NF-κB信号通路对大鼠变应性鼻炎鼻粘膜上皮细胞水通道蛋白5表达的影响及变应性鼻炎高分泌性机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]
     1.原代大鼠鼻粘膜上皮细胞的纯化、培养及其鉴定。
     2.探讨环腺苷酸-蛋白激酶A (cyclic adenosine monophosphate-dependent protein kinase-A,cAMP-PKA)信号通路对大鼠鼻粘膜上皮细胞水通道蛋白5(aquaporin 5AQP5)调控机制。
     3.SD大鼠变应性鼻炎(Allergic rhinitis, AR)动物模型的建立及其评价。
     4.探讨核因子kappa B(Nuclear factor kappa B NF-κB)信号通路对AQP5表达的影响。
     5.探讨变应性鼻炎高分泌性的可能机制。
     6.探讨变应性鼻炎时NF-κB信号通路和cAMP-PKA信号通路之间的cross-talk。
     [方法]
     1.采用差速贴壁法和条件限定培养基,纯化和培养大鼠鼻粘膜上皮细胞。免疫细胞化学染色鉴定细胞类型并判断其纯度。
     2.PKA抑制剂H89(3μM)和cAMP激活剂forskolin (1μM)干预鼻粘膜上皮细胞12h和24h。CCK-8法检测H89和forskolin对上皮细胞生长的影响;免疫细胞化学染色、实时荧光定量PCR (Real-time PCR)及蛋白免疫印迹(western-blotting)检测各组鼻粘膜上皮细胞AQP5和p-CREB(Ser133)的表达。
     3.通过卵清蛋白(OVA)全身和局部致敏,建立大鼠变应性鼻炎模型,Wright's染色检测模型组鼻腔分泌物和鼻粘膜组织嗜酸性粒细胞的表达;酶联免疫吸附测定法(ELISA)检测外周血IgE水平;行为学积分对动物模型进行评价。
     4. NF-κB抑制剂四氢化吡咯二硫代氨基甲酸酯(Pyrrolidinedithiocarbamate ammonium, PDTC 100mg/kg/d和50mg/kg/d)干预AR大鼠,免疫组织化学、western-blotting和Real-time PCR检测各组鼻粘膜组织NF-κBp65、p-CREB(Ser133)、AQP5、IL-1β、TNF-α及IL-6表达。
     5.H89和forskolin干预AR大鼠,免疫组织化学、Real-time PCR和western-blotting检测各组鼻粘膜组织,NF-κBp65. p-CREB(Ser133)、AQP5、IL-1β及TNF-α表达。
     6. Western-blotting检测各组鼻粘膜组织粘蛋白5AC(MUC5AC)和粘蛋白5B(MUC5B)表达。
     [结果]
     1.采用差速贴壁法和条件限定培养基,可成功纯化和培养鼻粘膜上皮细胞。免疫细胞化学染色鉴定鼻粘膜上皮细胞纯度可达95%。
     2.H89和forskolin干预对大鼠鼻粘膜上皮细胞生长无显著影响。H89(3μM)干预12h和24h后,p-CREB(Ser133)和AQP5阳性细胞数较对照组明显减少,p-CREB(Ser133)蛋白、AQP5蛋白及AQP5mRNA表达较对照组明显减少;Forskolin (1μM)干预12h和24h后,p-CREB(Ser133)和AQP5阳性细胞数较对照组明显增多,p-CREB(Ser133)蛋白和AQP5蛋白及AQP5mRNA表达较对照组明显增多。
     3.通过卵清蛋白全身和局部致敏建立SD大鼠AR模型,HE染色显示模型组鼻粘膜组织纤毛脱落、倒伏,血管、腺体增多,Wright's染色显示模型组嗜酸性粒细胞浸润;外周血IgE水平增高;行为学积分较对照组明显增高。
     4.与对照组相比,模型组鼻粘膜组织NF-κBp65平均光密度值和蛋白表达明显增多,IL-1β、TNF-α及IL-6mRNA表达明显增多,p-CREB(Serl33)平均光密度和蛋白表达减少,AQP5平均光密度值、蛋白表达和mRNA表达减少;PDTC (100mg/kg/d and 50mg/kg/d)干预1d、3d和5d后,NF-KBp65平均光密度值和蛋白表达较模型组减少,IL-1β、TNF-α及IL-1βmRNA表达较模型组减少,p-CREB(Ser133)平均光密度值和蛋白表达较模型组增多,AQP5平均光密度值、蛋白表达和mRNA表达较模型组增多。
     5.H89 (5mg/kg/d)干预1d、3d和5d后,NF-κBp65平均光密度值和蛋白表达较模型组增多,IL-1β及TNF-αmRNA表达较模型组增多,p-CREB(Ser133)平均光密度和蛋白表达较模型组减少,AQP5平均光密度值、蛋白表达和mRNA表达较模型组减少;Forskolin (5mg/kg/d)干预1d、3d和5d后,NF-κBp65平均光密度值和蛋白表达较模型组减少,IL-1β及TNF-αmRNA表达较模型组减少,p-CREB(Ser133)平均光密度值和蛋白表达较模型组增多,AQP5平均光密度值、蛋白表达和mRNA表达较模型组增多。
     6.模型组MUC5AC和MUC5B蛋白表达较对照组明显增多;PDTC(100mg/kg/d and 50mg/kg/d)干预1d,3d和5d后,MUC5AC蛋白和MUC5B蛋白较模型组减少,H89(5mg/kg/d)干预1d,3d和5d后,MUC5AC蛋白和MUC5B蛋白表达较模型组增多。Forskolin(5mg/kg/d)干预1d,3d和5d后,MUC5AC蛋白和MUC5B蛋白表达较模型组减少。
     [结论]
     1.采用差速贴壁纯化法和条件限定培养基,可获得高纯度的鼻粘膜上皮细胞。
     2. cAMP-PKA信号通路通过CREB丝氨酸残基133位点磷酸化途径参与了鼻粘膜上皮细胞AQP5表达调控。
     3.通过全身和鼻腔局部OVA致敏,可成功建立SD大鼠变应性鼻炎动物模型。
     4. NF-κB信号通路可能通过抑制CREB(Ser133)磷酸化途径或者通过NF-κBp65与p-CREB (Ser133)竞争性结合CBP途径下调AQP5表达。
     5. NF-κB信号通路上调MUC5AC蛋白和MUC5B蛋白表达,可能引起变应性鼻炎高分泌性;AQP5的表达减少导致鼻腔分泌物清除或重吸收功能障碍,加速变应性鼻炎高分泌性。
     6. cAMP-PKA信号通路可抑制NF-κB信号通路。
Objective
     1.The purification,culture and identification of rat primary nasal epithelial cells.
     2.To detect the mechanism by which Cyclic adenosine monophosphate-dependent protein kinase-A (cAMP-PKA) pathway regulates aquaporin 5(AQP5) on rat nasal epithelial cells.
     3.The establishment and evaluation of the rat model with allergic rhinitis (AR).
     4.To detect the effect of NF-κB pathway on the expression of AQP5 in the nasal mucosa of AR rats.
     5.To detect the possible mechanism on the hyper-secretion of AR.
     6. To detect the cross-talk between the NF-κB and cAMP-PKA pathways in AR.
     Methods
     1.The primary nasal epithelial cells were purified and cultivated by differential adhesion and defined medium,and were identificated by immunocytochemical staining,and estimated their purity
     2.The nasal epithelial cells were treated with PKA inhibitor H89 (3μM) or the cAMP activator forskolin (1μM) for 12h and 24h. CCK-8 was applied to detect the growth of the cultured nasal epithelial cells.AQP5 and p-CREB(ser133) were detected by immunocytochemical staining, western-blotting or Real-time PCR.
     3.The animal model of rats with allergic rhinitis was established by the general and local sensitization with ovalbumin (OVA).Eosinophils in the nasal secretions and the nasal mucosa of model group were detected by Wright's staining.The level of IgE in peripheral blood was detected by enzyme-linked immunosorbent assay. Theanimal model with AR was evaluated by behavioral scores.
     4.AR rats were treated with NF-κB inhibitors pyrrolidinedithiocarbamate ammonium (PDTC 100mg/kg/d and 50mg/kg/d). the NF-κBp65,p-CREB(ser133),AQP5, IL-1β, TNF-αand IL-6 in the nasal mucosa were detected by immunohistochemistry, Real-time PCR or western-blotting.
     5.AR rats were treated with H89(5mg/kg/d) or forskolin(5mg/kg/d). p-CREB(ser133), NF-κBp65,AQP5,IL-1β,TNF-αand IL-6 in the nasal mucosa were detected by immunohistochemistry, Real-timePCR or western-blotting.
     6.The protein expression of MUC5AC和MUC5B of each group were detected by western-blotting.
     Results
     1.The rat nasal epithelial cells were purified and cultured by differential adherence and defined culture medium,which were identificated by immunocytochemical staining.The purity of the cells were more than 95%.
     2.H89 or forskolin made no difference on the growth of the rat nasal epithelial cells, After the treatment with 3μM H89,compared with group C,the positive cells of p-CREB(Ser133) and AQP5 decreased, the expression of p-CREB(Ser133) and AQP5 protein was decreased,and the mRNA level of AQP5 decreased;After the treatment with 1μM forskolin,compared with group C, the positive cells of p-CREB(Ser133) and AQP5 increased,and the expression of p-CREB(Ser133) and AQP5 protein was decreased,and the mRNA level of AQP5 increased.
     3.The model of SD rat with AR was established by by the general and local sensitization with ovalbumin (OVA).Compared with group C,the cilias on nasal mucosa tissue was off or flattened,the number of vessels,glands and eosinophile granulocytes increased,the level of IgE in peripheral blood was elevated,and the behavioral scores increased.
     4.Compared with group C,the mean optical density(MOD) and protein expression of NF-κBp65 of group M increased significantly,the mRNA level of IL-1β,TNF-αand IL-6 of group M increased,the MOD and protein expression of p-CREB of group M decreased,and the MOD, protein expression and mRNA level of AQP5 of group M decreased significantly.After the treatment with PDTC(100mg/kg/d and 50mg/kg/d) for ld,3d or 5d,compared with group M,the MOD and protein expression of NF-KBp65 decreased significantly,the mRNA level of IL-1β,TNF-αand IL-6 decreased,the MOD and protein expression of p-CREB(ser133) increased,and the MOD,protein expression and the mRNA level of AQP5 increased significantly.
     5.After the treatment with H89(5mg/kg/d) for 1d,3d or 5d,compared with group M,the MOD and protein expression of NF-κBp65 increased significantly,the mRNA level of IL-1β,TNF-αand IL-6 were up-regulated,the MOD and protein expression of p-CREB(Ser133) were reduced, the MOD,and protein expression and mRNA level of AQP5 decreased.After treatment with forskolin (5mg/kg/d) for for 1d,3d or 5d,compared with group M,the MOD and protein expression of NF-κBp65 decreased significantly,the mRNA level of IL-1β,TNF-αand IL-6 were down-regulated,the MOD and protein expression of p-CREB were elevated,the MOD,protein expression and mRNA level of AQP5 increased.
     6.The protein expression of MUC5AC or MUC5B in group M increased significantly compared with group C,but decreased after the treatment with PDTC(100mg/kg/d and 50mg/kg/d) for 1d,3d or 5d.After the treatment with H89 (5mg/kg/d)for 1d,3d or 5d, The protein expression of MUC5AC and MUC5B protein expression increased significantly,while they decreased in a time-dependent manner after the treatment with forskolin(5mg/kg/d) for ld,3d or 5d.
     Conclusions
     1.Rat nasal epithelial cells with high purity of more 95% were cultured by differential adherence and defined culture medium.
     2.The cAMP-PKA pathway is involved in the regulation of AQP5 in rat nasal epithelial cells by phosphorylating CREB at serine 133.
     3.The model with allergic rhinitis can be successfully established by general and local sensitization with OVA.
     4.The NF-κB pathway can down-regulate the expression of AQP5 by inhibiting CREB phosphorylation at serine 133 or by competitive binding to CBP with p-CREB(Serl33).
     5.The NF-κB pathway can up-regulate the protein expression of the MUC5AC and MUC5B,which maybe be involved in the hyper-secretion of AR, and the decrease of AQP5 results in the clearance dysfunction of the secretions,which promotes the hyper-secretion of AR
     6.The cAMP-PKA pathway can inhibit the NF-κB pathway.
引文
1.Cagnani CE,Sole D,Diaz SN,et al.Allergic rhinitis update and its impact on asthma (ARIA 2008).Latin American perspective[J].Rev Alerg Mex.2009;5(2)6:56-63
    2. Weber RW.Allergic Rhinitis[J].Prim Care.2008; 35(1):1-10.
    3.Sakashita M,Hirota T,Harada M,et al.Prevalence of Allergic Rhinitis and Sensitization to Common Aeroallergens in a Japanese Population[J].In Arch Allergy Immunol.2010;151(3):255-261.
    4.张罗,周兵,韩德民.第20界欧洲鼻科学会暨第23届世界鼻部感染和变态反应论坛的专题研讨会侧记[J].中华耳鼻咽喉科杂志.2004;39(12):673-764.
    5.于斌刘杰.变应性鼻炎和哮喘相关性研究的进展[J].中国中西医结合耳鼻咽喉科杂志.2008;16(5):395-397.
    6.LI Jing, WANG Hong-yu, ZHANG Chun-qing,et al. Medical progress Links between allergic rhinitis and asthma[J].Chin Med J.2006; 119(8):676-683.
    7.Worldtealth Organization(WHO).Allergic rhinitis and its impact on asthma (ARIA) [J].J Allergy Clin Im mLt001.2001.108(suppl15):147-336.
    8.Song YL, Jayaraman S, Yang BX. Role of aquaporin water channels in airway fluid transport,humidification,and surface liquid hydration[J].J Gen Physiol. 2001;117(6):573-582.
    9.Boucher RC. Molecular insights into the physiology of the "thin film" of airway surface liquid[J].J Physiol,1999,516(3):631-638.
    10.25.King LS, Yasui M.Aquaporins and disease: lessons from mice to humans [J]. Trends EndocrinolMetab.2002; 13(8):355-360.
    11.Lei F, Zhao XD, Zhu JG, Zhao D, Dong Z,et al.Expression and its significance of aquaporin 5 in rat nasal mucosa of experimental allergic rhinitis [J].Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi.2005;40(3):172-175.
    12.Wan F,Lenardo MJ.The nuclear signaling of NF-kappaB:current knowledge, new insights, and future perspectives[J].Cell Res.2010; 20(l):24-33.
    13.Kumar A,Takada Y,Boriek AM,Aggarwal BB.Nuclear factor-kappaB:its role in health and disease[J].J Mol Med.2004;82(7):434-448.
    14.鄂征,徐新来,李吉有.组织培养技术及其在医学研究中的应用[M].2版.北京:北京出版社,1997:54-113.
    15.王丰,苏振伦,黄靖香等.鼻粘膜呼吸区上皮细胞原代培养模型的建立和纤毛运动频率的测量[J].临床耳鼻咽喉科杂志.2000;14(8):370-372.
    16.Kim J,Myers AC,Chen L,et al.Constitutive and inducible expression of B7 family of ligands by human airway epithelial cells[J].Am J Respir Cell Mol Biol.2005;33(3): 280-289.
    17.彭丽花,秦晓群.气道上皮细胞的抗原递呈作用[J].国际呼吸杂志.2007;27(12):956-959.
    18.秦晓群,孙秀泓.气道上皮细胞与局部微环境的相互作用[J].国外医学.生理病理科学与临床分册.1999;19(5):332-335.
    19.Guo FH, De-Raeve HR, Rice TW, et al, Continuous nitric oxide synthesis by inducible nitric oxide synthase in no rmal human airw ay ep ithelium in vivo[J]. Proc Nat lA cad Sci USA.1995,92(17):7809-7813.
    20.Yankaskas J R. The airway epithelial cell. In:Ann Harris, ed. Epithelial cell culture[J].U K:Cambridge University Press,1996.5-24.
    21.王振霖,张秋航,李源,等.人鼻黏膜上皮细胞2种原代体外培养方案的比较研究.临床耳鼻咽喉头颈外科杂志.2008;22(17):776-779.
    22.王奎吉,张罗,韩德民,等.呼吸道纤毛上皮细胞的组织块法培养[J].中国耳鼻咽喉头颈部外科.2006;13(12):833-836.
    23.王丰.鼻粘膜组织培养[J].国外医学耳鼻咽喉科学分册.1999;23(2):83-86.
    24.Schierhorn K,Brunnee T,Paus R,et al.Gelatin sponge-supported histoculture of human nasal mucosa.In vitro cell Dev BioI,1995;31:215-220.
    25.廖伟,钱桂生,雷撼,等.人气道上皮细胞的体外原代培养研究[J].解放军医学杂志.2007;32(6):565-567.
    26.Wu R, Yankaskas J, Cheng E, Knowles MR, Boucher R. Growth and differentiation of human nasal epithelial cells in culture. Serum-free, hormone-supplemented medium and proteoglycan synthesis[J].Am Rev Respir Dis. 1985;132(2):311-320.
    27.Radi ZA,Ackermann MR.Growth of differentiated ovine tracheal epithelial cells in vitro[J].J Vet Med A Physiol Pathol Clin Med.2004;51(4):167.
    28.石艳清,陈晓春cAMP反应元件结合蛋白磷酸化参与学习记忆过程的分子机制[J].福建医科大学学报.2008;42(1)85-87.
    29.Parker D,Ferreri K,Nakajima T,et al.Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism[J].Mol Cell Biol 16(2):694-703.
    30.Denker BM, Smith BL, Kuhaida FP, et al. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules[J].J Bio Chem.l988;263(30):15634-15642.
    31.Preston GM,Agre P.Isolation of the cDNAfor eythrocyte intergral membrane protein of 28 kilodoltons:member of an ancient channel family[J].Proc Natl Sci USA.1991,88(24):11110-11114.
    32. Preston GM,Carroll TP,Guno WB,et al.Appearance of water channels in xenopus oocytes expressing red cell CHIP28 protein [J].Science.1992;256(5055):385-387. 33.Oshibashi K,Hara S,Kondo S.Aquaporin water channels in mammals[J].Clin Exp Nephrol 13(2):107-117.
    34.King LS,Yasui M. Aquaporins and disease:lessons from mice to humans[J].Trends Endocrinol Metab.2002;13(8):355-360.
    35.Connolly DL,Shanahan CM,Weissberg PL.The aquaporin.A family of water channel protein[J].Int J Biochem Cell Biol.1998;30(2):169-173.
    36.Agre P,King LS,Yasui M,et al.Aquaporin water channels from atomic structure to clinical medicine[J].J Physiol.2002;542 (Pt 1):3-16.
    37.Takata K,Matsuzaki T,Tajika Y.Aquaporins:water channel proteins of the cell membrane [J].Prog Histochem Cytochem.2004;39(1):1-83.
    38.Morishita Y,Sakube Y,Sasaki S,et al.Molecular mechanisms and drug development in aquaporin water channel diseases:aquaporin superfamily (superaquaporins): expansion of aquaporins restricted to multicellular organisms [J].J Pharmacol Sci.2004;96(3):276-279.
    39.Verkman AS.Novel roles of aquaporins revealed by phenotype analysis of knockout mice [J]. Rev Physiol Biochem Pharmacol.2005;155:31-55.
    40.Funaki, Haruko, Tadashi Yamamoto, et al. Localization and expression of AQP5 in cornea,serous salivary glands, and pulmonary epithelial cells[J].Am J Physiol Cell Physiol.1998;275 (4 Pt 1):1151-1157.
    41.Nahid Parvin,Shingo Kurabuchi,et al. Subcellular redistribution of AQP5 by vasoactive intestinal polypeptide in the Brunner's gland of the rat duodenum[J]. Am J Physiol Gastrointest Liver Physiol.2005;288(6):G1283-1291.
    42.Sutherland EW,Rall TW. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles[J].J Biol Chem.1958;232(2):1077-91.
    43.张志龙,费剑春cAMP信使系统和全麻机制[J].《国外医学》麻醉学与复苏分册.2001;22(5):260-260.
    44.窦爱霞,童建华cAMP信号途径和基因表达调控[J].上海第二医科大学学报.2004;24(12):1070-1073.
    45.Sidhaye V, Hoffert JD, King LS.cAMP Has Distinct Acute and Chronic Effects on Aquaporin-5 in Lung Epithelial Cells[J].J Biol Chem.2005;280(5):3590-3596.
    46.Nahid Parvin,Shingo Kurabuchi,et al. Subcellular redistribution of AQP5 by vasoactive intestinal polypeptide in the Brunner's gland of the rat duodenum[J]. Am J Physiol Gastrointest Liver Physiol.2005;288(6):G1283-1291.
    47.Woo J,Chae YK,Jang SJ,et al.Membrane trafficking of AQP5 and cAMP dependent phosphorylation in bronchial epithelium[J].Biochemical and Biophysical Research Communications.2008;366(2):291-298.
    48.Montminy MR,Sevarino KA, Wagner JA,et al.Identification of a cyclic-AMP-responsive element within the rat somatostatin gene[J].Proc Natl Acad Sci U S A.1986;83(18):6682-6686.
    49.庞飒,龚兴国.细胞内信号分子传导的研究进展[J].生物化学与生物物理进展.2000;27(1):24-28.
    50.Gao Y, Gao G, Long Cx,et al.Enhanced phosphorylation of cyclic AMP response element binding protein in the brain of mice following repetitive hypoxic exposureal[J]. Biochemical and Biophysical Research Communications.2006;340(2); 661-667.
    51.Krane CM,Towne JE,Menon AG..Cloning and characterization of murine Aqp5: evidence for a conserved aquaporin gene cluster[J].Mamm Genome.1999; 10 (5):498-505.
    52.赵秀杰,董霞,杨占泉,等.鼻超敏反应实验模型的建立[J].中华耳鼻咽喉科杂志.1993;28(1):17.
    53. Sarlo K, Karol MH. Guinea pig predictive tests for respiratory allergy. In:Dean JH, Luster MI, Munson AE, Kimber I, editors. Immunotoxicology and Sarlo K, Karol MH. Guinea pig predictive tests for respiratory allergy.In:Dean JH,Luster MI,Munson AE,Kimber I, editors [M]. Immunotoxicology and immunopharmacology.2nd ed. New York:Raven Press; 1994, p703-720.
    54.Briatico-Vangosa C, Braun CJL, Cookman G, et al. Review. Respiratory allergy: hazard identification and risk assessment[J]. Fundam Appl Toxicol.1994,23(2): 145-158.
    55. Karol MH. Animal models of occupational asthma[J].Eur Respir J.1994;7: 555-568.
    56.颜晓燕,童志远.哮喘动物模型研究现状.成都医学院学报[J].2007;2(2):156-159.
    57.杨瑞嘉,黄志纯.变应性鼻炎动物模型的建立及评价[J].国际耳鼻咽喉头颈部外科杂志.2007;31(2):8.
    58.Selgrade MK, Zeiss CR, Karol MH, et al. Workshop on status of test methods for assessing potential of chemicals to induce respiratory allergic reactions[J]. Inhal Toxicol.1994,6:303-319.
    59.Tanaka K, Okamoto Y, Nagaya Y, A nasal allergy model developed in the guinea pig by intranasal application of 2,4-toluene diisocyanate[J]. Int Arch Allergy Appl Immunol.1988,85(4):392-397.
    60.Fan EZ,Xi L,Han DM,Zhang SZ,Li Y,Zhang L.Evaluation of the safety of aluminium adjuvant in the preparation of allergic rhinitis animal model[J].Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi.2009;44(8):664-668.
    61.雷霏,赵小冬,朱建国.实验性变应性鼻炎大鼠鼻黏膜水通道蛋白5的表达及意义[J].中华耳鼻咽喉头颈外科杂志.2005;40(3):172-175.
    62.李兆申,詹丽杏,邹多武,等.腹腔注射卵清白蛋白致大鼠内脏高敏感的研究[J].第二军医大学学报.2003;24(2):127-130.
    63.杨瑞嘉,黄志纯.变应性鼻炎动物模型的建立及评价[J].国际耳鼻咽喉头颈部外科杂志.2007;31(2):8.
    64.Pretolani M,Vargaftig BB.From lung hypersensitivity to bronchial hyperreactivity. What can we learn from studies on animal models?[J].Biochem Pharmacol 1993, 45(4):791-800.
    65.吴革平,章如新,温武,等.地塞米松对实验性变应性鼻炎动物血清IgE、IL-4和IL-17含量影响的实验研究[J].中国中西医结合耳鼻喉科杂志.2006;14(2):69-72.
    66.Song Y,Verkman AS.Aquauaporin-5 dependent fluid secretion in airway submucosal glands[J].J Biol Chem.2001; 276(44):41288-41292.
    67.Edward M Chana, Rebecca J Chan, Elisha M. Comer,et al.MOZ and MOZ-CBP cooperate with NF-kB to activate transcription from NF-kB-dependent promoters[J]. Experimental Hematology.2007;35(12):1782-1792.
    68.Sharma N,Lopez DI,Nyborg JK.DNA Binding and Phosphorylation Induce Conformational Alterations in the Kinase-inducible Domain of CREB[J].J Biol Chem..2007;282(27):19872-19883.
    69.Haglund K,Dikic I.Ubiquitylation and cell signaling[J].EMBO J.2005; 24(19):3353-3359.
    70.Hayden MS,Ghosh S.Signaling to NF-kappaB[J]. Gens Dev.2004;18(18): 2195-2224.
    71.Abraham E.NF-kappaB activation[J].Crit Care Med.2000;2828(4 Suppl):N100-104.
    72.Pahl H L.Activators and target genes of Rel/NF-κB transcription[J].Oncogene 1999; 18(49):6853-6866.
    73.王天生,孙虹,陈江波,等.鼻息肉中MMP-9和NF-κB的表达研究.中国耳鼻咽喉颅底外科杂志[J].2004;10(2):80-82.
    74.王卫华,安云芳,赵长青.变应性鼻炎对小鼠鼻黏膜核因子-KB p65和糖皮质激素受体表达的影响[J].中国中西医结合耳鼻咽喉科杂志.2009;17(1):4-9.
    75.Fung SM,Ramsay G,Katzen AL.MYB and CBP:physiological relevance of a biochemical interaction[J].Mech Dev2003;120(6):711-720.
    76.Shenkar R,Yum HK,Arcaroli J,Kupfner J,Abraham E (2001) Interactions between CBP, NF-kappaB, and CREB in the lungs after hemorrhage and endotoxemia[J].Am J Physiol Lung Cell Mol Physiol.2001:281(2):L418-426.
    77.Sheppard KA,Rose DW,Haque ZK,et al.Transcriptional activation by NF-kappaB requires multiple coactivators[J].Mol Cell Biol.1999;19(9):6367-6378.
    78.Janknecht R,Hunter T.Transcription.A growing coactivator network [J].Nature. 1996;383(6595):22-23.
    79.Zhong H,Voll RE,Ghosh S.Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300[J].Mol Cell.1998;1(5):661-671.
    80.Sheppard KA,Rose DW,Haque ZK,et al.Transcriptional activation by NF-kappaB requires multiple coactivators[J].Mol Cell Biol.1999;19(9):6367-6378.
    81.Moine P, Mclntyre R, Schwartz MD, et al. NF-κB regulatory mechanis in alveolar macrophages from patients with acute respiratory distress syndrome[J]. Shock, 2000;13(2):85-91.
    82.Li J,Luo L,Wang X,Liao B,Li G..Inhibition of NF-kappaB expression and allergen-induced airway inflammation in a mouse allergic asthma model by andrographolide[J].Cell Mol Immunol.2009;6(5):381-385.
    83.Zhou LF,Zhu Y,Cui XF,et al.Arsenic trioxide,a potent inhibitor of NF-κB,abrogates allergen-induced airway hyperresponsiveness and inflammation[J].Respir Res.2006; 7(1):146.
    84.Jambal P,Masterson S,Nesterova A,et al.Cytokine-mediated Down-regulation of the Transcription Factor cAMP-response Element-binding Protein in Pancreatic beta-cells[J].J Biol Chem.2003; 278(25):23055-23065.
    85.Lahiri T,Moore PE,Baraldo S,et al.Effect of IL-1 on CRE-dependent gene expression in human airway smooth muscle cells[J].Am J Physiol Lung Cell Mol Physiol.2002; 283(6):L1239-1246.
    86.Towne JE,Krane CM,Bachurski CJ,et al.Tumor Necrosis Factor-a Inhibits Aquaporin 5 Expression in Mouse Lung Epithelial Cells[J].J Biol Chem.2001; 276(22):18657-64.
    87.Ginsberg HS,Moldawer LL,Sehgal PB,et al.A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia[J].Proc Natl Acad Sci USA.1991; 88(5):1651-5.
    88.Towne JE,Harrod KS,Krane CM, et al.Decreased expression of aquaporin (AQP)1 and AQP5 in mouse lung after acute viral infection[J].Am J Respir Cell Mol Biol. 2000;22(1):34-44.
    89.OrdonezCL, KhashayaR, Wong HH,et al.Mild and moderate asthma is associated with airway goblet cell metaplasia and abnonmlities in mucin gene expression[J].Am J Respir Crit Care Med,2001;163:517:523.
    90.Shsnm P,Dudus L,Nielsen PA,et al.MUC5B and MUC7 are diferentially Expression in mucous and serous cells of submucosal glands in human bronchial airways[J].Am J Respir cellMol Biol.1998; 19(1):30-37.
    91.丁国强,郑春泉MUC5AC和MUC5 B在慢性鼻窦炎病变黏膜中的表达与分布研究[J].中国眼耳鼻喉科杂志.2006;6(4):217-222.
    92.陈淑靖,白春学.气道黏液中黏蛋白MUCSAC的研究进展[J].中华结核和呼吸杂志.2007:30(6):461-463.
    93.Adler KB,Li Y.Airway epithelium and mucus intracellular signaling pathways for gene expression and secretion[J].Am J Respir Cell Mol Biol.2001,25(4):397-400
    94.Che R,Lim JH,Jono H,et al.Nontypeable Haemophilus inflyenzae lipoprotein P6 induces MUC5AC mucin transcription via TLR2-TAK1-dependent p38 MAPK-API and IKKbeta-IkappaBalpha-NF-kappa B signaling pathway [J].Biochem Biophys Res Commun.2007;324:1087-1094.
    95.徐传芹,朱述阳,陈景行,等.罗格列酮对哮喘小鼠气道黏液高分泌的影响[J].实用医学杂志.2008;24(22):3836-3839.
    96.刘剑波,张珍祥,徐永健.地塞米松对哮喘小鼠肺组织Muc5ac mRNA和蛋白表达的影响[J].郑州大学学报(医学版).2004;39(4):610-612.
    97.龙小博,甄宏韬,等.布地奈德对变应性鼻炎鼻黏膜黏蛋白MUC5AC和MUC5B表达的影响[J].华中科技大学学报(医学版).2007;36(5):648-647.
    98.Louahed J,Toda M,Jen J,et al.Interleukin-9 upregulates mucus expression in the airway.Am J Respir Cell Mol Biol.2000;22(6):649-656.
    99.Longphre M,Li D,Gallup M,et al.Allergen induced IL-9 directly stimulates mucin transcription in respiratory epithelial cells.J Clin Invest.1999;104(10):13754-1382.
    100.Temann UA,Prasad B,Gallup M W,et al.A noval role for murine IL-4 in vivo:induction of MUC5AC gene expression and mucin hypersecretion.Am J Respir Cell Mol Biol.997;16(4):471-478.
    101.Busse PJ,Zhang TF,Srivastava K,et al.Chronic exposure to TNF-alpha increases airway mucus gene expression in vivo.J Allergy Clin Immunol[J].2005;116(6):1256-1263.
    102.96.Kirkham S,Sheehan JK,Knisht D,et al.Heterogeneity of airways mucus:variations in the amounts and glyeoforms of the major oligomeric mucins MUC5AC and MUC5B[J].Biochem J.2002;361(Pt3):537-546.
    103.Baeuerle PA,Baichwal VR.NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules[J].Adv Immunol.1977;65: 111-137.
    104.Baldwin AS Jr.The NF-kappa B and I kappa B proteins:new discoveries and insights[J].Annu Rev Immunol.1996;14:649-683.
    105.Ghosh S,May MJ,Kopp EB.NF-kappa B and Rel proteins:evolutionarily conserved mediators of immune responses[J].Annu Rev Immunol.1998; 16:225-260.
    106.Okamoto T,Sakurada S,Yang JP,et al.Regulation of NF-kappa B and disease control:identification of a novel serine kinase and thioredoxin as effectors for signal transduction pathway for NF-kappa B activation[J].Curr Top Cell Regul.1997;35: 149-161.
    107.Mercurio F,Manning AM.Multiple signals converging on NF-kappaB[J].Curr Opin Cell Biol.1999;11(2):226-232.
    108.Zandi E,Karin M.Bridging the gap:composition,regulation,and physiological function of the IkappaB kinase complex[J].Mol Cell Biol.1999; 19(7):4547-4551.
    109.Takahashi N,Tetsuka T,Uranishi H,et al.Inhibition of the NF-kappaB transcriptional activity by protein kinase A[J].Eur J Biochem.2002:269(18):4559-4565.
    110.De Cesare D,Fimia GM,Sassone-Corsi P.Signaling routes to CREM and CREB: plasticity in transcriptional activation[J].Trends Biochem.Sci.1999;24(7),281-285.
    111.Taffet SM,Singhel KJ,Overholtzer JF,et al.Regulation of tumor necrosis factor expression in a macrophage-like cell line by lipopolysaccharide and cyclic AMP[J].CellImmunol.1989;120(2):291-300.
    112.Crutchley DJ,Hirsh MJ.The stable prostacyclin analog, iloprost, and prostaglandin E1 inhibit monocyte procoagulant activity in vitro[J].Blood.1991;78(2): 382-386.
    113.Crutchley DJ,Solomon DE,Conanan LB.Prostacyclin analogues inhibit tissue factor expression in the human monocytic cell line THP-1 via a cyclic AMP-dependent mechanism[J].Arterioscle Thromb.1992;12(6):664-670.
    114.De Prost D,Ollivier V,Hakim J.Pentoxifylline inhibition of procoagulant activity generated by activated mononuclear phagocytes[J].Mol Pharmacol.1990;38(4):562-566.
    115.Ollivier V,Houssaye S,Ternisien C, et al.Endotoxin-induced tissue factor messenger RNA in human monocytes is negatively regulated by a cyclic AMP-dependent mechanism[J].Blood.1993;81 (4):973-979.
    116.Ghersa P,Hooft van Huijsduijnen R,Whelan J, et al.Inhibition of E-selectin gene transcription through a cAMP-dependent protein kinase pathway[J].J Biol Chem.1994; 269(46):29129-29137.
    117.Pober JS,Slowik, MR, De Luca LG, et al.Elevated cyclic AMP inhibits endothelial cell synthesis and expression of TNF-induced endothelial leukocyte adhesion molecule-1, and vascular cell adhesion molecule-1, but not intercellular adhesion molecule-1[J].J Immunol.1993;150(11):5114-5123.
    1.Dender BM,Smith BL,Kuhajda FP,et alIdentification.purification and partial characterization of a novel Mr 28000 integralmembrane protein from erythrocytes and renal tubules[J].J Biol Chem.l988;263 (30):15634-42.
    2.Agre P,Sasaki S,Chrispeels MJ.Aquaporins:a family of water channel proteins[J].American Journal of Physiology-Renal Physiology.1993;265 (3):F461.
    3.Itoh T, Rai T, Kuwahara M,Ko SB,et al.Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells[J].Biochem Biophys Res Commun.2005;330(3): 832-838.
    4. Morishita Y,Ishibashi K,Ando Y,Muto S,Sasaki S,Kusano E.Neonatal mortality of aquaporin 11 knockout mice:a novel model for autosomal recessive polycystic kidney disease[R].ASN Annual Meeting,San Diego,2003.
    5.Raina S, Preston GM, Guggino WB, Agre P. Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues[J].J Biol Chem.1995;270(4):1908-1912.
    6.Hamann S, Zeuthen T,La Cour M, Nagelhus EA,Ottersen OP et al.Aquaporins in complex tissues:distribution of aquaporins 1-5 in human and rat eye[J].Am J Physiol.1998;274 (5 Pt 1):C1332-C1345
    7.张景熙,李强,刘忠令.AQP5的结构功能及其调节[J].国外医学.生理、病理科学与临床分册.2003;23(6):559-601.
    8. Krone AM,Fortoel CN,Hand A,et al.Aquaporin 5-deficien mouse lungs are hyperresponsive to cholinergic stimulation[J].Proc Natl Acad Sci USA.2001;98(25): 14114-14119.
    9.路炜,漆洪波.水通道蛋白调节的研究进展.国外医学妇幼保健分册.2005;16(1):43.
    lO.Morishita Y,Sakube Y,Sasaki S,et al.Molecular mechanisms and drug development in aquaporin water channel diseases:aquaporin superfamily(superaquaporins): expansion of aquaporins restricted to multiceilular organisms[J].Journal of PharmacologicalSciences.2004,96(3):276-279.
    11. Kozono D,Yasui M,King LS,et al.Aquaporin water channels:atomic structure molecular dynamics meet clinical medicine[J].J Clin Invest.2002;109(11):1395-1399.
    12.Krane CM,Towne JE,Menon AG.Cloning and characterization of murine aqp5:evidence for a conserved aquaporin gene cluster[J].Mamm Genuine,1999,10(5): 498-505.
    13.King LS,Agre P.Pathophysiology of the aquaporin water channels[J].Annu Rev Physiol.1996;58:619-48.
    14.Yang F,Kawedia JD,Menon AGCyclic AMP regulates aquaporin 5 expression At both transcriptional and post-transcriptional levels through a protein kinaseA pathway[J].J Biol Chem.2003,278(34):32173-32180.
    15.Sidhaye V,Hoffert JD,King LS.cAMP Has Distinct Acute and Chronic Effects on Aquaporin-5 in Lung Epithelial Cells[J].J Biol Chem.2005;280(5):3590-3596.
    16.Parvin MN, Kurabuchi S, Murdiastuti K,et al.Subcellular redistribution of AQP5 by vasoactive intestinal polypeptide in the Brunner's gland of the rat duodenum[J].Am J Physiol Gastrointest Liver Physiol.2005;288(6):G1283-91.
    17.Hoffert JD, Leitch V,Agre P,at el.Hypertonic induction of aquaporin-5 expression through an ERK-dependent pathway[J].J Biol Chem.2000;24;275(12):9070-9077.
    18.Ben Y,Chen J, Zhu R, et al.Upregulation of AQP3 and AQP5 induced by dexamethasone and ambroxol in A549 cells[J].Respir Physiol Neurobiol.2008; 161(2):111-118.
    19.Towne JE,Krane CM,Bachurski CJ,et al.Tumor Necrosis Factor-a Inhibits Aquaporin 5 Expression in Mouse Lung Epithelial Cells[J].J Biol Chem.2001; 276(22):18657-64.
    20.Ginsberg HS,Moldawer LL,Sehgal PB,et al.A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia[J].Proc Natl Acad Sci USA.1991; 88(5):1651-5.
    21.Towne JE,Harrod KS,Krane CM, et al.Decreased expression of aquaporin (AQP)1 and AQP5 in mouse lung after acute viral infection[J].Am J Respir Cell Mol Biol. 2000;22(1):34-44.
    22.Ishikawa Y,Eguchi T,Skowronski MT,et al.Acetylcholine acts on M3 muscarinic receptors an d induces the translecation of aquaporin 5 water channel via cytosolic Ca elevation in rat parotid glands[J].Biochem Biophys Res Commun.1998;245(3):835-840.
    23.Tsubeta K,Hirai S,King LS,et al.Defective cellular trafficking of lacrimal gland aquaporin-5 in Sjagren's Syndrome[J].Lancet,2001,357(9257):688-689.
    24. Lshikawa Y,EguchiT,Skowronski MT,et al.Aeetylcholine Acts on M3 Muscarinic Receptors and Induces the Translocation of aquaporin Water Channel via Cytosolic Ca2/Elevation in RatParotid Glands[J].Biochem BioPhy Resea Commu.1998;245(3): 835-840.
    25.Verkman AS.Role of aquaporin water channels in eye function[J].Exp Eye Res.76(2):137-43.
    26.Rain S,Preston GM,Guggino WB,et al.Molecular cloning and characterization of an aquaporin cDNA from salivary,lacrimal,and respiratory tissues[J].J Biol Chem.1995; 270(4):1908-1912.
    27.Kreda SM,Gynn MC,Fenstermaeher DA,et al.Expression and localization of epithelial aquaporins in the adult human lung. Am J Respir Cell Mol Biol.2001;24:224-234.
    28.Yang F,Kawedia JD,Menon AG(2003) Cyclic AMP regulates aquaporin 5 expression At both transcriptional and post-transcriptional levels through a protein kinaseA pathway[J].J Biol Chem.2003;278(34):32173-32180.
    29.Parvin MN,Tsuulura K,Akamatsu T,et al.Expression and localization of AQP5 in the stomach and duodenum of the rat[J].Bio-chem Biophys Acta.2002;1542(1-3): 116-124.
    30.杨美,孙善全,汪克建,等.水通道蛋白5在大鼠大脑组织中的分布及表达[J].解剖 学杂志;2008;31(1):5-7.
    31.Kreda SM,Gynn MC,Fenstermacher DA,et al.Expression and localization of epithelial aquaporins in the adult human lung[J].Am J Respir Cell Mol Biol.2001; 24(3):224-234.
    32.雷霏,赵小冬,朱建国.实验性变应性鼻炎大鼠鼻黏膜水通道蛋白5的表达及意义[J].2005;40(3):172-175.
    33.Krane CM,Fortner CN,Hand AR,et al.Aquaporin 5-deficient mouse lungs are hyperresponsive to cholinergic stimulation[J].Proc Natl Acad Sci USA;2001;98(24): 14114-14119.
    34.吴葆菁,朱军,檀卫平,等.地塞米松对急性过敏性哮喘小鼠肺AQP5表达的影响[J].南方医科大学学报.2008;28(9):1670-1673.
    35.王可,冯玉麟,文富强,等.慢性阻塞性肺疾病患者气道上皮水通道5的表达与黏液高分泌[J].中国呼吸与危重监护杂志.2006;5(5):357-361.
    36.Jiao QLi E,Yu R.Decreased expression of AQP1 and AQP5 in acute injured lungs in rats[J].Chinese Medical Journal.2002;115(7):963-7.
    37.Towne JE,Harrod KS,Krane CM,et al.Decreased expression of aquaporin (AQP)l and AQP5 in mouse lung after acute viral infection[J].American Journal of Respiratory Cell and Molecular Biology. Am J. Respir Cell Mol;22(1):34-44.
    38.任丽.缺血性脑水肿的病理生理研究进展[J].国外医学神经病学神经外科学分册.2003;30(5):423-427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700