沉积型硅钙质磷矿石脱硅浮选试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对贵州某地区沉积型硅钙质磷矿石按实际生产中各矿体及顶、底板可能配入的比例配成的混合矿样中SiO_2含量较高的特点,对该地区磷矿进行了反浮选试验,并通过红外分析方法研究了浮选药剂与矿物作用的机理。
     通过X射线衍射、化学分析、扫描电镜等测试手段对配成的混合矿样进行了矿物学研究。X射线衍射结果表明:磷酸盐矿物中以胶磷矿为主、碳酸盐矿物主要以白云石为主、氧化物中以石英为主。硅钙质共生矿物以白云石[CaO·MgO·(CO_2)_2]及方解石[CaCO_3]形态存在,而酸不容物SiO_2及Al_2O_3等则以钙长石[CaAlSiO_8]等形态存在,Fe_2O_3主要以半生矿物的形态存在。混合矿样化学分析结果为:试样中目的矿物P_2O_5含量为25.7%。脉石矿物含量:SiO_214.90%、Al_2O_33.37%、Fe_2O_31.53%、MgO2.78%。扫描电镜结果表明:胶磷矿是该矿石中主要的矿物,其他矿物有白云石、石英、粘土类矿物等。胶磷矿主要呈胶态结构产出,其次可见微晶、超微晶集合体和生物碎屑等结构产出,其嵌布粒度较粗,细粒、微细粒粘土类矿物与胶磷矿相互胶结共生;同时也可见石英和黄铁矿等呈细粒、微细粒包裹体分散在胶磷矿中。
     在实验室研究试验阶段,采用反浮选工艺流程脱硅,通过单因素试验和正交试验等确定了合理的药剂制度,在磨矿细度为-200目占87.43%的条件下,经过“两次粗选、一次精选、一次扫选”的试验流程,取得了较满意的选矿指标。最终浮选试验结果表明:对于含P_2O_525.70%,SiO_214.78%的原矿,经过反浮选,所得精矿P_2O_5品位31.54%,回收率86.76%,SiO_2品位11.85%,Fe_2O_3品位1.34%,Al_2O_3品位1.31%,数据表明SiO_2含量降低,且Fe_2O_3、Al_2O_3、MgO的含量也能显著的降低。通过经济核算,生产1吨磷精矿的药剂成本约为26.18元,这在经济上是合理可行的。
     根据矿物红外特征光谱图,在尾矿红外光谱图和精矿红外图谱图中可看出在1454.66cm~(-1)和881.29cm~(-1)吸收峰左右,为碳酸盐类和硅酸盐类吸收带,且吸收带峰值都在减少。说明碳酸盐与硅酸盐类矿物都在不同程度的被浮选出来。可知WLZ、KY-01、KY-02在脉石矿上的吸附是存在的;磷的吸收峰变化较小,说明药剂对磷矿的吸附量较小,由此推断捕收剂在石英表面上的吸附是存在的,且吸附量相对较大,才得以将磷灰石和脉石分离。
In this paper, the test samples of marine sedimentary silicon -calcium phosphorit of Guizhou was mixes according to a certain proportion. Base on the mixed- samples with the high content of SiO_2, the reverse -flotation tests was carried out, and the mechanism of effect between flotation medicine and mineral was studied with the method of infrared.
     The mineralogy of the mixed-mine samples was studied by means of X-ray diffraction, chemical analysis, scanning electron microscopy and so on. The consequence of X-ray diffraction indicate: the majority of phosphate is collophanite, the majority of carbonate minerals is dolomite, the majority of oxide is quartz. The silicon-calcium main mineral form is dolomite and calcite, and the acid insoluble SiO_2 and Al_2O_3 is present as the form of anorthite [CaAlSiO_8], Fe_2O_3 is present as the form of associated mineral. The consequence of chemical analysis of mixed samples indicate: the P_2O_5 content is 25.7% in the sample, and SiO_2 account for 1.4.90%, Al_2O_3 account for 3.37%, Fe_2O_3 account for 1.53%, MgO account for 2.78%. The result of scanning electron microscopy showed that the majority mineral of phosphate is collophanite, the other mineral is dolomite、quartz、clay mineral and so on. The most form output of collophanite has colloidal structure, the else form output is visible microcrystalline、ultracrystallite aggregate with organic clastic, and all being present as coarse grain and the micro-fine-grained clay minerals embedded in, simultaneously the visible fine-grained, micro-fine-grained minerals such as quartz and pyrite are dispersed in.
     In the laboratory research, the reverse-flotation process was introduced to desiliconization, a rational flotation dosage was determined through the single factor and two factors flotation tests, the satisfying indicator of mineral separation is obtain, after the test process of two-stages roughing, single-stage cleaning and single scavenging under the conditions of the grinding fineness -0.074mm account for 87.43%. the results of final flotation test show that: for the raw ore in which the P_2O_5 account for 25.70%, the SiO_2 account for 14.78%, after the reverse-flotation processing, the concentrate obtains P_2O_5 31.54% with a recovery of 86.76%, and the content of SiO_2 is 11.85%, Fe_2O_3 is 1.34%, Al_2O_3 is 1.31%, the data indicate that the content of SiO_2 was reduced and the content of Fe_2O_3, Al_2O_3, MgO was significantly reduced too. Through the economic accounting, a ton of phosphorus concentrate of reagent cost about 26.18 yuan, it is reasonable and feasible in economy to produce.
     According to the characteristics of the infrared spectra of minerals,from the infrared spectrum graph of tailings and concentrates we can see that around the absorption peak of the figure 1454.66cm~(-1) and 881.29 cm~(-1) is the absorption band of the category for carbonate and silicate, and the absorption peak are decline at the absorption band. That explain the carbonate and silicate of minerals has been flotation, to different degrees. It is shows that there is adsorption WLZ, KY-01, KY-02 with gangue minerals; the absorption peak of Pare changes smaller, as indicates the pharmaceutical adsorption capacity of phosphate are smaller. It is shows that there is the adsorption of the surface of quartz , and the adsorption capacity is relatively large that the apatite and gangue was able to be separated.
引文
[1]刘颐华.我国与世界磷资源及开发利用现状[J].磷肥与复肥,2005,(5).1-5.
    [2]Mineral Commodity Summaries 2008[R],United States Geological Survey,2008.
    [3]吴初国.国家实物地质资料目录数据库系统建设[J].国土资源信息化,2003,(2).24-28.
    [4]熊先孝,李博昀等.中国北方磷矿矿床类型及成矿规律[J].化工矿产地质,2007,(3).159-168.
    [5]张仁忠,令狐昌等.瓮福磷矿a层矿和b层矿的混合选矿实践[J].化工矿物与加工,2007,(8).8-10.
    [6]莫笑萍,胡山鹰,沈静珠.我国磷资源产业的发展[J].化工矿物与加工,2006,(8):1-4.
    [7]Beeson,S.and Poole,C.Recovery of phosphate minerals from silicate and carbonate ores using selective flocculation,Ⅱ Inter.Conf.On Beneficiation of Phosphates,1998,12.
    [8]彭孺,罗廉明.磷矿选矿[M].武汉:武汉测绘科学出版社,1992:45.
    [9]吴彩斌,段希祥.我国磷矿石的处理工艺研究[J].云南冶金,2000,(4):19-22.
    [10]P.布拉兹.从磷酸和磷酸盐中除去镁的研究[J].国外金属矿选矿,2002(12):29.
    [11]杨敖,杨利萍.磷矿的选矿[J].矿产综合利用,1997,(6):13-16.
    [12]唐德身.宜昌磷矿重介质选矿联合流程半工业试验及结果[J].矿产综合利用,1995,(1):5-11.
    [13]张旭,戴惠新.磷矿物浮选药剂现状[J].矿业快报,2008,(4):10-12.
    [14]陈泽,王竹生.中国磷矿选矿技术发展[J].化工矿山地质,1996(7):228-238.
    [15]International Fertilizer Industry Association.Fertilizer Indicators[M].April 2000 Edition.
    [16]朱建光.2000年浮选药剂的进展[J].国外金属矿选矿,2001(3):15-16.
    [17]周叔良译.美国西部磷矿应用碳酸盐-二氧化硅浮选技术[J].化工矿山译丛,1985(1):39-46.
    [18]郑忠,胡纪华.表面活性剂的物理化学原理[M].广州:华南理工大学出版社,1995:115-117.
    [19]周强,卢寿慈.表面活性剂在浮选中的复配增效作用[J].金属矿山,1993(8):20-31.
    [20]李冬莲,彭儒.增效剂Tween80实现磷矿常温浮选机理研究[J].武汉化工学院学报,1992增刊:10-17.
    [21]谢恒星,李冬莲等.增效作用对胶磷矿浮选行为的影响[J].武汉化工学院报,1998(20):33-36.
    [22]罗廉明,华萍.新型碳酸盐矿物抑制剂的制备及应用研究[J].化工矿物与加工,1999,(9):11-12.
    [23]张向东.胶磷矿脉石抑制剂BS-33通过技术鉴定[J].应用化工,2001,(1):24-26.
    [25]毕明德,李润.浏阳胶磷矿贫矿浮选研究[J].化工矿物与加工,1999,(1):6-8.
    [26]张泽强.酸性水玻璃在磷矿浮选中的作用[J].中国非金属矿工业导刊,2003,(2):39-41.
    [27]罗惠华,刘丽芬等.云南海口中品位磷矿常温浮选试验[J].武汉化工学报,2005,(2):31-34.
    [28]Stefanovskaya L.K.,Krylova R.Ya,Gorokhova V.K,et al.New Collecting Reagent for Vaman.R.P.Process Flotation of Cacareons Muddorie Phosphate Ores[J].Int.T.Miner.Proc.1985(14):57-66.
    [29]Houot.R.Beneficiation of Phosphate Ores through Flotation Reciew of Industrical Application and Potential Development[J].Int.J.Miner.Proc.1982(9):353-384.
    [30]朱建光.2001年浮选药剂的进展[J].国外金属矿选矿,2002(2):4-11.
    [31]Hsieh,Shuang shii.Beneficiation of a Dolomitic Phosphate Pebble from Florida[J].Ind.Eng.Chem.Res.1988,27(4):594.
    [32]B.H.里亚波伊,李长根等.带有弱捕收性能的起泡剂的应用[J].国外金属矿选矿,2005(1):17-18.
    [33]钟康年,沈静.胶磷矿的新型抑制剂W-10[J].化工矿山技术,1991,20(4):24-26.
    [34]罗惠华,钟康年.抑制剂W-98在瓮福磷矿反浮选中的选矿研究[J].武汉化工学院学报,2002,(4):49-52.
    [35]D.R.纳加雷.浮选硫化矿物和非硫化矿物的新型聚合物抑制剂[J].国外金属矿选矿,2001(9):30-33.
    [36]张若愚,李顺芬.活性硅对湿法磷酸工艺的影响[J].化肥工业,2004,(2):13-14.
    [37]赵瑶兴等.光谱解析与有机结构鉴定[M].中国科学技术大学出版社,1992.245.
    [38]许时.矿石可选性研究[M].北京:冶金工业出版社,1989:315.
    [39]郑其.胶磷矿的反浮选[J].中国矿业,1998,(2):59-62.
    [40]王淀佐,胡岳华.浮选溶液化学[M].长沙湖南科技出版社,1988:226-228.
    [41]胡熙庚.浮选理论与工艺[M].湖南:中南工业大学出版社,1991:188.
    [42]lai W.M,Fuersten D.W.Surface properties of magnesite and surfactant adsorption mechanism[J].Trans AIME,1976,26:105-106.
    [43]Fuersten D.19.Streaming potential studies of quartz in solutions of aminium acetates in relation to the formation of hemimicells at the quartz-solution interface[J].Mineral Sci.Eng.,1979,1l(1):62-63.
    [44]陈达.阳离子捕收剂分离磁铁矿和石英的研究[D].武汉:武汉理工大学矿物加工系,2004:47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700