组蛋白H2B泛素化修饰在减数分裂过程中作用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组蛋白翻译后修饰包括乙酰化、磷酸化、甲基化、泛素化和糖基化等。这些翻译后修饰在染色质的结构重塑、基因的转录调控、DNA的损伤修复等生命过程中发挥着极其重要的作用。作为染色质的核心蛋白,组蛋白H2B的泛素化与其他组蛋白修饰之间存在密切联系,是"组蛋白密码"多样性的重要一环。H2B的泛素化是一个由一系列事件构成的过程,许多因子都参与和影响着该过程。目前发现芽殖酵母中H2B泛素化需要Rad6、Bre1、Lge1以蛋白复合体的形式参与其催化过程,而Ubp8、Ubp10是细胞内参与H2B去泛素化的两种主要去泛素化酶,其去泛素化活性亦是相互补充的。研究表明Lge1在对募集Bre1和Ubp8至染色质的过程中发挥相反作用,它能促进Bre1的募集却抑制Ubp8的募集。组蛋白修饰在配子体的发生尤其早期减数分裂过程中扮演了重要的角色,H2B泛素化修饰已被证明参与其中,但是H2B的泛素化和去泛素化究竟发挥了什么样的作用,又是如何调节其下游的一系列表观遗传学过程进而影响减数分裂的还并不清楚。为了了解组蛋白H2B的泛素化修饰在减数分裂过程中的作用机制问题,我们围绕着H2B泛素化修饰相关的几种主要蛋白Bre1、Lge1、Ubp8、Ubp10从以下方面进行研究:
     1.我们建立H2B泛素化相关蛋白的C端融合GFP的酵母细胞系,然后通过荧光显微镜观察Bre1、Lge1定位于细胞核内。
     2.构建相应的基因特异性敲除的酵母菌株,观察其对减数分裂进程的影响,研究证实Bre1、Lge1基因的敲除会影响酵母的减数分裂,显著降低芽殖酵母的产孢率,而Ubp8、Ubp10去泛素化酶的双突变对酵母减数分裂影响并不显著。
     3.构建组蛋白H2B泛素化位点的突变体(H2B K123R),以研究H2BK123位点泛素化在减数分裂中作用。
     4.构建了特异敲除H2B泛素化酶Rnf20(酵母中Bre1的同源物)的基因敲除载体,获得了第一代嵌合体小鼠,为进一步构建在睾丸和卵巢中特异敲除Rnf20的小鼠系做准备,从而通过H2B泛素化酶Rnf20敲除小鼠去研究其在睾丸和卵巢中的功能。
     通过上述实验,我们发现H2B的泛素化修饰影响了减数分裂的进程,为进一步阐明H2B的泛素化修饰在减数分裂过程中的作用机制问题奠定了基础。
Histones are subject to multiple different types of posttranslational modifications,including acetylation, phosphorylation, methylation, ubiquitination and glycosylation.These different modifications play important roles in chromatin structureremodeling,transcriptional regulation and DNA damage repair. Histone H2Bubiquintylation involves lots of protein complexes including Rad6, Bre1 and Lge1 inbudding yeast. H2B deubiquintylation involves mainly Ubp8 and Ubp10 in buddingyeast. Lge1 can promote the recruitment of Bre1 and inhibit recruitment of Ubp8.H2B ubiquintylation has been shown to be important for gamete formation andmeiosis. However, the mechanism of how H2B ubiquintylation affects meiosis is stillunknown. In this thesis, I focused on studying the role of Bre1, Lge1, Ubp8 andUbp10 in yeast sporulation. The main findings include:
     1. I determined the subcellular localization of Bre1 and Lge1 by using yeast linesexpressing GFP fusion proteins. Bre1 and Lge1 mainly localized in nuleus.
     2. I found that knockout of Bre1 and Lge1 can significantly decrease the yeastsporulation efficiency. However, a double mutant of Ubp8 and Ubp10 did notsignificantly influence the yeast sporulation efficiency.
     3. I constructed a H2B K123R mutant yeast strain to study the role of H2Bubiquintylation in meiosis.
     4. I constructed a Rnf20 (homolog of Bre1 in mammals) conditional knockout vectorin mice and obtained F1 mosaic mice successfully, which can be mated to getgermline transmitted F2 and homozygous floxed F3 mice. In the future, we canselectively knockout Rnf20 in reproductive organs such as ovary and testis tostudy the role of Rnf20 in gametogenesis.
     As a summary, I made substantial progress on studying the role of H2Bubiquintylation in meiosis in budding yeast and mice. Further studies are needed tocompletely figure out how H2B ubiquintylation affect meiosis.
引文
Allegrucci, C., Thurston, A., Lucas, E., and Young, L. (2005). Epigenetics and the germline.Reproduction 129, 137-149.
    Bartova, E., Krejci, J., Harnicarova, A., Galiova, G., and Kozubek, S. (2008). Histonemodifications and nuclear architecture: A review. Journal of Histochemistry & Cytochemistry56, 711-721.
    Bhaumik, S.R., Smith, E., and Shilatifard, A. (2007). Covalent modifications of histones duringdevelopment and disease pathogenesis. Nat Struct Mol Biol 14, 1008-1016.
    Borde, V., Robine, N., Lin, W., Bonfils, S., Geli, V., and Nicolas, A. (2009). Histone H3 lysine 4trimethylation marks meiotic recombination initiation sites. Embo J 28, 99-111.
    Chandrasekharan, M.B., Huang, F., Chen, Y.C., and Sun, Z.W. (2010). Histone H2B C-TerminalHelix Mediates trans-Histone H3K4 Methylation Independent of H2B Ubiquitination.Molecular and Cellular Biology 30, 3216-3232.
    Daniel, J.A., Torok, M.S., Sun, Z.W., Schieltz, D., Allis, C.D., Yates, J.R., and Grant, P.A. (2004).Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription.Journal of Biological Chemistry 279, 1867-1871.
    Darwanto, A., Curtis, M.P., Schrag, M., Kirsch, W., Liu, P., Xu, G.L., Neidigh, J.W., and Zhang,K.L. (2010). A Modified "Cross-talk" between Histone H2B Lys-120 Ubiquitination and H3Lys-79 Methylation. Journal of Biological Chemistry 285, 21868-21876.
    Davie, J.R., and Murphy, L.C. (1990). Level of Ubiquitinated Histone H2b in Chromatin IsCoupled to Ongoing Transcription. Biochemistry-Us 29, 4752-4757.
    Dehe, P.M., Pamblanco, M., Luciano, P., Lebrun, R., Moinier, D., Sendra, R., Verreault, A.,Tordera, V., and Geli, V. (2005). Histone H3 lysine 4 mono-methylation does not requireubiquitination of histone H2B. Journal of Molecular Biology 353, 477-484.
    Di Fiore, P.P., Polo, S., and Hofmann, K. (2003). When ubiquitin meets ubiquitin receptors: asignalling connection. Nat Rev Mol Cell Biol 4, 491-497.
    Doetschman, T.C. (1991). Gene targeting in embryonic stem cells. Biotechnology 16, 89-101.Dover, J., Schneider, J., Tawiah-Boateng, M.A., Wood, A., Dean, K., Johnston, M., and Shilatifard,A. (2002). Methylation of histone H3 by COMPASS requires ubiquitination of histone H2Bby Rad6. Journal of Biological Chemistry 277, 28368-28371.
    Fingerman, I.M., Wu, C.L., Wilson, B.D., and Briggs, S.D. (2005). Global loss of Set1-mediatedH3 Lys(4) trimethylation is associated with silencing defects in Saccharomyces cerevisiae.Journal of Biological Chemistry 280, 28761-28765.
    Galan, J.M., and Haguenauer-Tsapis, R. (1997). Ubiquitin lys63 is involved in ubiquitination of ayeast plasma membrane protein. Embo J 16, 5847-5854.
    Game, J.C., and Chernikova, S.B. (2009). The role of RAD6 in recombinational repair,checkpoints and meiosis via histone modification. DNA Repair (Amst) 8, 470-482.
    Gardner, R.G., Nelson, Z.W., and Gottschling, D.E. (2005). Ubp10/Dot4p regulates the persistenceof ubiquitinated histone H2B: Distinct roles in telomeric silencing and general chromatin.Molecular and Cellular Biology 25, 6123-6139.
    Gaucher, J., Reynoird, N., Montellier, E., Boussouar, F., Rousseaux, S., and Khochbin, S. (2010).From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J 277,599-604.
    Geng, F., and Tansey, W.P. (2008). Polyubiquitylation of histone H2B. Mol Biol Cell 19,3616-3624.
    Giannattasio, M., Lazzaro, F., Plevani, P., and Muzi-Falconi, M. (2005). The DNA damagecheckpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylationby Dot1. J Biol Chem 280, 9879-9886.
    Goldknopf, I.L., Taylor, C.W., Baum, R.M., Yeoman, L.C., Olson, M.O., Prestayko, A.W., andBusch, H. (1975). Isolation and characterization of protein A24, a "histone-like" non-histonechromosomal protein. J Biol Chem 250, 7182-7187.
    Govin, J., Caron, C., Lestrat, C., Rousseaux, S., and Khochbin, S. (2004). The role of histones inchromatin remodelling during mammalian spermiogenesis. Eur J Biochem 271, 3459-3469.
    Hacques, M.F., and Marion, C. (1989). ACCESSIBILITY OF UBIQUITINATION SITES OFHISTONES H2A AND H2B IN CHROMATIN - AN ARGUMENT FOR THEINVOLVEMENT OF UBIQUITIN IN CHROMATIN DECONDENSATION. M S-MedecineSciences 5, 202-203.
    Haglund, K., and Dikic, I. (2005). Ubiquitylation and cell signaling. Embo J 24, 3353-3359.Haglund, K., Sigismund, S., Polo, S., Szymkiewicz, I., Di Fiore, P.P., and Dikic, I. (2003).Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. NatCell Biol 5, 461-466.
    Hammoud, S.S., Nix, D.A., Zhang, H., Purwar, J., Carrell, D.T., and Cairns, B.R. (2009).Distinctive chromatin in human sperm packages genes for embryo development. Nature 460,473-478.
    Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N., and Nakayama, K.I. (2001). U box proteinsas a new family of ubiquitin-protein ligases. J Biol Chem 276, 33111-33120.
    Hayashi, K., Yoshida, K., and Matsui, Y. (2005). A histone H3 methyltransferase controlsepigenetic events required for meiotic prophase. Nature 438, 374-378.
    Henry, K.W., Wyce, A., Lo, W.S., Duggan, L.J., Emre, N.C., Kao, C.F., Pillus, L., Shilatifard, A.,Osley, M.A., and Berger, S.L. (2003a). Transcriptional activation via sequential histone H2Bubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17,2648-2663.
    Henry, K.W., Wyce, A., Lo, W.S., Duggan, L.J., Emre, N.C.T., Kao, C.F., Pillus, L., Shilatifard, A.,Osley, M.A., and Berger, S.L. (2003b). Transcriptional activation via sequential histone H2Bubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Gene Dev 17,2648-2663.
    Huyen, Y., Zgheib, O., Ditullio, R.A., Jr., Gorgoulis, V.G., Zacharatos, P., Petty, T.J., Sheston, E.A.,Mellert, H.S., Stavridi, E.S., and Halazonetis, T.D. (2004). Methylated lysine 79 of histoneH3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406-411.
    Ingvarsdottir, K., Krogan, N.J., Emre, N.C.T., Wyce, A., Thompson, N.J., Emili, A., Hughes, T.R.,Greenblatt, J.F., and Berger, S.L. (2005). H2B ubiquitin protease Ubp8 and Sgf11 constitute adiscrete functional module within the Saccharomyces cerevisiae SAGA complex. Mol CellBiol 25, 1162-1172.
    Kim, J., Hake, S.B., and Roeder, R.G. (2005). The human homolog of yeast BRE1 functions as atranscriptional coactivator through direct activator interactions. Molecular Cell 20, 759-770.
    Kimmins, S., and Sassone-Corsi, P. (2005). Chromatin remodelling and epigenetic features ofgerm cells. Nature 434, 583-589.
    Kirkpatrick, D.S., Hathaway, N.A., Hanna, J., Elsasser, S., Rush, J., Finley, D., King, R.W., andGygi, S.P. (2006). Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complexchain topology. Nat Cell Biol 8, 700-710.
    Kniewel, R., and Keeney, S. (2009). Histone methylation sets the stage for meiotic DNA breaks.Embo J 28, 81-83.
    Koken, M.H., Reynolds, P., Jaspers-Dekker, I., Prakash, L., Prakash, S., Bootsma, D., andHoeijmakers, J.H. (1991). Structural and functional conservation of two human homologs ofthe yeast DNA repair gene RAD6. Proc Natl Acad Sci U S A 88, 8865-8869.
    Krogan, N.J., Kim, M., Tong, A., Golshani, A., Cagney, G., Canadien, V., Richards, D.P., Beattie,B.K., Emili, A., Boone, C., et al. (2003). Methylation of histone H3 by Set2 in
    Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II.Molecular and Cellular Biology 23, 4207-4218.
    Lauwers, E., Jacob, C., and Andre, B. (2009). K63-linked ubiquitin chains as a specific signal forprotein sorting into the multivesicular body pathway. J Cell Biol 185, 493-502.
    Lee, K.K., Florens, L., Swanson, S.K., Washburn, N.P., and Workman, J.L. (2005). Thedeubiquitylation activity of Ubp8 is dependent upon Scf11 and its association with the SAGAcomplex. Mol Cell Biol 25, 1173-1182.
    Levenson, J.M., and Sweatt, J.D. (2005). Epigenetic mechanisms in memory formation. Nat RevNeurosci 6, 108-118.
    Liu, P., Jenkins, N.A., and Copeland, N.G. (2003). A highly efficient recombineering-basedmethod for generating conditional knockout mutations. Genome Res 13, 476-484.
    Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystalstructure of the nucleosome core particle at 2.8 angstrom resolution. Nature 389, 251-260.
    Mallery, D.L., Vandenberg, C.J., and Hiom, K. (2002). Activation of the E3 ligase function of theBRCA1/BARD1 complex by polyubiquitin chains. Embo J 21, 6755-6762.
    Minsky, N., and Oren, M. (2004). The RING domain of Mdm2 mediates histone ubiquitylationand transcriptional repression. Mol Cell 16, 631-639.
    Mosesson, Y., Shtiegman, K., Katz, M., Zwang, Y., Vereb, G., Szollosi, J., and Yarden, Y. (2003).Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, notpolyubiquitylation. J Biol Chem 278, 21323-21326.
    Mukhopadhyay, D., and Riezman, H. (2007). Proteasome-independent functions of ubiquitin inendocytosis and signaling. Science 315, 201-205.
    Muller, U. (1999). Ten years of gene targeting: targeted mouse mutants, from vector design tophenotype analysis. Mech Dev 82, 3-21.
    Murr, R. (2010). Interplay between different epigenetic modifications and mechanisms. Adv Genet70, 101-141.
    Mutiu, A.I., Hoke, S.M.T., Genereaux, J., Liang, G.Y., and Brandl, C.J. (2007). The role of histoneubiquitylation and deubiquitylation in gene expression as determined by the analysis of anHTB1(K123R) Saccharomyces cerevisiae strain. Molecular Genetics and Genomics 277,491-506.
    Nakamura, K., Kato, A., Kobayashi, J., Yanagihara, H., Sakamoto, S., Oliveira, D.V., Shimada, M.,Tauchi, H., Suzuki, H., Tashiro, S., et al. (2011). Regulation of homologous recombination byRNF20-dependent H2B ubiquitination. Mol Cell 41, 515-528.
    Ng, H.H., Xu, R.M., Zhang, Y., and Struhl, K. (2002). Ubiquitination of histone H2B by Rad6 isrequired for efficient Dot1-mediated methylation of histone H3 lysine 79. Journal ofBiological Chemistry 277, 34655-34657.
    Nicassio, F., Corrado, N., Vissers, J.H.A., Areces, L.B., Bergink, S., Marteijn, J.A., Geverts, B.,Houtsmuller, A.B., Vermeulen, W., Di Fiore, P.P., et al. (2007). Human USP3 is a chromatinmodifier required for S phase progression and genome stability. Curr Biol 17, 1972-1977.
    Nishikawa, H., Ooka, S., Sato, K., Arima, K., Okamoto, J., Klevit, R.E., Fukuda, M., and Ohta, T.(2004). Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chainscatalyzed by BRCA1-BARD1 ubiquitin ligase. J Biol Chem 279, 3916-3924.
    Osley, M.A. (2006). Regulation of histone H2A and H2B ubiquitylation. Brief Funct GenomicProteomic 5, 179-189.
    Peters, A.H., O'Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schofer, C., Weipoltshammer,K., Pagani, M., Lachner, M., Kohlmaier, A., et al. (2001). Loss of the Suv39h histonemethyltransferases impairs mammalian heterochromatin and genome stability. Cell 107,323-337.
    Pickart, C.M. (2000). Ubiquitin in chains. Trends Biochem Sci 25, 544-548.
    Pickart, C.M., and Fushman, D. (2004). Polyubiquitin chains: polymeric protein signals. CurrOpin Chem Biol 8, 610-616.
    Ray-Gallet, D., Gerard, A., Polo, S., and Almouzni, G. (2005). Variations on the topic of the"histone code". M S-Medecine Sciences 21, 384-389.
    Reynolds, P., Koken, M.H.M., Hoeijmakers, J.H.J., Prakash, S., and Prakash, L. (1990). TheRhp6+ Gene of Schizosaccharomyces-Pombe - a Structural and Functional Homolog of theRad6 Gene from the Distantly Related Yeast Saccharomyces-Cerevisiae. Embo Journal 9,1423-1430.
    Robzyk, K., Recht, J., and Osley, M.A. (2000a). Rad6-dependent ubiquitination of histone H2B inyeast. Science 287, 501-504.
    Robzyk, K., Recht, L., and Osley, M.A. (2000b). Rad6-dependent ubiquitination of histone H2B inyeast. Science 287, 501-504.
    Roest, H.P., Baarends, W.M., de Wit, J., van Klaveren, J.W., Wassenaar, E., Hoogerbrugge, J.W.,van Cappellen, W.A., Hoeijmakers, J.H., and Grootegoed, J.A. (2004). The
    ubiquitin-conjugating DNA repair enzyme HR6A is a maternal factor essential for earlyembryonic development in mice. Mol Cell Biol 24, 5485-5495.
    Sasaki, H., and Matsui, Y. (2008). Epigenetic events in mammalian germ-cell development:reprogramming and beyond. Nat Rev Genet 9, 129-140.
    Song, Y.H., and Ahn, S.H. (2010). A Bre1-associated protein, large 1 (Lge1), promotes H2Bubiquitylation during the early stages of transcription elongation. J Biol Chem 285,2361-2367.
    Spence, J., Sadis, S., Haas, A.L., and Finley, D. (1995). A ubiquitin mutant with specific defects inDNA repair and multiubiquitination. Mol Cell Biol 15, 1265-1273.
    Sridhar, V.V., Kapoor, A., Zhang, K.L., Zhu, J.J., Zhou, T., Hasegawa, P.M., Bressan, R.A., andZhu, J.K. (2007). Control of DNA methylation and heterochromatic silencing by histone H2Bdeubiquitination. Nature 447, 735-U718.
    Sun, Z.W., and Allis, C.D. (2002). Ubiquitination of histone H2B regulates H3 methylation andgene silencing in yeast. Nature 418, 104-108.
    van Leeuwen, F., Gafken, P.R., and Gottschling, D.E. (2002). Dot1p modulates silencing in yeastby methylation of the nucleosome core. Cell 109, 745-756.
    von Kampen, J., and Wettern, M. (1992). [Ubiquitin-dependent degradation and modification ofproteins]. Naturwissenschaften 79, 163-170.
    Walter, D., Matter, A., and Fahrenkrog, B. (2010). Bre1p-mediated histone H2B ubiquitylationregulates apoptosis in Saccharomyces cerevisiae. Journal of Cell Science 123, 1931-1939.
    Wan, Y.K., Chiang, J.H., Lin, C.H., Arens, C.E., Saleem, R.A., Smith, J.J., and Aitchison, J.D.(2010). Histone chaperone Chz1p regulates H2B ubiquitination and subtelomericanti-silencing. Nucleic Acids Research 38, 1431-1440.
    Weake, V.M., Lee, K.K., Guelman, S., Lin, C.H., Seidel, C., Abmayr, S.M., and Workman, J.L.(2008). SAGA-mediated H2B deubiquitination controls the development of neuronalconnectivity in the Drosophila visual system. Embo J 27, 394-405.
    West, M.H.P., and Bonner, W.M. (1980). Histone 2B can be modified by the attachment ofubiquitin. Nucleic Acids Research 8, 4671-4680.
    Wickliffe, K.E., Williamson, A., Meyer, H.J., Kelly, A., and Rape, M. (2011). K11-linked ubiquitinchains as novel regulators of cell division. Trends Cell Biol.
    Winter, S., and Fischle, W. (2010). Epigenetic markers and their cross-talk. Essays Biochem 48,45-61.
    Woelk, T., Sigismund, S., Penengo, L., and Polo, S. (2007). The ubiquitination code: a signallingproblem. Cell Div 2, 11.
    Xia, Y., Pao, G.M., Chen, H.W., Verma, I.M., and Hunter, T. (2003). Enhancement of BRCA1 E3ubiquitin ligase activity through direct interaction with the BARD1 protein. J Biol Chem 278,5255-5263.
    Xu, P., Duong, D.M., Seyfried, N.T., Cheng, D., Xie, Y., Robert, J., Rush, J., Hochstrasser, M.,Finley, D., and Peng, J. (2009). Quantitative proteomics reveals the function ofunconventional ubiquitin chains in proteasomal degradation. Cell 137, 133-145.
    Yamashita, K., Shinohara, M., and Shinohara, A. (2004). Rad6-Bre1-mediated histone H2Bubiquitylation modulates the formation of double-strand breaks during meiosis. Proc NatlAcad Sci U S A 101, 11380-11385.
    Zhang, X.Y., Varthi, M., Sykes, S.M., Phillips, C., Warzecha, C., Zhu, W., Wyce, A., Thorne, A.W.,Berger, S.L., and McMahon, S.B. (2008). The putative cancer stem cell marker USP22 is asubunit of the human SAGA complex required for activated transcription and cell-cycleprogression. Mol Cell 29, 102-111.
    Zhu, B., Zheng, Y., Pham, A.D., Mandal, S.S., Erdjument-Bromage, H., Tempst, P., and Reinberg,D. (2005). Monoubiquitination of human histone H2B: the factors involved and their roles inHOX gene regulation. Mol Cell 20, 601-611.
    Zofall, M., and Grewal, S.I.S. (2007). HULC, a histone H2B ubiquitinating complex, modulatesheterochromatin independent of histone methylation in fission yeast. Journal of BiologicalChemistry 282, 14065-14072.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700