仿酶氧化与絮凝在造纸废水处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造纸废水是我国水体污染的主要污染源之一,已成为制约我国造纸工业发展和水污染治理的瓶颈。由于废水排放量大,污染物浓度高,含有生物难降解的木素及其衍生物,常规的物理、化学、生物等处理手段很难保证日益严格的废水达标排放标准。尤其对于在数量上占有优势的中小型造纸企业,由于原料复杂、生产技术相对落后、工厂规模不够大,目前还没有经济、有效的废水处理技术。本论文提出了仿酶氧化结合絮凝法处理造纸废水的新工艺,先通过模型物和磨木木素的反应证实此仿酶反应能够氧化降解木素模型物及磨木木素,然后应用于处理废水的研究中,并成功用于造纸企业废水处理。
     本文首先合成了一种酚型的木素模型化合物(愈创木基丙三醇-β-愈创木基醚)。采用新方法成功地合成了愈创木基丙三醇-β-愈创木基醚化合物,用乙醇代替三氯甲烷和乙酸乙酯做反应溶剂,对关键的中间产物4-(α-溴代乙酰基)-愈创木酚的合成方法进行了改良,使其得率可以稳定的达到80%。利用红外光谱、核磁共振谱(1H-NMR)分析等手段对其化学结构进行了分析确认。
     本文利用合成出来的愈创木基丙三醇-β-愈创木基醚作为木素模型化合物。在采用Fe2+-羧酸复合物仿酶配位化合物(Fe-CA)/过氧化氢的仿酶体系对其进行仿酶降解处理后,利用核磁共振(13C-NMR)和GC-MS等分析手段对反应的产物进行了分析。研究发现:降解产物中含有了大量的羰基、羟基和羧基,从而有利于废水在阳离子絮凝剂的作用下絮凝脱除木素。本研究也阐明了这种β-O-4型的木素模型化合物的结构在Fe-CA/H2O2仿酶系统中分解反应机理,推断出该仿酶体系能有效导致酚型的β-O-4型木素模型化合物之间的降解反应。如:Cα-Cβ键的断裂、β-芳基醚键的断裂、Cα-Cβ键的断裂。Fe-CA/H2O2仿酶降解体系对蓝桉MWL的降解能力较强,降解后的羰基和羟基明显增多,这些基团的增加使木素与阳离子型无机和有机絮凝剂的亲和性增加。从而使废水中用普通絮凝方法难以絮凝的水溶性木素大量析出,废水的COD才能有比较大的去除率。
     造纸厂综合废水经Cu-吡啶、Cu-胺、Fe-CA三种仿酶体系处理,COD去除率分别可达72.2%、71.8%和75.1%。通过对比三种不同的仿酶体系,我们发现Fe-CA/H2O2仿酶体系处理效果最佳。通过研究发现,Fe-CA/H2O2仿酶体系处理废水的最佳条件为:用量0.02mmol/L废水,原水pH值需调至中性,废水温度不低于30℃。中试结果显示应用Fe-CA/H2O2仿酶处理系统可以很好的处理木素含量较高的制浆造纸中段废水,其最佳条件为:Fe-CA仿酶用量0.02mol/m3,双氧水用量150g/m3,硫酸铝的投加量为300g/m3,CPAM加入量为5g/m3,处理时间30分钟,沉降时间6个小时。
     根据本研究的工艺条件,我们设计出仿酶处理体系处理废水工程,应用于山东省某造纸企业(含麦草半化学浆生产线),并经过连续一个月的运行,达到很好的CODCr、SS去除效果。采用仿酶氧化-混凝法处理高CODCr的造纸厂综合废水,CODCr、SS等主要污染物的去除率分别可达55%、60%以上,通过木素的大量脱除有效地提高了废水的可生化性,为难降解废水的后续处理创造了条件。该处理工艺设备简单,操作方便,成本低,可以适应较高的废水负荷。
As one of the main pollution sources of waters, pulping and papermaking effluent has become a bottleneck in the development of papermaking industry. This kind of wastewater has characteristics of high concentration organic substance, abundant lignin and other polyphenols which are difficult to be decomposed by microbe. Therefore it is very hard to treat with conventional methods for wastewater treatment, such as physical or chemical or biological treatment. By now, there is not very effective technology of treating pulping and papermaking wastewater, especially for middle-scale factories, because of the non-wood fiber material, low technology and small scale. In this paper, a novel biomimetic flocculation method was developed. It was confirmed that the biomimetic oxidation could degrade lignin model. The biomimetic flocculation was also used to treat wastewater of paper mill, and it obtains great success.
     In this paper, a model compound ofβ-O-4 type lignin model compound (i.e. guaiacyglycerol-β-guaiacyl ether) was synthesized with a modified method. The synthesis method of an impant intermediate,i.e. 4-(α-bromoactyl)-guaiacol was improved, Its yield reached 80%. The combination of infrared spectra, 1H-NMR analysis was used to identify the chemical structure of the product and related precursors.
     The lignin model compound of guaiacylglycerol-β-guaiacyl ether was treated with a Fe-carboxyl acid complexes (Fe-CA)/H2O2 biomimetic system. The reaction products were analyzed by 13C-NMR and GC-MS. The mechanism of the biomimetic degradation of thisβ-O-4 structure was also explored. It was found there were a lot of carbonyl, carboxyl and hydroxyl groups in the degraded products. It was proved that the following three types of reaction were caused by the Fe-CA/H2O2 system:β-aryl ether cleavage, Cα-Cβcleavage, Cβ-Cγcleavage. It was found that Fe-CA/H2O2 biomimetic system could deeply degrade MWL from Eucalyptus globules. Carboxyl, carbonyl and hydroxyl group increased significantly. That can increase the proximity between degraded lignin and cationic inorganic or organic flocculate. As a result wastewater COD will be decreased greatly.
     A stable and high efficiency Fe2+-carboxyl acid complexes (Fe-CA) which could simulate the lignin peroxidase to treat the paper mill wastewater by quickly oxidation and flocculation treatment. As compared with Cu-pyridine biomimetic system and Cu-amine biomimetic system, the Fe-CA biomimetic system was more effective. Furthermore effect of biomimetic dosage, pH, temperature on wastewater treatment was investigated respectively. According to the experimental results and condition of a middle-scale paper mill, an integrated treatment process was designed and optimized. The optimal coagulant and its actual application parameters of coagulation for the wastewater were acquired by pilot experiment. The optimal condition was as follow. Fe-CA 0.02mol/m3; H2O2 150g/m3; Al2(SO4)3(18H20) 300g/ m3; CPAM 5g/m3; 30min reaction time and 6h sedimentation.
     Based on the results stated above, a mill scale Fe-CA biomimetic flocculation process was developed for the mixed wastewater treatment of a paper mill in Shandong Provice. The design of the biomimetic flocculation system was also carried out in our research group. After one month continual operation, very good COD and SS elimination effect was achieved. The elimination rate of main pollutant such as CODCr and SS reached above 55%, 60% respectively. Through lignin massive removing, the effect of subsequent biochemical was also enhanced. The process have merit of simple equipment, easy operation and low cost. It is also suitable for treatment of heavly duty effluent.
引文
[1] 谢 恒 参 , 朱 亦 人 . 造 纸 废 水 处 理 新 技 术 的 研 究 进 展 [J]. 化 工 环保,2004,24:132-134
    [2] 王晖,符斌. 造纸废水处理方法现状及展望[J]. 中国资源综合利用,2005,2(2):21-24
    [3] 梁宏,林海波,王林元等. 造纸废水治理技术研究现状及展望[J]. 四川理工学院学,2005,18(2):56-60
    [4] 金建华,李翠华. 制浆造纸废水生化处理技术进展 [J]. 西部探矿工程,2005,2:208-210
    [5] 刘全校,安郁琴. 臭氧用于治理制浆造纸废水[J]. 纸和造纸,2000,4:44-44
    [6] 张志军,包志成,王克欧等. 二氧化钛催化下的氯代二苯并-对-二恶英光解反应[J]. 环境化学,1996,15(1):47-51
    [7] M Cristina Yeber,Jaime Rodriguez,Juanita Freer,et al. Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO[J]. Chemosphere,2000,4:1 193
    [8] Tinucci L,Borgarello E,et al. Treatment of industrial wastewaters by photocatalytic oxidation on TiO2, photocatalytic purification and treatment of water and elsevier science publishers[J]. Amsterdam,1993:585
    [9] 崔玉民,朱亦仁,何东宝. 用复相光催化剂 WO3/α-Fe2O3/W 深度处理造纸废水的研究[J]. 感光科学与光化学,2001,5:131-137
    [10] 黄江丽,施汉昌,钱易. MF 与 UF 组合工艺处理造纸废水研究[J]. 中国给水排水,2003,19(6):13-15
    [11] Vieira M,Tavares C R,Bergamasco R,et al. Application of ultrafiltration-complexation process for metal removal from pulp and paper industry wastewater[J]. J Membr Sci,2001,194:273-276
    [12] 韩怀芬,金漫彤. 膜生物反应技术处理造纸废水试验[J]. 水处理技术,2001,27(2):96-98
    [13] 金漫彤,万义芳,韩怀芬等. 膜生物反应器处理难降解有机废水运行中 MLSS-处理效果的研究[J]. 浙江工业大学学报,2001,29(1):14-16
    [14] 张学洪,解庆林,李金城等. 造纸废水的混凝处理研究[J]. 桂林工学院学报,2000,(4):189-191
    [15] 黄国林,乐长高,梁平. 利用聚合物处理造纸废水的研究[J]. 环境科学与技术,1997,(1):24-26
    [16] 邹东雷,宋宝华,徐立群等. 造纸综合废水的混凝处理研究[J]. 环境科学动态,2005,(1):3-5
    [17] 江红光,梅荣武. 高效浅层气浮技术在造纸废水处理中的应用[J]. 环境污染与防治,2003(4):180-181
    [18] 刘振预,赵水泉,张凉. 处理造纸废水的涡凹式气浮装置[J]. 纸和造纸,2000(6):58-59
    [19] 曹姝文,唐艳青,袁启顺等. EWP 高效污水净化器在造纸废水治理中的应用[J]. 工业水处理,2001,21(8):45-46
    [20] 周珊,陆晓华,吴晓晖等. 超声技术降解造纸黑液[J]. 湖北师范学院学报,2002,22(2):21-24
    [21] 刘成波. 活性碳吸附法降低造纸废水中 COD 的研究[J]. 造纸科学与技术2002,21(6):64-66
    [22] 宫克.改性膨润土对工业废水的脱色[J]. 沈阳大学学报,2002,14(4):104-105
    [23] 许力. 超声波膜电解技术碱回收效果的实验研究[J]. 兰州铁道学院学报,2003,22(1):127-129
    [24] 张玉蕴. 浅析造纸厂废水分段处理技术[J]. 山西建筑,2003,29(4):254-255
    [25] 范懋功. 活性污泥法处理造纸废水[J]. 给水排水,1996,22(12):29-31
    [26] 刘素英,高心红,池明军. 造纸废水的生物后处理工艺探讨[J]. 西北轻工业学报,2002,20(30)85-87
    [27] 施英乔,丁来保,李萍等. 多次纤维造纸废水生物处理工业应用新技术[J].林产化工通讯,2002,36(3):3-8
    [28] 曲景奎,周桂英,隋智慧等. HCR 工艺在造纸废水治理中的应用[J]. 环境污染治理技术与设备,2002,3(1)74-76
    [29] 张述林,罗启芳,赵金辉等. 混凝与低氧-好氧两段活性污泥法处理造纸废水的研究[J]. 同济医科大学学报,1998,27(3):196-198
    [30] 朱光灿,吕锡武,宋海亮等. 脱木素-缺氧-好氧生物膜工艺处理造纸废水试验研究[J]. 给水排水,2004,30(1):56-59
    [31] 疏明君,李友明,谢澄等. 好氧三相流化床+絮凝法处理造纸中段废水的研究[J]. 纸和造纸,2002,2:46-48
    [32] 吴忆宁,刘士锐,张颖等. UV 诱变技术培养造纸废水高效降解菌[J]. 中国给水排水,2003,19(11):16-18
    [33] 杨云龙,薛 嵘,吴国庆. 固定化 PSB 处理亚硫酸钠造纸废水[J]. 中国环境科学,2001,21(4):351-354
    [34] 景 峰,王耀新,宋文菊. 试论电化学——凝聚法处理造纸废水[J]. 黑龙江环境通报,2000,24(2):81-82
    [35] Model M. Processing Methods for the Oxidation of Organics in Supercritical Water [P]. US Patent:4543(9), 1985-09-24.
    [36] 谢如刚. 仿酶催化与绿色化学[J]. 化学研究与应用,1999,11(4):344-349
    [37] 王荣民,王云普等. O2 选择氧化烷烃新进展. 化学通报,1999(8):8-12
    [38] Walker, C. C., Dinus, R, J., McDonough, T. J., et al. Evaluating three iron-based biomimetic compounds for their selectivity in a polymeric model system for pulp. Tappi J., 1995, 78(6): 103-109
    [39] Crestini, C. et al. Biomimetic degradation of lignin and lignin model compounds by synthetic anionic and cationic water manganese and iron porphyrins. Bioorganic & Medicinal Chemistry, 1999, 7: 1897-1905
    [40] Cui, F., and Dolphin, D. The biomimetic oxidation of β-1,β-O-4,β-5,and biphenyl lignin model compounds by synthetic iron porphyrins. Bioorganic & Medicinal Chemistry, 1994, 2(7): 735-742
    [41] Shimada, M., Shigemoto, T., et al., A new biomimetic kraft pulp bleaching with Mn and peracetic acid. 10th International Symposium on Wood and Pulping Chemistry, Main Symposium, Yokohama, Japan, June 7-10, 1999:562-565
    [42] Kondo, N., Hattori, T. and Shimada, M. A new oxidative degradation of a bio-recalcitrant α-carbonylβ-O-4 lignin model compound with Mn(Ⅲ)/oxalate system. Wood Research-Bulletin of the Wood Research Institute, Kyoto University,Sept. 1997, 84:19-21
    [43] Tanihara, Y., et al. Biomimetic oxidation ofβ-O-4 lignin model compound with tert-butylhydroperoxide and Fe (Ⅲ)-octacarboxyphthalocyanine. Wood Research, 1994, 81:11-13
    [44] Cui, F., and Dolphin, D. Metallophthalocyanines as possible lignin peroxides models. Bioorganic & Medicinal Chemistry, 1995, 3(5): 471-477
    [45] Haikarainen, A., Sipila J., Pietikainen, P., et al. Salen complexes with bulky substituents as useful tools for biomimetic phenol oxidation research. Bioorganic & Medicinal Chemistry, 2001, 9: 1633-1638
    [46] 侯宏伟,贺启环. 绿色化学进展. 上海化工,2001(9):4-7
    [47] Walker,C.C, McDonough,T.J,Dinus,R.J.and Eriksson K.E. Lignin-Carbohydrate Condansation Product Formation in a Biomimetic Model Pulp Bleaching System[J]. Molzforschang,2003,57(4):103-109
    [48] M.Tenkanen,T.Tamminen,B.Hortling, Investgation of lignin-carbohydrate complexes in kraft pulps by selective enzymatic treatments, Appl Microbiol Biotechnol,(1999)51:241-248
    [49] 中野准三编,高洁,鲍禾,李中正泽. 《木质素的化学》[M]. 轻工业出版社, 1988: 519
    [50] L.Caroll.King , G.Kenneth Ostrum,Selective.Bromination with copper(Ⅱ) Bromide,J.Org.Chem.,1964,29:3459-3461
    [51] 祁 俊 生 , 付 川 , 王 远 亮 . 芍 药 酮 的 溴 化 反 应 [J]. 化 学 研 究 与 应用,2003.8,Vol.15,No.4
    [52] 欧国隆. GIF 型防酶体系脱木素机理的研究. 华南理工大学硕士论文. 2002.2
    [53] Alain castellan, et al. Photodegradation of Lignin:A Photochemical Study of a Phenolic α-Carbonyl β-O-4 Lignin Model Dimer 4-Hydroxy-3-Methoxy-α-(2’-Methoxyphenoxy)-Acetophenone[J]. Holzforschung , 1989 , 43 : 179-185
    [54] Rui Katahira, Fumiaki Nakatsubo, “The chemical reactivity ofαether structure in lignin in the TIZ degradation method”, Proceedings of the 44th Lignin Symposium[C] , Gifu , Japan : Oct.7-8, 1999 : 33- 36
    [55] Jussi Sipil?, et al. “Synthesis and 13C NMR Spectroscopic Characterisation of Six Dimeric Arylglycerol-β-aryl Ether Model Compounds Representative of Syringyl and p-Hydroxyphenyl Structures in Lignins. On the Aldol Reaction inβ-Ether Preparation”, Holzforschung .[J] , 1995 , 49 : 325-331
    [56] 欧国隆,谢益民,胡周建等. 阔叶木木素及碳水化合物复合体的仿酶降解[J]. 广东造纸,2000(3):1-4
    [57] 欧国隆, 谢益民,赵华平等. β-O-4 型木素模型化合物的合成及其在 GIF 型仿酶降解体系中的变化(Ⅰ). 中国造纸学报,2001(2):29-35
    [58] 王荣民,王云普. O2 选择氧化烷烃新进展[J]. 化学通报,1999(8):8-12
    [59] Stephen, Y. Lin, C. W, D. 《Methods in Lignin Chemistry》[M]. Springer-Verlag, Berlin Heidelberg, 1992: 264-265
    [60] Taneda, H. Nakano, J. Hosoya S. and Chang, H-M. STABILITY OF α-ETHER TYPE MODEL COMPOUNDS DURING CHEMICAL PULPING PROCESSES. Journal of wood Chemistry and Tehnology.1987, 7(4): 485-498
    [61] Kadla, J.F. Chang, H-m. Reactions of Lignin with Cyanamide Activated Hydrogen Peroxide — part 3. The Degradation of Pine Kraft Lignin. Holzforschung. 2002(56): 76-84
    [62] Bj?kman A., “Studies on Finely Divided Wood. Part Ⅰ-Extraction of Lignin with Neutral Solvent”, Svensk Papperstidning,1956,59:477-485
    [63] Bj?kman A., “Studied on Finely Divided Wood. Part 3.-Extraction of Lignin-carbohydrate Complexes with Neutral Solvent”, Svensk Papperstding, 1957,60:243-251
    [64] 陈耀祖.《有机质谱原理及应用》[M]. 2002:141-157
    [65] Miyata S., Umezawa T, et al. The degradation of β-O-4 type lignin model compounds by lignin peroxidase, in "Proceedings of the 41st Lignin Symposium" , Nagoya, Japan, 1996:175-176
    [66] Haikarainen A, Sipila J, Pietikainen P, et al. Salen complexes with bulky substituents as useful tools for biomimetic pHenol oxidation research. Bioorganic & Medicinal Chemistry, 2001, (9):1633-1638.
    [67] Takehira K, Shimizu M, Watanabe Y, et al. A novel synthesis of trimethyl-p-benzoquinone:copper( Ⅱ )-hydroxylamine catalysed oxygenation of 2,3,6-trimethylpHenol with dioxygen. J Chem. Soc. Chem. Commun., 1989:1705-1706.
    [68] Batom D, Doller D. Relevance of GIF chemistry to enzyme mechanisms. In:IUCCP Symposium on Applications of Enzyme Biotechnology. Plenum Publ Corp, 1991:87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700