富营养化水体毒素对人羊膜细胞FL的毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人类活动的不断增强、社会经济的快速发展,含有大量生物所需的氮、磷等营养物质的城市生活污水和工农业废水被超负荷排放入湖泊、水库和海湾等多种流速缓慢的水域,造成严重的水体富营养化现象,最终导致藻类植物及其它浮游生物过度繁殖。根据富营养化水体中爆发性生长的优势藻的颜色,水面可呈蓝、红、棕等多种颜色。此现象在江河湖泊中被称之为“水华”,而在海洋中则称之为“赤潮”。目前,水体富营养化已成为我国一个较为突出的环境问题。而由有害藻所产生和分泌的次生代谢物——富营养化水体毒素更是因对人类健康的巨大威胁而备受关注。
     微囊藻毒素(microcystin,MC)是淡水中研究得最为广泛和深入的一种富营养化水体毒素。最初,MC是从铜绿微囊藻(Microcystis aeruginosa)中分离得到的,并因此而被命名为“microcystin"。20世纪80年代初,MC被确认是一种单环七肽类肝毒素。由于其结构的多变性,目前已有80多种微囊藻毒素的异构体被发现,而存在最普遍,毒性最强的则是MCLR。由于MC化学性质稳定,很难将其从水中除去,而该毒素又具有多种毒性效应,因此深入研究其毒性机制有着非常重要的现实意义。大田软海绵酸(Okadaic acid,OA)是多年来海洋赤潮毒素的研究热点,最初从大田软海绵(Halichondria Okadai)和隐瓜海绵(H.melanodocia)中分离得到的。此后,X射线晶体衍射法测得OA的分子结构是一种38碳的聚醚类长链脂肪酸衍生物。作为腹泻性贝毒的主要成分之一,OA引起的腹泻性贝毒中毒虽然已在全球范围内广为报道,但因至今未有OA引起的腹泻而致死的记录,且病情一般在三天后可自行愈合,故该天然毒素的毒性危害并没有在最初得到广泛重视。随着生命科学研究领域的深入发展,OA的多脏器毒性作用已被逐渐发现,有关其毒作用机制的研究正在大量的开展中。
     在MC和OA的毒性研究中发现,这两种富营养化水体毒素既具有肿瘤促进作用,又具有凋亡诱导能力,而且它们都是蛋白磷酸酶PP2A的强效抑制剂。由于蛋白磷酸化与去磷酸化是真核细胞信号转导的重要调节机制,其动态变化几乎涉及从胚胎发育到个体成熟的所有过程,包括细胞的增殖,分化和凋亡。而蛋白磷酸化与去磷酸化的平衡主要由蛋白激酶(Protein kinases,PK)和蛋白磷酸酶(Protein phosphatases,PPs)调控。因此,对特定蛋白磷酸酶的特异性抑制很可能是造成MC和OA这两种水体毒素的毒作用机制错综复杂的原因之一。然而到目前为止,有关蛋白磷酸酶抑制剂这类富营养化水体毒素与PP2A蛋白表达情况的关联研究尚不多见。而本实验室前期相关研究曾发现微囊藻毒素的另一种异构体MCRR能明显上调人羊膜细胞FL中PP2A-A亚基蛋白的表达。为进一步探索PP2A蛋白表达与毒素类型及毒性效应的相关性,继续研究FL细胞中PP2A-A亚基的蛋白表达在MCLR和OA诱导后的改变情况是有十分重要的意义的。
     虽然有关MCLR和OA诱导各种细胞凋亡的研究已有大量报道,但这两种富营养化水体毒素的详细毒作用机制至今尚无确切定论。许多实验表明氧化应激和线粒体损伤与MCLR诱导的细胞凋亡有着密切的联系。MCLR的暴露使活性氧ROS的生成增多,继而发生线粒体渗透性转换(mitochondrial permeabilitytransition,MPT),而MPT的发生又导致细胞色素c的释放,并激活下游Caspase的链式反应,最终启动凋亡程序使细胞进入不可逆的死亡状态。但也有研究表明,除经典线粒体途径外,MCLR和OA诱导的细胞凋亡可能存在多种其他的途径。随着凋亡机制的深入研究,内质网应激相关的凋亡途径以及失巢凋亡概念都受到了很大的关注。因此,从多角度研究MCLR和OA诱导的凋亡现象中细胞形态和生化指标的改变,对全面认识这两种富营养化水体毒素的凋亡诱导机制是非常有价值的。
     在本研究中以MCLR和OA染毒FL细胞,采用MTT法检测细胞活力;用流式细胞仪—PI单染法分析细胞周期的改变情况;用PI/Annexin V双染法及TUNEL法测定毒素诱导的细胞凋亡率;同时通过检测各种凋亡相关因子在染毒细胞内的变化,来探讨各自在细胞凋亡过程中的作用,包括用普通光学倒置显微镜直接观察毒素暴露后细胞形态的变化;用荧光显微镜观察标记了荧光素的鬼笔环肽结合的细胞骨架的排列情况;用荧光标记的Caspase 3抑制剂DEVD-FMK研究胞内凋亡执行酶Caspase 3的活化情况;用Western blot法分析PP2A-A、Chop、Bax、Bcl-2及p53蛋白表达的改变情况,并讨论其与细胞毒性效应的关联;对MCLR染毒后PP2A-A的变化在mRNA水平也做了研究分析;另外,用单细胞凝胶电泳法检测毒素对细胞核DNA的损伤情况。
     实验结果如下:
     1.MCLR和OA对FL细胞没有明显的致死毒性,甚至略有促进增殖的作用。
     2.MCLR对FL细胞周期没有明显影响;OA染毒后可使S期细胞所占比例升高,表明OA处理后使FL细胞受阻于S期。
     3.MCLR和OA可明显诱导FL细胞发生凋亡,且呈剂量效应关系。
     4.MCLR对FL细胞的形态和骨架无明显破坏作用;OA染毒后能显著降低细胞的贴壁能力,并使细胞F-actin瓦解、边聚。
     5.MCLR能明显诱导FL细胞的Caspase 3酶活化,各染毒组与对照组相比升高趋势均有统计学意义,但毒素的暴露浓度与酶活化程度没有对应关系;OA染毒后,各浓度组细胞的Caspase 3酶活化也有不同程度的升高趋势,但中间浓度60 nM和80 nM组的升高趋势不明显。
     6.MCLR染毒后,FL细胞中PP2A-A、Bax和p53蛋白的表达都呈升高的趋势;Chop蛋白的变化趋势是先升高再下降;而Bcl-2蛋白表达的变化情况则是随着毒素染毒浓度的升高而逐渐下降的趋势。与对照组相比,除Bcl-2外,蛋白的改变大多在低浓度下即出现具有统计学意义的差异,表明MCLR对FL细胞蛋白表达的改变存在灵敏而显著的影响。MCLR对PP2A-A的调节在mRNA水平没有明显表现,各染毒浓度组中PP2A-A mRNA的量与对照组相比无显著差异。
     7.OA染毒的量效研究表明,PP2A-A和Chop蛋白随染毒浓度的增加呈逐渐升高的趋势,并且自60 nM浓度起与对照组的差异具有统计学意义。而BaX、Bcl-2和p53的蛋白表达情况则有随毒素染毒浓度的升高而逐渐下降的趋势。OA染毒的时效研究表明,BaX、Bcl-2和p53的蛋白表达均随毒素染毒时间的延长呈逐渐下降的趋势。
     8.MCLR和OA对FL细胞的DNA均有严重的损伤作用。彗星实验中表示DNA损伤程度的两个常用指标尾长和尾相值均与染毒浓度呈正相关,且各浓度组与对照组相比,升高趋势均具有统计学意义。
     主要结论:
     1.MCLR染毒后导致细胞DNA的损伤,一方面促进细胞的增殖,另一方面又导致细胞的凋亡。
     2.MCLR染毒后,响应于细胞DNA的损伤而高表达的p53蛋白通过上调Bax和下调Bcl-2蛋白的表达来共同启动细胞的线粒体凋亡途径。而MCLR暴露后诱导Chop和PP2A-A亚基蛋白的高表达,则提示除线粒体途径外可能尚有其它的凋亡机制存在。
     3.MCLR染毒导致的Caspase 3的酶活化可能来自经典线粒体途径的激活,也可能是内质网相关的凋亡因子Chop通过对Bel-2的调控而与线粒体途径交汇,最终启动Caspase级联反应而进入凋亡程序。
     4.OA染毒导致细胞DNA的损伤,既促进细胞的增殖,又导致细胞的凋亡。
     5.OA对细胞骨架的破坏可能使细胞通过“失巢”的方式来参与凋亡的调节。而凋亡过程中细胞Caspase 3的酶活化程度与染毒浓度无对应关系,表明OA对Caspase 3的活化诱导效应比较复杂,可能有Caspase家族的其他成员参与OA诱导的凋亡机制。
     6.OA诱导的Chop高表达可能也是凋亡的直接启动因素,通过Bel-2这一膜定位蛋白,将内质网凋亡途径和线粒体凋亡途径紧密连接起来,最终触发多种Caspase级联反应启动凋亡程序。而OA染毒后,p53蛋白表达的变化情况则提示:一方面p53对OA造成的严重DNA损伤无法做出积极反应,引起细胞周期S期的阻滞;另一方面p53对下游Bax无法做出正性调控,需要通过Bel-2家族的其他促凋亡因子来参与凋亡反应。另外,OA在抑制PP2A酶活的同时促进PP2A-A亚基表达的特点使OA的致毒机理更为错综复杂。
With the rapid development of civilization, some unscientific human actions in life, industry and agriculture have caused a series of severe environmental problems. A plenty of waste water inpour into numerous stagnant waters including lakes, reservoirs and bays directly, and excessive nutrients (mainly phosphorus and nitrogen) accumulate incessantly in water. All of these lead to the water eutrophication and then result in the outbreak of the algal bloom. Depending upon the characteristic color of predominant species in algal bloom, the water presented different color such as red, blue, brown and so on. The phenomenon occurred in fresh water and marine water was named water bloom and red tide respectively. Since the nature toxins produced by the harmful algal bloom are the potential threats to human health, more and more attention has been paid to their various toxic effects and complicated toxic mechanism.
     Microcystins (MCs) are the most persistent and widely distributed cyanotoxins produced by freshwater cyanobacteria that belong to the genera Microcystis, Anabaena, Nodularia, Oscillatoria and Nostoc. Among the huge family of cyanobacteria, Microcystis aeruginosa is found to be the most common toxic species. Since 1980s, microcystins had been recognized as a family of monocyclic heptapeptide hepatotoxins. Up to now, more than 80 MC congeners have been found. Microcystin-LR (MCLR) is the most frequently studied as well as the most toxic in the group of MCs. During the recent decades, MCs have received increasing concern worldwide due to their high toxic potential. Okadaic acid (OA) is a marine toxin isolated originally from the sponges Halichondria okadai and H. melanodocia. Subsequently, the structure of OA established by X-ray crystallography showed that the natural product toxin was a polyether fatty acid with a 38 backbone carbon skeleton. Although OA is the major component of diarrhetic shellfish poisoning (DSP) toxins and DSP is widely distributed throughout the world, the toxicological effects of OA was not well studied originally, since clinical symptoms of DSP is usually resolved within 3 days and no human deaths have been reported in literature from cases of DSP. However since OA was found to be widely distributed in the bodies of mice after consumption and was a serious threat to human health, the toxin has gained an increasing interest among researchers because of its complicated biochemical mechanisms.
     Nowadays it has been well known that MCLR and OA are both potent tumor promoters and they may also act as tumor initiators. Interestingly, they also can induce apoptosis in many cell types. Although the reasons of above-mentioned opposite effects caused by MCLR and OA have not yet been given, it might be explained, at least in part, by their common ability to inhibit protein phosphatases, since a well-balanced network of protein kinases and protein phosphatases is crucial for cells to regulate many important cellular processes, such as proliferation, differentiation and apoptosis. However, to the authors' knowledge, few studies concerning the relationship between the alteration in protein expression of PP2A and the treatment with the inhibitor of protein phosphatases, such as MCLR and OA, have been published. Interestingly, upregulation of PP2A-A subunit was observed in our most recent study in FL cells treated with microcystin-RR (MCRR), one structural variant among MCs. In order to identify whether or not the upregulation is toxin-specific, the effects of MCLR and OA exposure on protein expression of PP2A-A subunit were studied in the same FL cell model.
     During recent years, there are numerous studies focused on the apoptosis induced by MCLR and OA. However, the exact mechanisms of their toxicity still have not been fully elucidated. It has been shown that following the MCLR-exposure, the increase of reactive oxidative species (ROS) precedes the onset of mitochondrial permeability transition (MPT) and loss of mitochondrial membrane potential, which lead to cytochrome-c release from the mitochondrion and caspases activation. At last, apoptosis was initiated. All the evidence indicates that mitochondria play a pivotal role in MCLR induced apoptosis. However, in addition to classical mitochondrial pathway, to date, mitochondria-independent pathways of apoptosis induced by many cytotoxin have gained an increasing interest and there has been an emerging view showing that disturbance of cell-anchorage and activation of endoplasmic reticulum stress related components can directly lead to apoptosis. So it was worth paying more attention to all kinds of changes induced by MCLR and OA to provide more evidence for complex apoptosis mechanism.
     The present study was designed to evaluate the ability of MCLR and OA to induce cytotoxicity. The cell viability was determined by MTT assay. The cell cycle was mensurated by PI staining using flow cytometric analysis. The apoptosis rates induced by MCLR and OA were evaluated by TUNEL assay and PI/Annexin V-FITC double staining respectively. The cell shape change was observed directly by light microscope. The cytoskeleton modification was observed by fluorescent microscope after FITC-phalloidin staining. The Caspase 3 activation was detected by the fluorochrome-labeled inhibitor of Caspase 3. The alteration of protein expression on PP2A-A, Chop, Bax, Bcl-2 and p53 were determined by the western blot. The expression level of PP2A-A mRNA after MCLR exposure was detected by reverse transcription-polymerase chain reaction. Finally the DNA damage was measured by the single cell gel electrophoresis method.
     The results were shown as below:
     1. MCLR and OA exposure could induce the proliferation instead of fatal effect in human amnion FL cells.
     2. There was no obvious impact on cell cycle after MCLR exposure. However the influence of OA to the cell cycle of FL was mainly on the increase of cells that in the S period.
     3. MCLR and OA exposure induced apoptosis of FL cells in a dose-dependent manner.
     4. There was no distinct change of cell shape and F-actin distribution after MCLR exposure. However, the FL cells incubated with OA showed loss of cell-to-cell contact, detachment from the substratum and cytoplasmic rounding. In addition, cells showed extensive F-actin depolymerization and focal aggregations of F-actin around the cell periphery.
     5. MCLR exposure induced the increase of Caspase 3 activation of FL cells and significant differences were observed in all treated groups with respect to control. However, the activation of Caspase 3 induced by OA was significantly increased only in 20 nM, 40 nM and 100 nM OA-treated groups.
     6. After treatment with MCLR, the expressions of PP2A-A, Bax, and p53 proteins were significantly increased and had statistical significance from the concentration of 10 or 50 nM. In addition, the Chop protein was also upregulated at most treatment groups, although it decreased at the highest concentration group. In contrast, the expression of Bcl-2 seemed to be a concentration-dependent decrease. There were significant differences on its protein levels in 500 and 1000 nM MCLR-treated FL cells compared with control. However, PP2A-A mRNA level of treated groups was not obviously changed compared with that of control group.
     7. The dose-effect study after OA exposure showed that the levels of PP2A-A and Chop proteins in FL cells were both significantly increased from 60 nM groups. However, the protein expressions of Bax, Bcl-2 and p53 were a dose-dependent decrease. In addition, the time-effect study also showed that the alteration of the three apoptotic-related proteins, Bax, Bcl-2 and p53 were a time-dependent decrease.
     8. Comet assay showed that both MCLR and OA exposure could induce the DNA damage of FL cells. Both tail length and tail moment increased in a dose-dependent manner.
     Conclusions:
     1. MCLR exposure could induce the DNA damage of FL cells. It initiated both proliferation and apoptosis of cells.
     2. MCLR exposure could increase the expression of p53 protein which is responsible for DNA damage and then triggered apoptosis via a mitochondrial pathway by up-regulation of Bax protein and down-regulation of Bcl-2 protein. The up-regulation of PP2A-A and Chop proteins after MCLR exposure suggested that MCLR might induce apoptosis though more than one pathway.
     3. The activation of Caspase 3 in MCLR-induced FL cells might be one of the direct events in the mitochondrial pathway of apoptosis process. On the other hand, it also might be due to the indirectly regulation of Chop, one protein involved in the process of apoptosis associated with ER stress, since it has been reported that over-expression of Chop can lead to translocation of Bax protein from the cytosol to the mitochondria and decrease in Bcl-2 protein and finally trigger the mitochondrial pathway.
     4. OA exposure could induce the DNA damage of FL cells. It initiated both proliferation and apoptosis of cells.
     5. The change of cell shape and the destruction of F-actin in OA-treated FL cells suggested that OA might trigger a specific form of apoptosis, termed anoikis via the cytoskeletal damage. During the process, the increase of Caspase 3 activation after OA exposure was not in concentration-dependent. It indicated that the response of Caspase 3 activation caused by OA was complicated and there might be multiple caspase isoforms contributed to the apoptosis induced by OA.
     6. The up-regulation of Chop proteins after OA exposure might play an important role in OA-induced apoptosis, since it has been reported that Chop can directly induce apoptosis as well as can decrease Bcl-2 protein and finally trigger the mitochondrial pathway. And the alteration of p53 protein expression suggested that: the severe DNA damage induced by OA could not been well repaired in time and in effect and many cells were arrested at S phase. Following the change of p53, Bax protein was also decrease, which clued on an anti-apoptotic factor other than Bax might be involved in the apoptosis induced by OA. Finally, the dualistic characteristics of OA, namely it could inhibit PP2A activity as well as increase the expression of PP2A-A might attribute to, at least in part, the complicated apoptosis mechanism induced by OA.
引文
赵不凋,刘柏朱,卢晓芳,等.2007.水体富营养化的形成、危害和防治.安徽农学通报,13(17):51-53.
    吴国平.2006.浮游藻类与水体富营养化.生物学教学,31(11),13.
    张智,林艳,梁健.2002.水体富营养化及其治理措施.重庆环境科学,24(3),52-54.
    张占英,连民,刘颖,等.2002.微囊藻毒素LR对胎鼠的致畸和损伤作用.中华医学杂志,82(5),345-347.
    许川,舒为群.2005.微囊藻毒素污染状况、检测及其毒效应.国外医学卫生学分册,32(1),56-60.
    孙露,沈萍萍,周莹,等.2002.太湖水华微囊藻毒素对小鼠免疫功能的影响.中国药理学与毒理学杂志,16:226-230.
    俞顺章,赵宁,资晓林,等.2001.饮水中微囊藻毒素与我国原发性肝癌关系的研究.中华肿瘤杂志,23:96-991.
    周伦,鱼达,余海,等.2000.饮用用水源中的微囊藻毒素与大肠癌发病的关系.中华预防医学杂志,34:224-2261.
    华泽爱.1992.赤潮毒素的成分及其危害.海洋与海岸带开发,9(2):52-591.
    毛国根,徐立红,叶少菁.2003.微囊藻毒素LR致肝细胞连接通讯下调的研究.中国环境科学,23(1):34-37.
    章应慧,屈伸.2005.失巢凋亡.医学分子生物学杂志,2(1):1-4.
    刘继红,蔡学泳,何其华.2005.细胞骨架的激光共焦研究技术.中国医学装备,2(6),49-51.
    刘卫军,沈瑛,丁健.2003.蛋白磷酸酶2A的结构、功能和活性调节.生物化学与生物物理学报,35(2):105-112.
    Arias,C.,Montiel,T.,Pena,F.,Ferrera,P.,Tapia,R.,2002.Okadaic acid induces epileptic seizures and hyperphosphorylation of the NR2B subunit of the NMDA receptor in rat hippocampus in vivo.Exp Neurol 177,284-291.
    Bates,S.,Vousden,K.H.,1999.Mechanisms of p53-mediated apoptosis.Cell Mol Life Sci 55,28-37.
    Bausen,M.,Fuhrmann,J.C.,Betz,H.,O'Sullivan G,A.,2006.The state of the actin cytoskeleton determines its association with gephyrin:role of ena/VASP family members.Mol Cell Neurosci 31,376-386.
    Benito,A.,Lerga,A.,Silva,M.,Leon,J.,Fernandez-Luna,J.L.,1997.Apoptosis of human myeloid leukemia cells induced by an inhibitor of protein phosphatases(okadaic acid)is prevented by Bcl-2 and Bcl-Ⅹ(L).Leukemia 11,940-944.
    Boe,R.,Gjertsen,B.T.,Vintermyr,O.K.,Houge,G,Lanotte,M.,Doskeland,S.O.,1991.The protein phosphatase inhibitor okadaic acid induces morphological changes typical of apoptosis in mammalian cells.Exp Cell Res 195,237-246.
    Botha,N.,Gehringer,M.M.,Downing,T.G,van de Venter,M.,Shephard,E.G,2004a.The role of microcystin-LR in the induction of apoptosis and oxidative stress in CaCo2 cells.Toxicon 43,85-92.
    Botha,N.,van de Venter,M.,Downing,T.G,Shephard,E.G,Gehringer,M.M.,2004b.The effect of intraperitoneally administered microcystin-LR on the gastrointestinal tract of Balb/c mice.Toxicon 43,251-254.
    Boudreau,R.T.,Hoskin,D.W.,2005.The use of okadaic acid to elucidate the intracellular role(s)of protein phosphatase 2A:lessons from the mast cell model system.Int Immunopharmacol 5,1507-1518.
    Boyce,M.,Yuan,J.,2006.Cellular response to endoplasmic reticulum stress:a matter of life or death.Cell Death Differ 13,363-373.
    Bradford,M.M.,1976.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem 72,248-254.
    Cabado,A.G.,Leira,E,Vieites,J.M.,Vieytes,M.R.,Botana,L.M.,2003.Caspase-8 activation initiates okadaic acid-induced apoptosis in neuroblastoma.In:Villalba A,Reguera B,Romalde J,Beiras R(eds)Molluscan shellfish safetyXunta de
    Galicia,Intergovernmental Oceanographic Commission of UNESCO,Santiago de Compostela,107-117.
    Cabado,A.G.,Leira,F.,Vieytes,M.R.,Vieites,J.M.,Botana,L.M.,2004.Cytoskeletal disruption is the key factor that triggers apoptosis in okadaic acid-treated neuroblastoma cells.Arch Toxicol 78,74-85.
    Carmichael,W.W.,Azevedo,S.M.,An,J.S.,Molica,R.J.,Jochimsen,E.M.,Lau,S.,Rinehart,K.L.,Shaw,G.R.,Eaglesham,G.K.,2001.Human fatalities from cyanobacteria:chemical and biological evidence for cyanotoxins.Environ Health Perspect 109,663-668.
    Chen,L.Q.,Wei,J.S.,Lei,Z.N.,Zhang,L.M.,Liu,Y.,Sun,F.Y.,2005a.Induction of Bcl-2 and Bax was related to hyperphosphorylation of tan and neuronal death induced by okadaic acid in rat brain.Anat Rec A Discov Mol Cell Evol Biol 287,1236-1245.
    Chen,T.,Cui,J.,Liang,Y.,Xin,X.,Owen Young,D.,Chen,C.,Shen,P.,2006.Identification of human liver mitochondrial aldehyde dehydrogenase as a potential target for microcystin-LR.Toxicology 220,71-80.
    Chen,T.,Wang,Q.,Cui,J.,Yang,W.,Shi,Q.,Hua,Z.,Ji,J.,Shen,P.,2005b.Induction of apoptosis in mouse liver by microcystin-LR:a combined transcriptomic,proteomic,and simulation strategy.Mol Cell Proteomics 4,958-974.
    Cheng,T.L.,Symons,M.,Jou,T.S.,2004.Regulation of anoikis by Cdc42 and Racl.Exp Cell Res 295,497-511.
    Chong, M.W., Gu, K.D., Lam, P.K., Yang, M., Fong, W.F., 2000. Study on the cytotoxicity of microcystin-LR on cultured cells. Chemosphere 41,143-147.
    Creppy, E.E., Traore, A., Baudrimont, I., Cascante, M., Carratu, M.R., 2002. Recent advances in the study of epigenetic effects induced by the phycotoxin okadaic acid. Toxicology 181-182, 433-439.
    Dawson, J.F., Holmes, C.F., 1999. Molecular mechanisms underlying inhibition of protein phosphatases by marine toxins. Front Biosci 4, D646-658.
    Ding, W.X., Shen, H.M., Ong, C.N., 2000a. Critical role of reactive oxygen species and mitochondrial permeability transition in microcystin-induced rapid apoptosis in rat hepatocytes. Hepatology 32,547-555.
    Ding, W.X., Shen, H.M., Ong, C.N., 2000b. Microcystic cyanobacteria extract induces cytoskeletal disruption and intracellular glutathione alteration in hepatocytes. Environ Health Perspect 108,605-609.
    Ding, W.X., Shen, H.M., Ong, C.N., 2001. Critical role of reactive oxygen species formation in microcystin-induced cytoskeleton disruption in primary cultured hepatocytes. J Toxicol Environ Health A 64,507-519.
    Ding, W.X., Shen, H.M., Ong, C.N., 2002. Calpain activation after mitochondrial permeability transition in microcystin-induced cell death in rat hepatocytes. Biochem Biophys Res Commun 291,321-331.
    Elegbede, J.A., Hayes, K., Schell, K., Oberley, T.D., Verma, A.K., 2002. Induction of apoptosis and inhibition of papilloma formation may signal a new role for okadaic acid. Life Sci 71, 421-436.
    Eriksson, J.E., Toivola, D., Meriluoto, J.A., Karaki, H., Han, Y.G., Hartshorne, D., 1990. Hepatocyte deformation induced by cyanobacterial toxins reflects inhibition of protein phosphatases. Biochem Biophys Res Commun 173,1347-1353.
    Eymin, B., Dubrez, L., Allouche, M., Solary, E., 1997. Increased gadd153 messenger RNA level is associated with apoptosis in human leukemic cells treated with etoposide. Cancer Res 57, 686-695.
    Falconer, I.R., Yeung, D.S., 1992. Cytoskeletal changes in hepatocytes induced by Microcystis toxins and their relation to hyperphosphorylation of cell proteins. Chem Biol Interact 81, 181-196.
    Fels, D.R., Koumenis, C., 2006. The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol Ther 5,723-728.
    Fernandez, J.J., Candenas, M.L., Souto, M.L., Trujillo, M.M., Norte, M., 2002. Okadaic acid, useful tool for studying cellular processes. Curr Med Chem 9,229-262.
    Fischer, W.J., Altheimer, S., Cattori, V., Meier, P.J., Dietrich, D.R., Hagenbuch, B., 2005. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol Appl Pharmacol 203,257-263.
    Fladmark, K.E., Brustugun, O.T., Hovland, R., Boe, R., Gjertsen, B.T., Zhivotovsky, B., Doskeland, S.O., 1999. Ultrarapid caspase-3 dependent apoptosis induction by serine/threonine Phosphatase inhibitors. Cell Death Differ 6,1099-1108.
    Fridman, J.S., Lowe, S.W., 2003. Control of apoptosis by p53. Oncogene 22, 9030-9040.
    Friedman, A.D., 1996. GADD153/CHOP, a DNA damage-inducible protein, reduced CAAT/enhancer binding protein activities and increased apoptosis in 32D c13 myeloid cells. Cancer Res 56,3250-3256.
    Frisch, S.M., Francis, H., 1994. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124,619-626.
    Fu, W.Y., Chen, J.P., Wang, X.M., Xu, L.H., 2005a. Altered expression of p53, Bcl-2 and Bax induced by microcystin-LR in vivo and in vitro. Toxicon 46,171-177.
    Fu, W.Y., Xu, L.H., Yu, Y.N., 2005b. Proteomic analysis of cellular response to microcystin in human amnion FL cells. J Proteome Res 4,2207-2215.
    Fujita, M., Goto, K., Yoshida, K., Okamura, H., Morimoto, H., Kito, S., Fukuda, J., Haneji, T., 2004. Okadaic acid stimulates expression of Fas receptor and Fas ligand by activation of nuclear factor kappa-B in human oral squamous carcinoma cells. Oral Oncol 40,199-206.
    Gehringer, M.M., 2004. Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response. FEBS Lett 557,1-8.
    Goto, K., Fukuda, J., Haneji, T., 2002. Okadaic acid stimulates apoptosis through expression of Fas receptor and Fas ligand in human oral squamous carcinoma cells. Oral Oncol 38,16-22.
    Gross, A., McDonnell, J.M., Korsmeyer, S.J., 1999. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13,1899-1911.
    Hajnoczky, G., Csordas, G., Das, S., Garcia-Perez, C., Saotome, M., Sinha Roy, S., Yi, M., 2006. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40,553-560.
    Hirsch, T., Marzo, I., Kroemer, G., 1997. Role of the mitochondrial permeability transition pore in apoptosis. Biosci Rep 17,67-76.
    Hoeger, S.J., Hitzfeld, B.C., Dietrich, D.R., 2005. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicol Appl Pharmacol 203,231-242.
    Huang, X., Zhai, D., Huang, Y., 2000. Study on the relationship between calcium-induced calcium release from mitochondria and PTP opening. Mol Cell Biochem 213,29-35.
    Ito, E., Kondo, F., Harada, K., 2000. First report on the distribution of orally administered microcystin-LR in mouse tissue using an immunostaining method. Toxicon 38, 37-48.
    Ito, E., Takai, A., Kondo, F., Masui, H., Imanishi, S., Harada, K., 2002a. Comparison of protein Phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds. Toxicon 40,1017-1025.
    Ito, E., Yasumoto, T., Takai, A., Imanishi, S., Harada, K., 2002b. Investigation of the distribution and excretion of okadaic acid in mice using immunostaining method. Toxicon 40,159-165.
    Janssens, V., Goris, J., Van Hoof, C, 2005. PP2A: the expected tumor suppressor. Curr Opin Genet Dev 15,3441.
    Kawai, H., Suzuki, T., Kobayashi, T., Mizuguchi, H., Hayakawa, T., Kawanishi, T., 2004. Simultaneous imaging of initiator/effector caspase activity and mitochondrial membrane potential during cell death in living HeLa cells. Biochim Biophys Acta 1693,101-110.
    Kiguchi, K., Glesne, D., Chubb, C.H., Fujiki, H., Huberman, E., 1994. Differential induction of apoptosis in human breast tumor cells by okadaic acid and related inhibitors of protein phosphatases 1 and 2A. Cell Growth Differ 5,995-1004.
    Kuwana, T., Newmeyer, D.D., 2003. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15,691-699.
    Lago, J., Santaclara, F., Vieites, J.M., Cabado, A.G., 2005. Collapse of mitochondrial membrane potential and caspases activation are early events in okadaic acid-treated Caco-2 cells. Toxicon 46,579-586.
    Lankoff, A., Carmichael, W.W., Grasman, K.A., Yuan, M., 2004. The uptake kinetics and immunotoxic effects of microcystin-LR in human and chicken peripheral blood lymphocytes in vitro. Toxicology 204,23-40.
    Le Hegarat, L., Puech, L., Fessard, V., Poul, J.M., Dragacci, S., 2003. Aneugenic potential of okadaic acid revealed by the micronucleus assay combined with the FISH technique in CHO-K1 cells. Mutagenesis 18,293-298.
    LeClaire, R.D., Parker, G.W., Franz, D.R., 1995. Hemodynamic and calorimetric changes induced by microcystin-LR in the rat. J Appl Toxicol 15,303-311.
    Leira,F.,Alvarez,C.,Cabado,A.G.,Vieites,J.M.,Vieytes,M.R.,Botana,L.M.,2003.Development of a F actin-based live-cell fluorimetrie microplate assay for diarrhetic shellfish toxins.Anal Biochem 317,129-135.
    Leira,F.,Alvarez,C.,Vieites,J.M.,Vieytes,M.R.,Botana,L.M.,2001.Study of cytoskeletal changes induced by okadaic acid in BE(2)-M17 cells by means of a quantitative fluorimetric microplate assay.Toxicol In Vitro 15,277-282.
    Li,D.W.,Fass,U.,Huizar,I.,Spector,A.,1998.Okadaic acid-induced lens epithelial cell apoptosis requires inhibition of phosphatase-1 and is associated with induction of gene expression including p53 and bax.Eur J Biochem 257,351-361.
    Li,K.,Li,Y.,Shelton,J.M.,Richardson,J.A.,Spencer,E.,Chen,Z.J.,Wang,X.,Williams,R.S.,2000.Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis.Cell 101,389-399.
    Liu,X.,Kim,C.N.,Yang,J.,Jemmerson,R.,Wang,X.,1996.Induction of apoptotic program in cell-free extracts:requirement for dATP and cytochrome c.Cell 86,147-157.
    MacKintosh,C.,Beattie,K.A.,Klumpp,S.,Cohen,P.,Codd,G.A.,1990.Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants.FEBS Lett 264,187-192.
    Matias,W.G.,Creppy,E.E.,1996.Transplacental passage of[3H]-okadaic acid in pregnant mice measured by radioactivity and high-performance liquid chromatography.Hum Exp Toxicol 15,226-230.
    Matias,W.G.,Traore,A.,Creppy,E.E.,1999.Variations in the distribution of okadaic acid in organs and biological fluids of mice related to diarrhoeic syndrome.Hum Exp Toxicol 18,345-350.
    Maytin,E.V.,Ubeda,M.,Lin,J.C.,Habener,J.F.,2001.Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Exp Cell Res 267,193-204.
    McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y., Holbrook, N.J., 2001. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21,1249-1259.
    McDermott, C.M., Nho, C.W., Howard, W., Holton, B., 1998. The cyanobacterial toxin, microcystin-LR, can induce apoptosis in a variety of cell types. Toxicon 36,1981-1996.
    Moncada, A., Cendan, C.M., Baeyens, J.M., Del Pozo, E., 2003. Effects of serine/threonine protein Phosphatase inhibitors on morphine-induced antinociception in the tail flick test in mice. Eur J Pharmacol 465,53-60.
    Morimoto, Y., Morimoto, H., Okamura, H., Nomiyama, K., Nakamuta, N., Kobayashi, S., Kito, S., Ohba, T., Haneji, T., 2000. Upregulation of the expression of Fas antigen and Fas ligand in a human submandibular gland ductal cell line by okadaic acid. Arch Oral Biol 45,657-666.
    Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65,55-63.
    Nishiwaki-Matsushima, R., Ohta, T., Nishiwaki, S., Suganuma, M., Kohyama, K., Ishikawa, T., Carmichael, W.W., Fujiki, H., 1992. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol 118,420-424.
    Nobre, A.C., Coelho, G.R., Coutinho, M.C., Silva, M.M., Angelim, E.V., Menezes, D.B., Fonteles, M.C., Monteiro, H.S., 2001. The role of phospholipase A(2) and cyclooxygenase in renal toxicity induced by microcystin-LR. Toxicon 39,721-724.
    Oyadomari, S., Mori, M., 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11,381-389.
    Pouria, S., de Andrade, A., Barbosa, J., Cavalcanti, R.L., Barreto, V.T., Ward, C.J., Preiser, W., Poon, G.K., Neild, G.H., Codd, G.A., 1998. Fatal microcystin intoxication in haemodialysis unit in Caruaru,Brazil.Lancet 352,21-26.
    Reed,J.C.,1997.Double identity for proteins of the Bcl-2 family.Nature 387,773-776.
    Reed,J.C.,1998.Bcl-2 family proteins.Oncogene 17,3225-3236.
    Rivasseau,C.,Martins,S.,Hennion,M.C.,1998.Determination of some physicochemical parameters of microcystins(cyanobacterial toxins)and trace level analysis in environmental samples using liquid chromatography.J Chromatogr A 799,155-169.
    Santaclara,F.,Lago,J.,Vieites,J.M.,Cabado,A.G.,2005.Effect of okadaic acid on integrins and structural proteins in BE(2)-M17 cells.Arch Toxicol 79,582-586.
    Santoro,M.F.,Annand,R.R.,Robertson,M.M.,Peng,Y.W.,Brady,M.J.,Mankovich,J.A.,Hackett,M.C.,Ghayur,T.,Walter,G.,Wong,W.W.,Giegel,D.A.,1998.Regulation of protein phosphatase 2A activity by caspase-3 during apoptosis.J Biol Chem 273,13119-13128.
    Schonthal,A.H.,2001.Role of serine/threonine protein phosphatase 2A in cancer.Cancer Lett 170,1-13.
    Shiozaki,E.N.,Shi,Y.,2004.Caspases,IAPs and Smac/DIABLO:mechanisms from structural biology.Trends Biochem Sci 29,486-494.
    Singh,N.P.,McCoy,M.T.,Tice,R.R.,Schneider,E.L.,1988.A simple technique for quantitation of low levels of DNA damage in individual cells.Exp Cell Res 175,184-191.
    Skouv,J.,Jensen,P.O.,Forchhammer,J.,Larsen,J.K.,Lund,L.R.,1994.Tumor-promoting phorbol ester transiently down-modulates the p53 level and blocks the cell cycle.Cell Growth Differ 5,329-340.
    Skulachev,V.P.,1998.Cytochrome c in the apoptotic and antioxidant cascades.FEBS Lett 423,275-280.
    Smolewski,P.,Grabarek,J.,Halicka,H.D.,Darzynkiewicz,Z.,2002.Assay of caspase activation in situ combined with probing plasma membrane integrity to detect three distinct stages of apoptosis. J Immunol Methods 265,111-121.
    Suganuma, M., Suttajit, M., Suguri, H., Ojika, M., Yamada, K., Fujiki, H., 1989. Specific binding of okadaic acid, a new tumor promoter in mouse skin. FEBS Lett 250,615-618.
    Szegezdi, E., Logue, S.E., Gorman, A.M., Samali, A., 2006. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7,880-885.
    Toivola, D.M., Goldman, R.D., Garrod, D.R., Eriksson, J.E., 1997. Protein phosphatases maintain the organization and structural interactions of hepatic keratin intermediate filaments. J Cell Sci 110 (Pt 1), 23-33.
    Traore, A., Baudrimont, I., Ambaliou, S., Dano, S.D., Creppy, E.E., 2001. DNA breaks and cell cycle arrest induced by okadaic acid in Caco-2 cells, a human colonic epithelial cell line. ArchToxicol 75,110-117.
    van Apeldoorn, M.E., van Egmond, H.P., Speijers, G.J., Bakker, G.J., 2007. Toxins of cyanobacteria. Mol Nutr Food Res 51,7-60.
    Vieira, H., Kroemer, G., 2003. Mitochondria as targets of apoptosis regulation by nitric oxide. IUBMB Life 55,613-616.
    Wickstrom, M.L., Khan, S.A., Haschek, W.M., Wyman, J.F., Eriksson, J.E., Schaeffer, D.J., Beasley, V.R., 1995. Alterations in microtubules, intermediate filaments, and microfilaments induced by microcystin-LR in cultured cells. Toxicol Pathol 23, 326-337.
    Wong, V.Y., Keller, P.M., Nuttall, M.E., Kikly, K., DeWolf, W.E., Jr., Lee, D., Ali, S.M., Nadeau, D.P., Grygielko, E.T., Laping, N.J., Brooks, D.P., 2001. Role of caspases in human renal proximal tubular epithelial cell apoptosis. Eur J Pharmacol 433,135-140.
    Woo, K.J., Lee, T.J., Lee, S.H., Lee, J.M., Seo, J.H., Jeong, Y.J, Park, J.W, Kwon, T.K., 2007. Elevated gaddl53/chop expression during resveratrol-induced apoptosis in human colon cancer cells.Biochem Pharmacol 73,68-76.
    Yea,S.S.,Kim,H.M.,Oh,H.M.,Paik,K.H.,Yang,K.H.,2001.Microcystin-induced down-regulation of lymphocyte functions through reduced IL-2 mRNA stability.Toxicol Lett 122,21-31.
    Yin,X.M.,Oltvai,Z.N.,Korsmeyer,S.J.,1994.BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax.Nature 369,321-323.
    Yoshida,H.,Haze,K.,Yanagi,H.,Yura,T.,Mori,K.,1998.Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins.Involvement of basic leucine zipper transcription factors.J Biol Chem 273,33741-33749.
    Yoshizawa,S.,Matsushima,R.,Watanabe,M.F.,Harada,K.,Ichihara,A.,Carmichael,W.W.,Fujiki,H.,1990.Inhibition of protein phosphatases by microcystins and nodularin associated with hepatotoxicity.J Cancer Res Clin Oncol 116,609-614.
    Zegura,B.,Lah,T.T.,Filipic,M.,2004.The role of reactive oxygen species in microcystin-LR-induced DNA damage.Toxicology 200,59-68.
    Zegura,B.,Lah,T.T.,Filipic,M.,2006.Alteration of intracellular GSH levels and its role in microcystin-LR-induced DNA damage in human hepatoma HepG2 cells.Mutat Res 611,25-33.
    Zegura,B.,Sedmak,B.,Filipic,M.,2003.Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2.Toxicon 41,41-48.
    Zinszner,H.,Kuroda,M.,Wang,X.,Batchvarova,N.,Lightfoot,R.T.,Remotti,H.,Stevens,J.L.,Ron,D.,1998.CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum.Genes Dev 12,982-995.
    Aune T,Yndestad M.1993.Chapter 5.Diarrhetic shellfish poisoning.In Falconer,I.R.ed.Algal Toxins in Seafood and Drinking Water. 87-104. London, UK, Academic Press.
    Aune T, Stabell OB, Nordstoga K, et al. 1998. Oral toxicity in mice of algal toxins from the diarrheic shellfish toxin (DST) complex and associated toxins. J Nat Toxins, 7 (2): 141-158.
    Arias C, Montiel T, Pena F, et al. 2002. Okadaic acid induces epileptic seizures and hyperphosphorylation of the NR2B subunit of the NMDA receptor in rat hippocampus in vivo.ExpNeurol. 177(1):284-291.
    Benito A, Lerga A, Silva M, et al. 1997. Apoptosis of human myeloid leukemia cells induced by an inhibitor of protein phosphatases (okadaic acid) is prevented by Bcl-2 and Bcl-X(L). Leukemia, 11 (7):940-944.
    Bandyopadhyay S, Sengupta TK, Fernandes DJ, et al. 2003. Taxol- and okadaic acid-induced destabilization of bcl-2 mRNA is associated with decreased binding of proteins to a bcl-2 instability element. Biochem Pharmacol, 66:1151-1162.
    Chatfield K, Eastman A. 2004. Inhibitors of protein phosphatases 1 and 2A differentially prevent intrinsic and extrinsic apoptosis pathways. Biochem Biophys Res Commun, 323:1313-1320.
    Cabado AG, Leira F, Vieytes MR, et al. 2004. Cytoskeletal disruption is the key factor that triggers apoptosis in okadaic acid-treated neuroblastoma cells. Arch Toxicol, 78 (2):74-85.
    Chen LQ, Wei JS, Lei ZN, et al. 2005. Induction of Bcl-2 and Bax was related to hyperphosphorylation of tau and neuronal death induced by okadaic acid in rat brain. Anat Rec A Discov Mol Cell Evol Biol, 287 (2): 1236-1245.
    Dounay AB, Forsyth CJ. 2002. Okadaic Acid: The Archetypal Serine/Threonine Protein Phosphatase Inhibitor. Curr Med Chem, 9:1939-1980.
    Egmond Van, Aune HP, Lassus T, et al. 1993. Paralytic and diarrhoeic shellfish poisons: occurrence in Europe, toxicity, analysis and regulation. J Nat Toxins, 2:41-83.
    EU/SANCO. 2001. Report of the meeting of the working group on toxicology of DSP and AZP 21to 23rd May 2001. Brussels.
    Fujiki H, Suganuma M. 1999. Unique features of the okadaic acid activity class of tumor promoters. J Cancer Res Clin Oncol, 125:150-155.
    Farhana L, Boyanapalli M, Tschang SH, et al. 2000. Okadaic Acid-mediated Induction of the c-fos Gene in Estrogen Receptor-negative Human Breast Carcinoma Cells Utilized, in Part, Posttranscriptional Mechanisms Involving Adenosine-Uridine-rich Elements. Cell Growth Differ, 11,541-550.
    Fernandez JJ, Candenas ML, Souto ML, et al. 2002. Okadaic Acid, Useful Tool for Studying Cellular Processes. Curr Med Chem, 9: 229-262.
    Fujita M, Goto K, Yoshida K, et al. 2004. Okadaic acid stimulates expression of Fas receptor and Fas ligand by activation of nuclear factor kappa-B in human oral squamous carcinoma cells.Oral Oncol, 40:199-206.
    Goto K, Fukuda J, Haneji T. 2002. Okadaic acid stimulates apoptosis through expression of Fas receptor and Fas ligand in human oral squamous carcinoma cells. Oral Oncol, 38:16-22.
    Gehringer MM. 2004. Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response. FEBS Lett, 557:1-8.
    Hill JJ, Callaghan DA, Ding W, et al. 2006. Identification of okadaic acid-induced phosphorylation events by a mass spectrometry approach. Biochem Biophys Res Commun, 342 (3): 791-799.
    Iqbal K, Alonso AC, Gong CX, et al. 1998. Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. J Neural Transm Suppl, 53: 169-180.
    Ito E, Yasumoto T, Takai A, et al. 2002. Investigation of the distribution and excretion of okadaic acid in mice using immunostaining method. Toxicon, 40 (2): 159-165.
    Korhonen P, Tapiola T, Suuronen T, et al. 1998. Expression of transcriptional repressor protein mSin3A but not mSin3B is induced during neuronal apoptosis.Biochem Biophys Res Commun,252:274-277.
    Kwom TK.2001.Phorbol Myristate Acetate Inhibits Okadaic Acid-Induced Apoptosis and Downregulation of X-Linked Inhibitor of Apoptosis in U937 Cells.Biochem Biophys Res Commun,287:135-141.
    Kawai H,Suzuki T,Kobayashi T,et al.2004.Simultaneous imaging of initiator/effector caspase activity and mito- chondrial membrane potential during cell death in living HeLa cells.Biochim Biophys Acta,1693:101-110.
    Li DW,Fass U,Huizar I,et al.1998.Okadaic acid-induced lens epithelial cell apoptosis requires inhibition of phosphatase-1 and is associated with induction of gene expression including p53 and bax.Eur J Biochem,257(2):351-361.
    Leira F,Vieites JM,Vieytes MR,et al.2001.Apoptotic events induced by the phosphatase inhibitor okadaic acid in normal human lung fibroblasts.Toxicol In Vitro,15(3):199-208.
    Li DW,Xiang H,Mao YW,et al.2001.Caspase-3 Is Actively Involved in Okadaic Acid-Induced Lens Epithelial Cell Apoptosis.Exp Cell Res,266:279-291.
    Liu F,Grundke-Iqbal I,Iqbal K,et al.2005.Contributions of protein phosphatases PP1,PP2A,PP2B and PP5 to the regulation of tau phosphorylation.Eur J Neurosci,22(8):1942-1950.
    Murakami Y,Oshima Y,Yasumoto T.1982.Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocentrum lima.Bull Japan Soc Sci Fish,48-69.
    Matias WG,Creppy EE.1996.Transplacental passage of[3H]-okadaic acid in pregnant mice measured by radioactivity and high-performance liquid chromatography.Hum Exp Toxicol,15:226-230.
    Milczarek GJ,Chen W,Gupta A,et al.1999.Okadaic acid mediates p53 hyperphosph orylation and growth arrest in cells with wild-type p53 but increases aberrant mitoses in cells with non-functional p53.Carcinogenesis,20:1043-1048.
    Matias WG,Traore A,Creppy EE.1999.Variations in the distribution of okadaic acid in organs and biological fluids of mice related to diarrhoeic syndrome.Hum Exp Toxicol,18(5):345-350.
    Morimoto Y,Morimoto H,Okamura H,et al.2000.Upregulation of the expression of Fas antigen and Fas ligand in a human submandibular gland ductal cell line by okadaic acid.Arch Oral Biol,45:657-666.
    Moncada A,Cendan CM,Baeyens JM,et al.2003.Effects of serine/threonine protein phosphatase inhibitors on morphine-induced antinociception in the tail flick test in mice.Eur J Pharmacol,465:53-60.
    Riordan FS,Foroni L,Hoffbrand V,et al.1998.Okadaic acid-induced apoptosis of HL-60leukemia cells is preceded by destabilization of bcl-2 mRNA and downregulation of bcl-2protein.FEBS Lett,435:195-198.
    Rossini GP,Pinna C,Malaguti C.1999.Different sensitivities of p42 mitogen-activated protein kinase to phorbol ester and okadaic acid tumor promoters among cell types.Biochem Pharmacol,58:279-284.
    Rossini GP,Sgarbi N,Malaguti C.2001.The toxic responses induced by okadaic acid involve processing of multiple caspase isoforms.Toxicon,39:763-770.
    Romano E,Cannata S,Di Bartolomeo S,et al.2003.Caspase inhibition shifts neuroepithelioma call response to okadaic acid from apoptosis to an apoptotic-like form of death.Biochem Biophys Res Commun,303(2):469-474.
    Shiozaki EN,Yigong S.2004.Caspases,IAPs and Smac/DIABLO:mechanisms from structural biology.Trends Biochem Sci,29(9):486-494.
    Santaclara F,Lago J,Vieites JM,et al.2005.Effect of okadaic acid on integrins and structural proteins in BE(2)-M17 cells.Arch Toxicol,79(10):582-586.
    Tachibana K,Tsukitani Y,Scheuer PJ,et al.1981.Okadaic acid,a cytotoxic polyether from two marine sponges of the genus Halichondria.J Am Chem Soc,103:2469-2471.
    Tripuraneni J,Koutsouris A,Pestic L,et al.1997.The Toxin of Diarrhetic Shellfish Poisoning,Okadaic Acid,Increases Intestinal Epithelial Paracellular Permeability.Gastroenterology,112:100-108.
    Tergau F,Weichert J,Quentin I,et al.1997.Inhibitors of ser/thr phosphatases 1 and 2A induce apoptosis in pituitary GH3 cells.Naunyn Schmiedebergs Arch Pharmacol,356(1):8-16.
    Tsang WP,Sophia PY,Chau SK,et al.2003.Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis.Life Sci,73:2047-2058.
    von-Zezschwitz C,Vorwerk H,Tergau F,et al.1997.Apoptosis induction by inhibitors of Ser/Thr phosphatases 1 and 2A is associated with transglutaminase activation in two different human epithelial tumour lines.FEBS Lett,413(1):147-151.
    Wera S,Hemmings BA.1995.Serine/threonine protein phosphatases.Biochem J,311(1):17-29.
    Whittle K,Gallacher S.2000.Marine toxins.British Medical Bulletin,56(1):236-253.
    Walczak H,Krammer PH.2000.The CD95(APO-1/Fas)and the TRAIL(APO-2L)apoptosis systems.Exp Cell Res,256:58-66.
    Xing ML,Zhu X,Wang XF,et al.2007a.Study of cytoskeletal changes induced by different toxicants by means of fluorescent label.Acta Hydrobiologica Sinica,31(6):912-914.邢鸣鸾,朱欣,王晓峰,等.2007a.荧光标记法检测不同毒物对细胞骨架的影响.水生生物学报,31(6):912-914.
    Xing ML,Chen JP,Wang XF,et al.2007b.Effect of okadaic acid on apoptosis in human amnion cells.Acta Hydrobiologica Sinica,31(4):607-609.邢鸣鸾,陈加平,王晓峰等.2007b.大田软海绵酸对FL细胞凋亡的影响.水生生物学报,31(4):607-609.
    Xing ML,Lou JL,Xu LH.2007c.DNA damage and alteration of expression in apoptosis related proteins induced by okadaic acid in FL cells.Acta Hydrobiologica Sinica,31(5):51-55.邢鸣鸾,楼建林,徐立红.2007.大田软海绵酸对FL细胞DNA的损伤及凋亡相关蛋白表达的影响.水生生物学报,31(5):51-55.
    Yasumoto T,Murata M,Oshima Y,et al.1985.Diarrhetic shellfish toxins.Tetrahedron,41:1019-1025.
    Yoon S,Choi J,Yoon J,et al.2006.Okadaic acid induces JNK activation,bim overexpression and mitochondrial dysfunction in cultured rat cortical neurons.Neurosci Lett,394(3):190-195.
    Arevalo JC,Conde B,Hempstead BL,Chao MV,Martin-Zanca D,Perez P.2000.TrkA immunoglobulin-like ligand binding domains inhibit spontaneous activation of the receptor.Mol Cell Biol 20(16):5908-16.
    Barbacid M.1994.The Trk family of neurotrophin receptors.J Neurobiol 25(11):1386-403.
    Baxter GT, Radeke MJ, Kuo RC, Makrides V, Hinkle B, Hoang R, Medina-Selby A, Coit D, Valenzuela P, Feinstein SC. 1997. Signal transduction mediated by the truncated trkB receptor isoforms, trkB.Tl and trkB.T2. J Neurosci 17(8):2683-90.
    Boeshore KL, Luckey CN, Zigmond RE, Large TH. 1999. TrkB isoforms with distinct neurotrophin specificities are expressed in predominantly nonoverlapping populations of avian dorsal root ganglion neurons. J Neurosci 19(12):4739-47.
    Brodeur GM. 2003. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3(3):203-16.
    Cassiman D, Denef C, Desmet VJ, Roskams T. 2001. Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology 33(1): 148-58.
    Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T. 2002. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J Hepatol 36 (2):200-9.
    Cameron HL, Foster WG 2008. Dieldrin promotes resistance to anoikis in breast cancer cells in vitro. Reprod Toxicol 25 (2):256-62.
    Desmet CJ, Peeper DS. 2006. The neurotrophic receptor TrkB: a drug target in anti-cancer therapy? Cell Mol Life Sci 63(7-8):755-9.
    Dionne CA, Camoratto AM, Jani JP, Emerson E, Neff N, Vaught JL, Murakata C, Djakiew D, Lamb J, Bova S and others. 1998. Cell cycle-independent death of prostate adenocarcinoma is induced by the trk tyrosine kinase inhibitor CEP-751 (KT6587). Clin Cancer Res 4(8): 1887-98.
    Dorsey SG, Renn CL, Carim-Todd L, Barrick CA, Bambrick L, Krueger BK, Ward CW, Tessarollo L. 2006. In vivo restoration of physiological levels of truncated TrkB.T1 receptor rescues neuronal cell death in a trisomic mouse model. Neuron 51(1):21-8.
    Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS. 2004. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430(7003): 1034-9.
    Edsjo A, Lavenius E, Nilsson H, Hoehner JC, Simonsson P, Culp LA, Martinsson T, Larsson C, Pahlman S. 2003. Expression of trkB in human neuroblastoma in relation to MYCN expression and retinoic acid treatment. Lab Invest 83(6):813-23.
    Eggert A, Grotzer MA, Ikegaki N, Zhao H, Cnaan A, Brodeur GM, Evans AE. 2001. Expression of the neurotrophin receptor TrkB is associated with unfavorable outcome in Wilms1 tumor. J Clin Oncol 19(3):689-96.
    Garcia-Suarez O, Gonzalez-Martinez T, Germana A, Monjil DF, Torrecilla JR, Laura R, Silos-Santiago I, Guate JL, Vega JA. 2006a. Expression of TrkB in the murine kidney. Microsc Res Tech.
    Garcia-Suarez O, Gonzalez-Martinez T, Perez-Perez M, Germana A, Blanco-Gelaz MA, Monjil DF, Ciriaco E, Silos-Santiago I, Vega JA. 2006b. Expression of the neurotrophin receptor TrkB in the mouse liver. Anat Embryol (Berl) 211(5):465-73.
    Geiger TR, Peeper DS. 2005. The neurotrophic receptor TrkB in anoikis resistance and metastasis: a perspective. Cancer Res 65(16):7033-6.
    Haapasalo A, Koponen E, Hoppe E, Wong G, Castren E. 2001. Truncated trkB .T1 is dominant negative inhibitor of trkB.TK+-mediated cell survival. Biochem Biophys Res Commun 280(5): 1352-8.
    Han L, Zhang Z, Qin W, Sun W. 2006. Neurotrophic receptor TrkB: Is it a predictor of poor prognosis for carcinoma patients? Med Hypotheses.
    Hikawa S, Kobayashi H, Hikawa N, Kusakabe T, Hiruma H, Takenaka T, Tomita T, Kawakami T. 2002. Expression of neurotrophins and their receptors in peripheral lung cells of mice. Histochem Cell Biol 118(1):51-8.
    Huang EJ, Reichardt LF. 2003. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:60942.
    Huber LJ, Hempstead B, Donovan MJ. 1996. Neurotrophin and neurotrophin receptors in human fetal kidney. Dev Biol 179(2):369-81.
    Labouyrie E, Dubus P, Groppi A, Mahon FX, Ferrer J, Parrens M, Reiffers J, de Mascarel A, Merlio JR 1999. Expression of neurotrophins and their receptors in human bone marrow. Am JPathol 154(2):405-15.
    Li Z, Jaboin J, Dennis PA, Thiele CJ. 2005. Genetic and pharmacologic identification of Akt as a mediator of brain-derived neurotrophic factor/TrkB rescue of neuroblastoma cells from chemotherapy-induced cell death. Cancer Res 65(6):2070-5.
    Liotta LA, Kohn E. 2004. Anoikis: cancer and the homeless cell. Nature 430(7003):9734.
    McGregor LM, McCune BK, Graff JR, McDowell PR, Romans KE, Yancopoulos GD, Ball DW, Baylin SB, Nelkin BD. 1999. Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci U S A 96(8):4540-5.
    Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM. 1993. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328(12):847-54.
    Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM. 1994. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14(1):759-67.
    Nakagawara A, Liu XG, Ikegaki N, White PS, Yamashiro DJ, Nycum LM, Biegel JA, Brodeur GM. 1995. Cloning and chromosomal localization of the human TRK-B tyrosine kinase receptor gene (NTRK2). Genomics 25(2):538-46.
    Ninkina N, Adu J, Fischer A, Pinon LG, Buchman VL, Davies AM. 1996. Expression and function of TrkB variants in developing sensory neurons. Embo J 15(23):6385-93.
    Ohira K, Homma KJ, Hirai H, Nakamura S, Hayashi M. 2006. TrkB-T1 regulates the RhoA signaling and actin cytoskeleton in glioma cells. Biochem Biophys Res Commun 342(3):867-74.
    Patapoutian A, Reichardt LF. 2001. Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11(3):272-80.
    Pearse RN, Swendeman SL, Li Y, Rafii D, Hempstead BL. 2005. A neurotrophin axis in myeloma: TrkB and BDNF promote tumor-cell survival. Blood 105(11):4429-36.
    Perez-Perez M, Garcia-Suarez O, Blanco-Gelaz MA, Esteban I, Ciriaco E, Laura R, Germana A, Silos-Santiago I, Vega JA. 2004. TrkB mRNA and protein in mouse spleen: structure of the spleen of functionally deficient TrkB mice. Cell Tissue Res 316(2): 179-87.
    Rage F, Silhol M, Biname F, Arancibia S, Tapia-Arancibia L. 2006. Effect of aging on the expression of BDNF and TrkB isoforms in rat pituitary. Neurobiol Aging.
    Ren Y, Chan HM, Fan J, Xie Y, Chen YX, Li W, Jiang GP, Liu Q, Meinhardt A, Tam PK. 2006. Inhibition of tumor growth and metastasis in vitro and in vivo by targeting macrophage migration inhibitory factor in human neuroblastoma. Oncogene 25(25):3501-8.
    Renne C, Willenbrock K, Kuppers R, Hansmann ML, Brauninger A. 2005. Autocrine- and paracrine-activated receptor tyrosine kinases in classic Hodgkin lymphoma. Blood 105(10):4051-9.
    Sariola H. 2001. The neurotrophic factors in non-neuronal tissues. Cell Mol Life Sci 58(8): 1061-6.
    Schramm A, Schulte JH, Astrahantseff K, Apostolov O, Limpt V, Sieverts H, Kuhfittig-Kulle S, Pfeiffer P, Versteeg R, Eggert A. 2005. Biological effects of TrkA and TrkB receptor signaling in neuroblastoma. Cancer Lett 228(1-2): 143-53.
    Sclabas GM, Fujioka S, Schmidt C, Li Z, Frederick WA, Yang W, Yokoi K, Evans DB, Abbruzzese JL, Hess KR and others. 2005. Overexpression of tropomysin-related kinase B in metastatic human pancreatic cancer cells. Clin Cancer Res 11(2 Pt 1):440-9.
    Shibayama E, Koizumi H. 1996. Cellular localization of the Trk neurotrophin receptor family in human non-neuronal tissues. Am J Pathol 148(6):1807-18.
    Stoilov P, Castren E, Stamm S. 2002. Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochem Biophys Res Commun 290(3): 1054-65.
    Strohmaier C, Carter BD, Urfer R, Barde YA, Dechant G 1996. A splice variant of the neurotrophin receptor trkB with increased specificity for brain-derived neurotrophic factor. Embo J 15(13):3332-7.
    Tsai SJ. 2006. TrkB partial agonists: potential treatment strategy for epilepsy, mania, and autism. Med Hypotheses 66(1): 173-5.
    Ultsch MH, Wiesmann C, Simmons LC, Henrich J, Yang M, Reilly D, Bass SH, de Vos AM. 1999. Crystal structures of the neurotrophin-binding domain of TrkA, TrkB and TrkC. J Mol Biol 290(1): 149-59.
    Wiedemann FR, Siemen D, Mawrin C, Horn TF, Dietzmann K. 2006. The neurotrophin receptor TrkB is colocalized to mitochondrial membranes. Int J Biochem Cell Biol 38(4):610-20.
    Wiesmann C, de Vos AM. 2001. Nerve growth factor: structure and function. Cell Mol Life Sci 58(5-6):748-59.
    Yamamoto M, Sobue G Yamamoto K, Terao S, Mitsuma T. 1996. Expression of mRNAs for neurotrophic factors (NGF, BDNF, NT-3, and GDNF) and their receptors (p75NGFR, trkA, trkB, and trkC) in the adult human peripheral nervous system and nonneural tissues. Neurochem Res 21(8):929-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700