3): 619-624
    [36] Kelleherab F., Kellya S. Spirobicyclic diamines 1: synthesis of proline-derived spirolactams via thermal intramolecular ester aminolysis. Tetrahedron Letters , 2006, 47(18): 3005-3008
    [37] Conley J. D., Kohn H.. Functionalized DL-amino acid derivatives. potent newagents for the treatment of epilepsy. J. Med. Chem., 1987, 30(3): 567-574
    [38] Koufaki M., Calogeropoulou T., Detsi A. et al. Novel potent inhibitors of lipid peroxidation with protective effects against reperfusion arrhythmias. J. Med. Chem., 2001, 44(24): 4300-4303
    [39] Hogberg T., Strom P., Ebner M. et al. Cyanide as an efficient and mild catalyst in the aminolysis of esters. J. Org. Chem.., 1987, 52(10): 2033-2036
    [40] J?rgensen M. R., Christian A. The effects of conformational constraints and steric bulk in the amino acid moiety of philanthotoxins on AMPAR antagonism. J. Med. Chem., 2005, 48(1): 56-70
    [41] Demir A. S., Mecitoglu I., Tanyeli C. et al. Enantilselective reduction of ketones with borane catalyzed by cyclicβ-amino alcohols prepared from praline. Tetrahedron: Asymmetry, 1996, 7(12): 3359-3364
    [42] Zhao D. L., Kuethe J. T. Efficient and practical synthesis of (R)-2-methylpyrrolidine. J. Org. Chem., 2006, 71(11): 4336-4338
    [43] Valle J. R. D., Goodman M. Asymmetric hydrogenations for the synthesis of Boc-protected 4-alkylprolinols and prolines. J. Org. Chem., 2003, 68(8): 3923-3931
    [44] Rajeev K. G., Gangadhar J. Conformationally restrained chiral analogues of spermine: chemical synthesis and improvements in DNA triplex stability. J. Org. Chem., 1997, 62(15): 5169-5173
    [45]杨永坤,汤朝晖,杜鸿志.非手性席夫碱-异丙氧基铝引发外消旋丙交酯的立构选择性聚合.高等学校化学学报,2006,27(2): 352-355
    [46] Bailey P. D., Cochrane P. J., Forster A. H. et al. Synthesis of polycyclic indolic structures. Tetrahedron Letters, 1999, 40(24): 4597-4600
    [47] Hilderbrand S. A., Lippard S. J. Cobalt chemistry with mixed aminotroponiminate salicylaldiminate ligands: synthesis, characterization, and nitric oxide reactivity. Inorg. Chem., 2004, 43(15): 4674-4682
    [48] Mathias C. J. A new bifunctional chelate, BrMe,HBED: an effective conjugate for radiometals and antibodies. Inorg. Chem., 1990, 29(8): 1475-1480
    [49] Müller J., Kehr G., Fr?hlich R. et al. Structural features of titanium complexes of salicylaldiminato derivatives of amino acids. Eur. J. Inorg. Chem., 2005, 2836-2841
    [50] Li M. Y., Hu P. Z., Zhu J. C. et al. Synthesis, spectrum, crystal structure and antibacterial activities of new polydentate schiff base ligands containing a pyridine ring and amide moieties. Chinese Journal of Chemistry, 2005, 23(4): 437-442
    [51] Uozumi Y., Mizutanib K., Nagaib S. A parallel preparation of a bicyclic N-chiral amine library and its use for chiral catalyst screening. Tetrahedron Letters, 2001, 42(3): 407-410
    [52] Jay F L., Eric J. N., Gao. Y. et al. A Practical method for the large-scale of [N,N'-Bis(3,5-di-tertbutylsalicylidene) -1, 2-cyclo- hexanediaminato(2-)] manganese(III) chloride, a highly enantioselective epoxidation catalyst. Journal of Organic Chemistry, 1994, 59(7): 1939-1942

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700