Toll样受体2在脓毒症所致心功能障碍及高致死率中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:脓毒症(sepsis)是在感染情况下发生的全身性免疫反应综合征(systemic inflammatory response syndrome, SIRS),致死率逐年增加,目前认为其发生的根本原因在于机体过度释放细胞因子和炎性介质导致炎症反应失控和免疫机能紊乱。Toll样受体是一类表达于细胞膜上与细胞识别有关的受体家族,作为天然免疫的重要组成部分,Toll样受体是抵御外来微生物感染的第一道防线,并与心脏疾病的发生发展密切相关。心功能障碍是严重感染性脓毒症的主要特征之一,早期诊断脓毒症所致心功能障碍对控制疾病,防止病情恶化有重要意义。应变率(strain rate, SR)成像是近年来超声领域发展的新技术,能较敏感的检测细微心肌收缩力变化。由于脓毒症所致心肌功能障碍的评价及其潜在的信号转导机制尚不完全明确,故本研究旨在验证以下假设:1)应变率成像能够敏感、准确的评价小鼠腹膜炎感染所致脓毒症心肌功能障碍;2)Toll样受体2(Toll-like receptor 2,TLR2)在脓毒症所致心功能障碍、全身炎症反应及高致死率中起关键作用;3)补体因子B是TLRs信号通路下游潜在的关键效应分子。
     研究方法及结果:本研究应用盲肠结扎穿孔术(cecum ligation and puncture, CLP)诱导小鼠腹膜炎感染所致脓毒症模型,从不同角度1)在体超声心动图;2)离体心脏灌流;及3)心肌细胞水平,全面评价脓毒症所致心功能障碍。与传统超声心动图指标左室短轴缩短率(fractionshortening, FS)相比,心肌应变率分析能更敏感的检测脓毒症所致细微心肌功能的改变。通过对脓毒症心功能及死亡率的观察,本研究发现TLR2基因敲除(TLR2 KO)小鼠的心功能与野生型(wide type, WT)小鼠相比明显改善,其生存率也明显提高。进一步检测血清中炎症因子产生及腹腔中性粒细胞迁移功能,本研究发现TLR2KO小鼠血清IL-6、TNFα水平明显降低,中性粒细胞迁移至感染灶的功能增强,推测与其心功能受损的减轻,生存率改善有一定关系。为了研究骨髓和实质脏器组织表达的TLR2对脓毒症引起的心功能紊乱的作用,本研究构建了嵌合体小鼠。将TLR2KO小鼠骨髓细胞移植到经致死量放射线照射后的WT小鼠体内构建嵌合体KO→WT小鼠,嵌合体小鼠心脏及其它实质性脏器基因型中存在TLR2基因的表达而骨髓细胞来源的造血细胞如中性粒细胞、巨噬细胞等则无TLR2基因的表达。本研究发现在脓毒症所致心功能损伤,炎症因子产生,中性粒细胞迁移及生存率改善方面,嵌合体KO→WT小鼠与对照组WT→WT相比并无明显优势。此外本研究还发现脓毒症条件下,或激动剂激活TLR2信号通路均可上调补体替代途径中的关键因子---补体因子B在心脏组织及血清中的表达。
     结论:以上研究结果提示:1)心肌应变率(SR)分析能早期敏感的评价脓毒症所致心肌功能障碍,为评价小鼠脓毒症所致心功能障碍提供简单、无创的评价方法;2)TLR2信号通路的激活,尤其是心脏及其它实质性脏器中的TLR2信号通路,在介导小鼠脓毒症模型诱导的心功能障碍、全身炎症反应及高致死率中起重要作用;3)补体因子B是TLR2介导的脓毒症所致心功能障碍下游潜在的关键效应分子。
Objectives:Sepsis is a systemic inflammatory response syndrome that occurs during infection and its induced mortality increased annually. To date, the pathophysiology of sepsis is considered to be the over activation of amounts of cytokine production and immune maladjustment. Toll-like receptors (TLRs) family are Pattern-recognition receptors (PRRs) initiate innate immunity through pathogen recognition, playing an important role in innate immunity, reflecting the first line of host defense against pathogen invasion. Recently, TLRs were demonstrated to be related to the development of cardiac disease. Strain rate (SR) imaging is a new developed technique which had been widely used to assess the ventricular contractility in cardiac resynchronization therapy patients. However little study about its use in detection of sepsis induced cardiac dysfunction in mouse model. Septic cardiomyopathy is a main feature of severe sepsis and contributes to its high mortality. Yet our understanding of the signaling mechanisms leading to septic cardiomyopathy is incomplete. The present study was to test the hypotheses that 1) Strain rate derived from Tissue Doppler Imaging can sensitively assess septic cardiac dysfunction in mouse model.2) Toll-like receptor 2 (TLR2) signaling is critical for cardiac dysfunction and high mortality in mice with severe polymicrobial sepsis.3) Complement factor B (cfB) is a critical downstream effector molecular of TLRs.
     Methods and Results:Cucem ligation and puncture (CLP) method was used to induce experimental polymicrobial sepsis in mice.24hours after CLP surgery, all mice were represented with cardiac dysfunction assessed by in vivo echocardiography---strain rate analysis, ex vivo isolated heart functional measurement and in vitro sarcomere shortening detection in adult mouse cardiomyocyte. Strain rate was identified as a sensitive method to evaluate CLP induced cardiac dysfunction. Compared to wild type (WT) mice subjected to sepsis, TLR2-/- mice had dramatically improved cardiac function after sepsis as demonstrated by in vivo serial echocardiography, better preserved left ventricular (LV) function in isolated heart, and improved sarcomere shortening in adult cardiomyocytes. There was also a significant survival benefit in TLR2-/-mice compared to WT mice. These favorable outcomes in TLR2-/-mice were associated with attenuated serum IL-6 and TNFa levels and enhanced neutrophil migratory function. The chimeric KO→WT mice, which completely lacked TLR2 gene expression by their bone marrow-derived hematopoietic cells but maintained normal TLR2 expression in the heart and other parenchymal tissues, were not protected from septic injury, exhibiting similar cytokine production, impairment of cardiac function, and mortality compared with the chimeric WT→WT control mice. Finally, the preliminary data suggest that complement factor B, a key component of alternative pathway, was significantly increase in the heart and in plasma in response to TLR2 activation and during polymicrobial sepsis.
     Conclusions:These studies suggest that:1) Strain rate was a sensitive and noninvasive method to assess CLP induced septic cardiomyopathy in mouse.2) TLR2 signaling, most likely that of the heart and other parenchymal tissues, plays a critical role in mediating cardiomyopathy, deleterious inflammation, and high mortality during polymicrobial sepsis. 3) cfB is likely a downstream effector of the TLR2-mediated cardiac dysfunction during polymicrobial sepsis.
引文
1. Angus, D.C., Linde-Zwirble, W.T., Lidicker, J., Clermont, G, Carcillo, J., and Pinsky, M.R.2001. Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303-1310.
    2. Hotchkiss, R.S., and Karl, I.E.2003. The pathophysiology and treatment of sepsis. N Engl J Med 348:138-150.
    3. Parrillo, J.E.1993. Pathogenetic mechanisms of septic shock. N Engl J Med 328:1471-1477.
    4. Flierl, M.A., Rittirsch, D., Huber-Lang, M.S., Sarma, J.V., and Ward, P.A.2008. Molecular events in the cardiomyopathy of sepsis. Mol Med 14:327-336.
    5. Alves-Filho, J.C., Freitas, A., Souto, F.O., Spiller, F., Paula-Neto, H., Silva, J.S., Gazzinelli, R.T., Teixeira, M.M., Ferreira, S.H., and Cunha, F.Q.2009. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc Natl Acad Sci U S A 106:4018-4023.
    6. Alves-Filho, J.C., de Freitas, A., Russo, M., and Cunha, F.Q.2006. Toll-like receptor 4 signaling leads to neutrophil migration impairment in polymicrobial sepsis. Crit Care Med 34:461-470.
    7. Plitas, G., Burt, B.M., Nguyen, H.M., Bamboat, Z.M., and DeMatteo, R.P. 2008. Toll-like receptor 9 inhibition reduces mortality in polymicrobial sepsis. J Exp Med 205:1277-1283.
    8. Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., and Akira, S.1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443-451.
    9. Feng, Y., Zhao, H., Xu, X., Buys, E.S., Raher, M.J., Bopassa, J.C., Thibault, H., Scherrer-Crosbie, M., Schmidt, U., and Chao, W.2008. Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice. Am J Physiol Heart Circ Physiol 295:H1311-H1318.
    10. Feigenbaum, H., Popp, R.L., Wolfe, S.B., Troy, B.L., Pombo, J.F., Haine, C.L., and Dodge, H.T.1972. Ultrasound measurements of the left ventricle. A correlative study with angiocardiography. Arch Intern Med 129:461-467.
    11. Hataishi, R., Rodrigues, A.C., Neilan, T.G., Morgan, J.G, Buys, E., Sruti, S., Tambouret, R., Jassal, D.S., Raher, M.J., Furutani, E., et al.2006. Inhaled Nitric Oxide Decreases Infarction Size and Improves Left Ventricular Function in a Murine Model of Myocardial Ischemia-Reperfusion Injury. Am J Physiol Heart Circ Physiol.
    12. Sebag, I.A., Handschumacher, M.D., Ichinose, F., Morgan, J.G, Hataishi, R., Rodrigues, A.C., Guerrero, J.L., Steudel, W., Raher, M.J., Halpern, E.F., et al. 2005. Quantitative assessment of regional myocardial function in mice by tissue Doppler imaging:comparison with hemodynamics and sonomicrometry. Circulation 111:2611-2616.
    13. Feng, Y., Zhao, H., Xu, X., Buys, E.S., Raher, M.J., Bopassa, J.C., Thibault, H., Scherrer-Crosbie, M., Schmidt, U., and Chao, W.2008. Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice. Am J Physiol Heart Circ Physiol 295:H1311-1318.
    14. Zhu, X., Bagchi, A., Zhao, H., Kirschning, C.J., Hajjar, R.J., Chao, W., Hellman, J., and Schmidt, U.2007. Toll-like receptor 2 activation by bacterial peptidoglycan-associated lipoprotein activates cardiomyocyte inflammation and contractile dysfunction. Crit Care Med 35:886-892.
    15. Zhu, X., Zhao, H., Graveline, A.R., Buys, E.S., Schmidt, U., Bloch, K.D., Rosenzweig, A., and Chao, W.2006. MyD88 and NOS2 are essential for toll-like receptor 4-mediated survival effect in cardiomyocytes. Am J Physiol Heart Circ Physiol 291:H 1900-1909.
    16. Ichinose, F., Buys, E.S., Neilan, T.G., Furutani, E.M., Morgan, J.G, Jassal, D.S., Graveline, A.R., Searles, R.J., Lim, C.C., Kaneki, M., et al.2007. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock. Circ Res 100:130-139.
    17. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., and Nishimune, Y.1997. 'Green mice'as a source of ubiquitous green cells. FEBS Lett 407:313-319.
    18. von Meyenburg, C., Hrupka, B.H., Arsenijevic, D., Schwartz, G.J., Landmann, R., and Langhans, W.2004. Role for CD 14, TLR2, and TLR4 in bacterial product-induced anorexia. Am J Physiol Regul Integr Comp Physiol 287:R298-305.
    19. Parrillo, J.E.2008. Septic shock-vasopressin, norepinephrine, and urgency. N Engl J Med 358:954-956.
    20. Cohen, J.2002. The immunopathogenesis of sepsis. Nature 420:885-891.
    21. Fernandes, C.J., Jr., Akamine, N., and Knobel, E.2008. Myocardial depression in sepsis. Shock 30 Suppl 1:14-17.
    22. Hotchkiss, R.S., Coopersmith, C.M., McDunn, J.E., and Ferguson, T.A.2009. The sepsis seesaw:tilting toward immunosuppression. Nat Med 15:496-497.
    23. Knuefermann, P., Sakata, Y., Baker, J.S., Huang, C.H., Sekiguchi, K., Hardarson, H.S., Takeuchi, O., Akira, S., and Vallejo, J.G.2004. Toll-like receptor 2 mediates Staphylococcus aureus-induced myocardial dysfunction and cytokine production in the heart. Circulation 110:3693-3698.
    24. Liang, M.D., Bagchi, A., Warren, H.S., Tehan, M.M., Trigilio, J.A., Beasley-Topliffe, L.K., Tesini, B.L., Lazzaroni, J.C., Fenton, M.J., and Hellman, J. 2005. Bacterial peptidoglycan-associated lipoprotein:a naturally occurring toll-like receptor 2 agonist that is shed into serum and has synergy with lipopolysaccharide. J Infect Dis 191:939-948.
    25. Urheim, S., Edvardsen, T., Torp, H., Angelsen, B., and Smiseth, O.A.2000. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation 102:1158-1164.
    26. Greenberg, N.L., Firstenberg, M.S., Castro, P.L., Main, M., Travaglini, A., Odabashian, J.A., Drinko, J.K., Rodriguez, L.L., Thomas, J.D., and Garcia, M.J. 2002. Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility. Circulation 105:99-105.
    27. Gorcsan, J.,3rd, Strum, D.P., Mandarino, W.A., Gulati, V.K., and Pinsky, M.R. 1997. Quantitative assessment of alterations in regional left ventricular contractility with color-coded tissue Doppler echocardiography. Comparison with sonomicrometry and pressure-volume relations. Circulation 95:2423-2433.
    28. Goldfarb, R.D., Glock, D., Kumar, A., McCarthy, R.J., Mei, J., Guynn, T., Matushek, M., Trenholme, G, and Parrillo, J.E.1996. A porcine model of peritonitis and bacteremia simulates human septic shock. Shock 6:442-451.
    29. Casey, L.C., Balk, R.A., and Bone, R.C.1993. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 119:771-778.
    30. Peck-Palmer, O.M., Unsinger, J., Chang, K.C., Davis, C.G., McDunn, J.E., and Hotchkiss, R.S.2008. Deletion of MyD88 markedly attenuates sepsis-induced T and B lymphocyte apoptosis but worsens survival. JLeukoc Biol 83:1009-1018.
    31. Binck, B.W., Tsen, M.F., Islas, M., White, D.J., Schultz, R.A., Willis, M.S., Garcia, J.V., Horton, J.W., and Thomas, J.A.2005. Bone marrow-derived cells contribute to contractile dysfunction in endotoxic shock. Am J Physiol Heart Circ Physiol 288:H577-583.
    32. Bultinck, J., Brouckaert, P., and Cauwels, A.2006. The in vivo contribution of hematopoietic cells to systemic TNF and IL-6 production during endotoxemia. Cytokine 36:160-166.
    33. Chakravarty, S., and Herkenham, M.2005. Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. JNeurosci 25:1788-1796.
    34. Bultinck, J., Sips, P., Vakaet, L., Brouckaert, P., and Cauwels, A.2006. Systemic NO production during (septic) shock depends on parenchymal and not on hematopoietic cells:in vivo iNOS expression pattern in (septic) shock. Faseb J 20:2363-2365.
    35. Hickey, M.J., Sihota, E., Amrani, A., Santamaria, P., Zbytnuik, L.D., Ng, E.S., Ho, W., Sharkey, K.A., and Kubes, P.2002. Inducible nitric oxide synthase (iNOS) in endotoxemia:chimeric mice reveal different cellular sources in various tissues. Faseb J 16:1141-1143.
    36. Nemeth, K., Leelahavanichkul, A., Yuen, P.S., Mayer, B., Parmelee, A., Doi, K., Robey, P.G, Leelahavanichkul, K., Koller, B.H., Brown, J.M., et al.2009. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42-49.
    37. Simon, S.I., and Green, C.E.2005. Molecular mechanics and dynamics of leukocyte recruitment during inflammation. Annu Rev Biomed Eng 7:151-185.
    38. Alves-Filho, J.C., de Freitas, A., Spiller, F., Souto, F.O., and Cunha, F.Q.2008. The role of neutrophils in severe sepsis. Shock 30 Suppl 1:3-9.
    39. Cummings, C.J., Martin, T.R., Frevert, C.W., Quan, J.M., Wong, V.A., Mongovin, S.M., Hagen, T.R., Steinberg, K.P., and Goodman, R.B.1999. Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis. J Immunol 162:2341-2346.
    40. Allen, S.J., Crown, S.E., and Handel, T.M.2007. Chemokine:receptor structure, interactions, and antagonism. Annu Rev Immunol 25:787-820.
    41. Neel, N.F., Schutyser, E., Sai, J., Fan, G.H., and Richmond, A.2005. Chemokine receptor internalization and intracellular trafficking. Cytokine Growth Factor Rev 16:637-658.
    42. Khandaker, M.H., Mitchell, G., Xu, L., Andrews, J.D., Singh, R., Leung, H., Madrenas, J., Ferguson, S.S., Feldman, R.D., and Kelvin, D.J.1999. Metalloproteinases are involved in lipopolysaccharide-and tumor necrosis factor-alpha-mediated regulation of CXCRl and CXCR2 chemokine receptor expression. Blood 93:2173-2185.
    43. Asagoe, K., Yamamoto, K., Takahashi, A., Suzuki, K., Maeda, A., Nohgawa, M., Harakawa, N., Takano, K., Mukaida, N., Matsushima, K., et al.1998. Down-regulation of CXCR2 expression on human polymorphonuclear leukocytes by TNF-alpha. J Immunol 160:4518-4525.
    1. Angus, D.C., Linde-Zwirble, W.T., Lidicker, J., Clermont, G., Carcillo, J., and Pinsky, M.R.2001. Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303-1310.
    2. Hotchkiss, R.S., and Karl, I.E.2003. The pathophysiology and treatment of sepsis. N Engl J Med 348:138-150.
    3. Parrillo, J.E.1993. Pathogenetic mechanisms of septic shock. N Engl J Med 328:1471-1477.
    4. Flierl, M.A., Rittirsch, D., Huber-Lang, M.S., Sarma, J.V., and Ward, P.A.2008. Molecular events in the cardiomyopathy of sepsis. Mol Med 14:327-336.
    5. Alves-Filho, J.C., Freitas, A., Souto, F.O., Spiller, F., Paula-Neto, H., Silva, J.S., Gazzinelli, R.T., Teixeira, M.M., Ferreira, S.H., and Cunha, F.Q.2009. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc Natl Acad Sci USA 106:4018-4023.
    6. Alves-Filho, J.C., de Freitas, A., Russo, M., and Cunha, F.Q.2006. Toll-like receptor 4 signaling leads to neutrophil migration impairment in polymicrobial sepsis. Crit Care Med 34:461-470.
    7. Plitas, G., Burt, B.M., Nguyen, H.M., Bamboat, Z.M., and DeMatteo, R.P.2008. Toll-like receptor 9 inhibition reduces mortality in polymicrobial sepsis. J Exp Med 205:1277-1283.
    8. Matsumoto, M., Fukuda, W., Circolo, A., Goellner, J., Strauss-Schoenberger, J., Wang, X., Fujita, S., Hidvegi, T., Chaplin, D.D., and Colten, H.R.1997. Abrogation of the alternative complement pathway by targeted deletion of murine factor B. Proc Natl Acad Sci USA 94:8720-8725.
    9. Singh, M.V., Kapoun, A., Higgins, L., Kutschke, W., Thurman, J.M., Zhang, R., Singh, M., Yang, J., Guan, X., Lowe, J.S., et al.2009. Ca2+/calmodulin-dependent kinase Ⅱ triggers cell membrane injury by inducing complement factor B gene expression in the mouse heart. J Clin Invest 119:986-996.
    10. Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., and Akira, S.1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443-451.
    11. Feng, Y, Zhao, H., Xu, X., Buys, E.S., Raher, M.J., Bopassa, J.C., Thibault, H., Scherrer-Crosbie, M., Schmidt, U., and Chao, W.2008. Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice. Am J Physiol Heart Circ Physiol 295:H1311-H1318.
    12. Feigenbaum, H., Popp, R.L., Wolfe, S.B., Troy, B.L., Pombo, J.F., Haine, C.L. and Dodge, H.T.1972. Ultrasound measurements of the left ventricle. A correlative study with angiocardiography. Arch Intern Med 129:461-467.
    13. Hataishi, R., Rodrigues, A.C., Neilan, T.G, Morgan, J.G., Buys, E., Sruti, S., Tambouret, R., Jassal, D.S., Raher, M.J., Furutani, E., et al.2006. Inhaled Nitric Oxide Decreases Infarction Size and Improves Left Ventricular Function in a Murine Model of Myocardial Ischemia-Reperfusion Injury. Am J Physiol Heart Circ Physiol.
    14. Sebag, I.A., Handschumacher, M.D., Ichinose, F., Morgan, J.G, Hataishi, R., Rodrigues, A.C., Guerrero, J.L., Steudel, W., Raher, M.J., Halpern, E.F., et al. 2005. Quantitative assessment of regional myocardial function in mice by tissue Doppler imaging:comparison with hemodynamics and sonomicrometry. Circulation 111:2611-2616.
    15. Feng, Y, Zhao, H., Xu, X., Buys, E.S., Raher, M.J., Bopassa, J.C., Thibault, H., Scherrer-Crosbie, M., Schmidt, U., and Chao, W.2008. Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice. Am J Physiol Heart Circ Physiol 295:H1311-1318.
    16. Zhu, X., Bagchi, A., Zhao, H., Kirschning, C.J., Hajjar, R.J., Chao, W., Hellman, J., and Schmidt, U.2007. Toll-like receptor 2 activation by bacterial peptidoglycan-associated lipoprotein activates cardiomyocyte inflammation and contractile dysfunction. Crit Care Med 35:886-892.
    17. Zhu, X., Zhao, H., Graveline, A.R., Buys, E.S., Schmidt, U., Bloch, K.D., Rosenzweig, A., and Chao, W.2006. MyD88 and NOS2 are essential for toll-like receptor 4-mediated survival effect in cardiomyocytes. Am J Physiol Heart Circ Physiol 291:H 1900-1909.
    18. Ichinose, F., Buys, E.S., Neilan, T.G, Furutani, E.M., Morgan, J.G., Jassal, D.S., Graveline, A.R., Searles, R.J., Lim, C.C., Kaneki, M., et al.2007. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock. Circ Res 100:130-139.
    19. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., and Nishimune, Y.1997. 'Green mice'as a source of ubiquitous green cells. FEBS Lett 407:313-319.
    20. von Meyenburg, C., Hrupka, B.H., Arsenijevic, D., Schwartz, GJ., Landmann, R., and Langhans, W.2004. Role for CD14, TLR2, and TLR4 in bacterial product-induced anorexia. Am J Physiol Regul Integr Comp Physiol 287:R298-305.
    21. Parrillo, J.E.2008. Septic shock--vasopressin, norepinephrine, and urgency. N Engl J Med 358:954-956.
    22. Cohen, J.2002. The immunopathogenesis of sepsis. Nature 420:885-891.
    23. Fernandes, C.J., Jr., Akamine, N., and Knobel, E.2008. Myocardial depression in sepsis. Shock 30 Suppl 1:14-17.
    24. Hotchkiss, R.S., Coopersmith, C.M., McDunn, J.E., and Ferguson, T.A.2009. The sepsis seesaw:tilting toward immunosuppression. Nat Med 15:496-497.
    25. Knuefermann, P., Sakata, Y., Baker, J.S., Huang, C.H., Sekiguchi, K., Hardarson, H.S., Takeuchi, O., Akira, S., and Vallejo, J.G 2004. Toll-like receptor 2 mediates Staphylococcus aureus-induced myocardial dysfunction and cytokine production in the heart. Circulation 110:3693-3698.
    26. Liang, M.D., Bagchi, A., Warren, H.S., Tehan, M.M., Trigilio, J.A., Beasley-Topliffe, L.K., Tesini, B.L., Lazzaroni, J.C., Fenton, M.J., and Hellman, J.2005. Bacterial peptidoglycan-associated lipoprotein:a naturally occurring toll-like receptor 2 agonist that is shed into serum and has synergy with lipopolysaccharide. J Infect Dis 191:939-948.
    27. Urheim, S., Edvardsen, T., Torp, H., Angelsen, B., and Smiseth, O.A.2000. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation 102:1158-1164.
    28. Greenberg, N.L., Firstenberg, M.S., Castro, P.L., Main, M., Travaglini, A., Odabashian, J.A., Drinko, J.K., Rodriguez, L.L., Thomas, J.D., and Garcia, M.J. 2002. Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility. Circulation 105:99-105.
    29. Gorcsan, J.,3rd, Strum, D.P., Mandarino, W.A., Gulati, V.K., and Pinsky, M.R. 1997. Quantitative assessment of alterations in regional left ventricular contractility with color-coded tissue Doppler echocardiography. Comparison with sonomicrometry and pressure-volume relations. Circulation 95:2423-2433.
    30. Goldfarb, R.D., Glock, D., Kumar, A., McCarthy, R.J., Mei, J., Guynn, T., Matushek, M., Trenholme, G, and Parrillo, J.E.1996. A porcine model of peritonitis and bacteremia simulates human septic shock. Shock 6:442-451.
    31. Casey, L.C., Balk, R.A., and Bone, R.C.1993. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 119:771-778.
    32. Peck-Palmer, O.M., Unsinger, J., Chang, K.C., Davis, C.G, McDunn, J.E., and Hotchkiss, R.S.2008. Deletion of MyD88 markedly attenuates sepsis-induced T and B lymphocyte apoptosis but worsens survival. J Leukoc Biol 83:1009-1018.
    33. Binck, B.W., Tsen, M.F., Islas, M., White, D.J., Schultz, R.A., Willis, M.S., Garcia, J.V., Horton, J.W., and Thomas, J.A.2005. Bone marrow-derived cells contribute to contractile dysfunction in endotoxic shock. Am J Physiol Heart Circ Physiol 288:H577-583.
    34. Bultinck, J., Brouckaert, P., and Cauwels, A.2006. The in vivo contribution of hematopoietic cells to systemic TNF and IL-6 production during endotoxemia. Cytokine 36:160-166.
    35. Chakravarty, S., and Herkenham, M.2005. Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 25:1788-1796.
    36. Bultinck, J., Sips, P., Vakaet, L., Brouckaert, P., and Cauwels, A.2006. Systemic NO production during (septic) shock depends on parenchymal and not on hematopoietic cells:in vivo iNOS expression pattern in (septic) shock. Faseb J 20:2363-2365.
    37. Hickey, M.J., Sihota, E., Amrani, A., Santamaria, P., Zbytnuik, L.D., Ng, E.S., Ho, W., Sharkey, K.A., and Kubes, P.2002. Inducible nitric oxide synthase (iNOS) in endotoxemia:chimeric mice reveal different cellular sources in various tissues. Faseb J 16:1141-1143.
    38. Nemeth, K., Leelahavanichkul, A., Yuen, P.S., Mayer, B., Parmelee, A., Doi, K., Robey, P.G, Leelahavanichkul, K., Koller, B.H., Brown, J.M., et al.2009. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. NatMed 15:42-49.
    39. Simon, S.I., and Green, C.E.2005. Molecular mechanics and dynamics of leukocyte recruitment during inflammation. Annu Rev Biomed Eng 7:151-185.
    40. Alves-Filho, J.C., de Freitas, A., Spiller, F., Souto, F.O., and Cunha, F.Q.2008. The role of neutrophils in severe sepsis. Shock 30 Suppl 1:3-9.
    41. Cummings, C.J., Martin, T.R., Frevert, C.W., Quan, J.M., Wong, V.A., Mongovin, S.M., Hagen, T.R., Steinberg, K.P., and Goodman, R.B.1999. Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis. J Immunol 162:2341-2346.
    42. Allen, S.J., Crown, S.E., and Handel, T.M.2007. Chemokine:receptor structure, interactions, and antagonism. Annu Rev Immunol 25:787-820.
    43. Neel, N.F., Schutyser, E., Sai, J., Fan, G.H., and Richmond, A.2005. Chemokine receptor internalization and intracellular trafficking. Cytokine Growth Factor Rev 16:637-658.
    44. Khandaker, M.H., Mitchell, G, Xu, L., Andrews, J.D., Singh, R., Leung, H., Madrenas, J., Ferguson, S.S., Feldman, R.D., and Kelvin, D.J.1999. Metalloproteinases are involved in lipopolysaccharide-and tumor necrosis factor-alpha-mediated regulation of CXCR1 and CXCR2 chemokine receptor expression. Blood 93:2173-2185.
    45. Asagoe, K., Yamamoto, K., Takahashi, A., Suzuki, K., Maeda, A., Nohgawa, M., Harakawa, N., Takano, K., Mukaida, N., Matsushima, K., et al.1998. Down-regulation of CXCR2 expression on human polymorphonuclear leukocytes by TNF-alpha. J Immunol 160:4518-4525.
    46. Modlin, R.L., Brightbill, H.D., and Godowski, P.J.1999. The toll of innate immunity on microbial pathogens. N Engl J Med 340:1834-1835.
    47. Brightbill, H.D., Libraty, D.H., Krutzik, S.R., Yang, R.B., Belisle, J.T., Bleharski, J.R., Maitland, M., Norgard, M.V., Plevy, S.E., Smale, S.T., et al.1999. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285:732-736.
    48. Parker, M.M.1999. Myocardial dysfunction in sepsis:injury or depression? Crit Care Med 27:2035-2036.
    49. Finkel, M.S., Oddis, C.V., Jacob, T.D., Watkins, S.C., Hattler, B.G., and Simmons, R.L.1992. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387-389.
    50. Evans, H.G, Lewis, M.J., and Shah, A.M.1993. Interleukin-1 beta modulates myocardial contraction via dexamethasone sensitive production of nitric oxide. Cardiovasc Res 27:1486-1490.
    51. Murray, D.R., and Freeman, G.L.1996. Tumor necrosis factor-alpha induces a biphasic effect on myocardial contractility in conscious dogs. Circ Res 78:154-160.
    52. Walley, K.R., Hebert, P.C., Wakai, Y., Wilcox, P.G, Road, J.D., and Cooper, D.J. 1994. Decrease in left ventricular contractility after tumor necrosis factor-alpha infusion in dogs. JAppl Physiol 76:1060-1067.
    53. Eichenholz, P.W., Eichacker, P.Q., Hoffman, W.D., Banks, S.M., Parrillo, J.E., Danner, R.L., and Natanson, C.1992. Tumor necrosis factor challenges in canines:patterns of cardiovascular dysfunction. Am J Physiol 263:H668-675.
    54. Herbertson, M.J., Werner, H.A., Goddard, C.M., Russell, J.A., Wheeler, A., Coxon, R., and Walley, K.R.1995. Anti-tumor necrosis factor-alpha prevents decreased ventricular contractility in endotoxemic pigs. Am J Respir Crit Care Med 152:480-488.
    55. Vincent, J.L., Bakker, J., Marecaux, G, Schandene, L., Kahn, R.J., and Dupont, E.1992. Administration of anti-TNF antibody improves left ventricular function in septic shock patients. Results of a pilot study. Chest 101:810-815.
    56. Cohen, J., and Carlet, J.1996. INTERSEPT:an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-alpha in patients with sepsis. International Sepsis Trial Study Group. Crit Care Med 24:1431-1440.
    57. Abraham, E., Anzueto, A., Gutierrez, G, Tessler, S., San Pedro, G., Wunderink, R., Dal Nogare, A., Nasraway, S., Berman, S., Cooney, R., et al.1998. Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORASEPT Ⅱ Study Group. Lancet 351:929-933.
    58. Last-Barney, K., Homon, C.A., Faanes, R.B., and Merluzzi, V.J.1988. Synergistic and overlapping activities of tumor necrosis factor-alpha and IL-1. J Immunol 141:527-530.
    59. Kumar, A., Krieger, A., Symeoneides, S., and Parrillo, J.E.2001. Myocardial dysfunction in septic shock:Part Ⅱ. Role of cytokines and nitric oxide. J Cardiothorac Vasc Anesth 15:485-511.
    60. Kumar, A., Short, J., and Parrillo, J.E.1999. Genetic factors in septic shock. Jama 282:579-581.
    61. Werdan, K., and Muller-Werdan, U.1996. Elucidating molecular mechanisms of septic cardiomyopathy-the cardiomyocyte model. Mol Cell Biochem 163-164:291-303.
    62. Horton, J.W., Lin, C., and Maass, D.1998. Burn trauma and tumor necrosis factor alpha alter calcium handling by cardiomyocytes. Shock 10:270-277.
    63. Zhu, X., Bernecker, O.Y., Manohar, N.S., Hajjar, R.J., Hellman, J., Ichinose, F., Valdivia, H.H., and Schmidt, U.2005. Increased leakage of sarcoplasmic reticulum Ca2+contributes to abnormal myocyte Ca2+handling and shortening in sepsis. Crit Care Med 33:598-604.
    64. Xinsheng Zhu, O.Y.B., Naveen S Manohar, Roger J Hajjar, Judith Hellman, Fumito Ichinose, Hector H. Valdivia, Ulrich Schmidt.2005. Increased leakage of sarcoplamic reticulum Ca2+contributes to abnormal Ca2+handling and contractility in sepsis. Critical Care Medicine in press.
    65. Ren, J., Ren, B.H., and Sharma, A.C.2002. Sepsis-induced depressed contractile function of isolated ventricular myocytes is due to altered calcium transient properties. Shock 18:285-288.
    66. Wu, L.L., Ji, Y., Dong, L.W., and Liu, M.S.2001. Calcium uptake by sarcoplasmic reticulum is impaired during the hypodynamic phase of sepsis in the rat heart. Shock 15:49-55.
    67. DelPrincipe, F., Egger, M., and Niggli, E.1999. Calcium signalling in cardiac muscle:refractoriness revealed by coherent activation. Nat Cell Biol 1:323-329.
    68. Wu, G., Yang, S.L., Hsu, C., Yang, R.C., Hsu, H.K., Liu, N., Yang, J., Dong, L.W., and Liu, M.S.2004. Transcriptional regulation of cardiac sarcoplasmic reticulum calcium-ATPase gene during the progression of sepsis. Shock 22:46-50.
    69. Wu, L.L., Tang, C., Dong, L.W., and Liu, M.S.2002. Altered phospholamban-calcium ATPase interaction in cardiac sarcoplasmic reticulum during the progression of sepsis. Shock 17:389-393.
    70. Schultz, M.J., and van der Poll, T.2002. Animal and human models for sepsis. Ann Med 34:573-581.
    71. Lim, C.C., Apstein, C.S., Colucci, W.S., and Liao, R.2000. Impaired cell shortening and relengthening with increased pacing frequency are intrinsic to the senescent mouse cardiomyocyte. J Mol Cell Cardiol 32:2075-2082.
    72. Wichterman, K.A., Baue, A.E., and Chaudry, I.H.1980. Sepsis and septic shock--a review of laboratory models and a proposal. J Surg Res 29:189-201.
    73. Deitch, E.A.1998. Animal models of sepsis and shock:a review and lessons learned. Shock 9:1-11.
    74. Cross, A.S., Opal, S.M., Sadoff, J.C., and Gemski, P.1993. Choice of bacteria in animal models of sepsis. Infect Immun 61:2741-2747.
    75. Fink, M.P., and Heard, S.O.1990. Laboratory models of sepsis and septic shock. J Surg Res 49:186-196.
    76. Chaudry, I.H., Wichterman, K.A., and Baue, A.E.1979. Effect of sepsis on tissue adenine nucleotide levels. Surgery 85:205-211.
    77. Baker, C.C., Chaudry, I.H., Gaines, H.O., and Baue, A.E.1983. Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery 94:331-335.
    78. Remick, D.G, Newcomb, D.E., Bolgos, GL., and Call, D.R.2000. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock 13:110-116.
    79. Hotchkiss, R.S., Swanson, P.E., Cobb, J.P., Jacobson, A., Buchman, T.G., and Karl, I.E.1997. Apoptosis in lymphoid and parenchymal cells during sepsis: findings in normal and T-and B-cell-deficient mice. Crit Care Med 25:1298-1307.
    80. Anderson, K.V., Jurgens, G, and Nusslein-Volhard, C.1985. Establishment of dorsal-ventral polarity in the Drosophila embryo:genetic studies on the role of the Toll gene product. Cell 42:779-789.
    81. Anderson, K.V., Bokla, L., and Nusslein-Volhard, C.1985. Establishment of dorsal-ventral polarity in the Drosophila embryo:the induction of polarity by the Toll gene product. Cell 42:791-798.
    82. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A.1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-983.
    83. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C.A., Jr.1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394-397.
    84. Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C, et al.1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice:mutations in Tlr4 gene. Science 282:2085-2088.
    85. Qureshi, S.T., Lariviere, L., Leveque, G, Clermont, S., Moore, K.J., Gros, P., and Malo, D.1999. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189:615-625.
    86. Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., and Akira, S.1999. Cutting edge:Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide:evidence for TLR4 as the Lps gene product. J Immunol 162:3749-3752.
    87. Takeda, K., Kaisho, T., and Akira, S.2003. Toll-like receptors. Annu Rev Immunol 21:335-376.
    88. Medzhitov, R.2001. Toll-like receptors and innate immunity. Nat Rev Immunol 1:135-145.
    89. Barton, GM., and Medzhitov, R.2002. Toll-like receptors and their ligands. Curr Top Microbiol Immunol 270:81-92.
    90. Wright, S.D., Tobias, P.S., Ulevitch, R.J., and Ramos, R.A.1989. Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. J Exp Med 170:1231-1241.
    91. Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., and Mathison, J.C.1990. CD 14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431-1433.
    92. Shimazu, R., Akashi, S., Ogata, H., Nagai, Y, Fukudome, K., Miyake, K., and Kimoto, M.1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777-1782.
    93. O'Neill, L.A., and Bowie, A.G 2007. The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353-364.
    94. Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S., and Janeway, C.A., Jr.1998. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2:253-258.
    95. Muzio, M., Ni, J., Feng, P., and Dixit, V.M.1997. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278:1612-1615.
    96. Janssens, S., and Beyaert, R.2002. A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends Biochem Sci 27:474-482.
    97. Lord, K.A., Hoffman-Liebermann, B., and Liebermann, D.A.1990. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5:1095-1097.
    98. Kawai, T., Adachi, O., Ogawa, T., Takeda, K., and Akira, S.1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115-122.
    99. Hoebe, K., Du, X., Georgel, P., Janssen, E., Tabeta, K., Kim, S.O., Goode, J., Lin, P., Mann, N., Mudd, S., et al.2003. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743-748.
    100. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., et al.2003. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640-643.
    101. Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Muhlradt, P.F., Sato, S., Hoshino, K., and Akira, S.2001. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 167:5887-5894.
    102. Cao, Z., Henzel, W.J., and Gao, X.1996. IRAK:a kinase associated with the interleukin-1 receptor. Science 271:1128-1131.
    103. Janssens, S., and Beyaert, R.2003. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell 11:293-302.
    104. Wesche, H., Henzel, W.J., Shillinglaw, W., Li, S., and Cao, Z.1997. MyD88:an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7:837-847.
    105. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T., and Goeddel, D.V.1996. TRAF6 is a signal transducer for interleukin-1. Nature 383:443-446.
    106. Jiang, Z., Ninomiya-Tsuji, J., Qian, Y, Matsumoto, K., and Li, X.2002. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol 22:7158-7167.
    107. Takaesu, G., Ninomiya-Tsuji, J., Kishida, S., Li, X., Stark, G.R., and Matsumoto, K.2001. Interleukin-1 (IL-1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway. Mol Cell Biol 21:2475-2484.
    108. Wang, C., Deng, L., Hong, M., Akkaraju, GR., Inoue, J., and Chen, Z.J.2001. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346-351.
    109. Thomas, J.A., Allen, J.L., Tsen, M., Dubnicoff, T., Danao, J., Liao, X.C., Cao, Z., and Wasserman, S.A.1999. Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. J Immunol 163:978-984.
    110. Thomas, J.A., Haudek, S.B., Koroglu, T., Tsen, M.F., Bryant, D.D., White, D.J., Kusewitt, D.F., Horton, J.W., and Giroir, B.P.2003. IRAK1 deletion disrupts cardiac Toll/IL-1 signaling and protects against contractile dysfunction. Am J Physiol Heart Circ Physiol 285:H597-606.
    111. Kanakaraj, P., Ngo, K., Wu, Y, Angulo, A., Ghazal, P., Harris, C.A., Siekierka, J.J., Peterson, P.A., and Fung-Leung, W.P.1999. Defective interleukin (IL)-18-mediated natural killer and T helper cell type 1 responses in IL-1 receptor-associated kinase (IRAK)-deficient mice. JExp Med 189:1129-1138.
    112. Chao, W.2009. Toll-like receptor signaling:a critical modulator of cell survival and ischemic injury in the heart. Am J Physiol Heart Circ Physiol 296:H1-H12.
    113. Hellman, J., Loiselle, P.M., Tehan, M.M., Allaire, J.E., Boyle, L.A., Kurnick, J.T., Andrews, D.M., Sik Kim, K., and Warren, H.S.2000. Outer membrane protein A, peptidoglycan-associated lipoprotein, and murein lipoprotein are released by Escherichia coli bacteria into serum. Infect Immun 68:2566-2572.
    114. Hellman, J., Loiselle, P.M., Zanzot, E.M., Allaire, J.E., Tehan, M.M., Boyle, L.A., Kurnick, J.T., and Warren, H.S.2000. Release of gram-negative outer-membrane proteins into human serum and septic rat blood and their interactions with immunoglobulin in antiserum to Escherichia coli J5. J Infect Dis 181:1034-1043.
    115. Hellman, J., Roberts, J.D., Jr., Tehan, M.M., Allaire, J.E., and Warren, H.S.2002. Bacterial peptidoglycan-associated lipoprotein is released into the bloodstream in gram-negative sepsis and causes inflammation and death in mice. JBiol Chem 277:14274-14280.
    116. Hellman, J., Tehan, M.M., and Warren, H.S.2003. Murein lipoprotein, peptidoglycan-associated lipoprotein, and outer membrane protein A are present in purified rough and smooth lipopolysaccharides. J Infect Dis 188:286-289.
    117. Hellman, J., and Warren, H.S.2001. Outer membrane protein A (OmpA), peptidoglycan-associated lipoprotein (PAL), and murein lipoprotein (MLP) are released in experimental Gram-negative sepsis. J Endotoxin Res 7:69-72.
    118. Henriksen, A.Z., and Maeland, J.A.1990. Antibody response to defined domains on enterobacterial outer membrane proteins in healthy persons and patients with bacteraemia. Apmis 98:163-172.
    119. Baumgarten, G, Knuefermann, P., Nozaki, N., Sivasubramanian, N., Mann, D.L., and Vallejo, J.G.2001. In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration:the role of toll-like receptor-4. J Infect Dis 183:1617-1624.
    120. Belcher, E., Mitchell, J., and Evans, T.2002. Myocardial dysfunction in sepsis: no role for NO? Heart 87:507-509.
    121. Cotton, J.M., Kearney, M.T., and Shah, A.M.2002. Nitric oxide and myocardial function in heart failure:friend or foe? Heart 88:564-566.
    122. Ullrich, R., Scherrer-Crosbie, M., Bloch, K.D., Ichinose, F., Nakajima, H., Picard, M.H., Zapol, W.M., and Quezado, Z.M.2000. Congenital deficiency of nitric oxide synthase 2 protects against endotoxin-induced myocardial dysfunction in mice. Circulation 102:1440-1446.
    123. Ichinose, F., Hataishi, R., Wu, J.C., Kawai, N., Rodrigues, A.C., Mallari, C., Post, J.M., Parkinson, J.F., Picard, M.H., Bloch, K.D., et al.2003. A selective inducible NOS dimerization inhibitor prevents systemic, cardiac, and pulmonary hemodynamic dysfunction in endotoxemic mice. Am J Physiol Heart Circ Physiol 285:H2524-2530.
    124. Xie, Y.W., Kaminski, P.M., and Wolin, M.S.1998. Inhibition of rat cardiac muscle contraction and mitochondrial respiration by endogenous peroxynitrite formation during posthypoxic reoxygenation. Circ Res 82:891-897.
    125. Ishida, H., Ichimori, K., Hirota, Y., Fukahori, M., and Nakazawa, H.1996. Peroxynitrite-induced cardiac myocyte injury. Free Radic Biol Med 20:343-350.
    126. Rabuel, C., and Mebazaa, A.2006. Septic shock:a heart story since the 1960s. Intensive Care Med 32:799-807.
    127. Carlson, D., Maass, D.L., White, D.J., Tan, J., and Horton, J.W.2006. Antioxidant vitamin therapy alters sepsis-related apoptotic myocardial activity and inflammatory responses. Am J Physiol Heart Circ Physiol 291:H2779-2789.
    128. Larche, J., Lancel, S., Hassoun, S.M., Favory, R., Decoster, B., Marchetti, P., Chopin, C., and Neviere, R.2006. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol 48:371-385.
    129. Fauvel, H., Marchetti, P., Obert, G, Joulain, O., Chopin, C., Formstecher, P., and Neviere, R.2002. Protective effects of cyclosporin A from endotoxin-induced myocardial dysfunction and apoptosis in rats. Am J Respir Crit Care Med 165:449-455.
    130. Lancel, S., Petillot, P., Favory, R., Stebach, N., Lahorte, C., Danze, P.M., Vallet, B., Marchetti, P., and Neviere, R.2005. Expression of apoptosis regulatory factors during myocardial dysfunction in endotoxemic rats. Crit Care Med 33:492-496.
    131. Suliman, H.B., Welty-Wolf, K.E., Carraway, M., Tatro, L., and Piantadosi, C.A. 2004. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res 64:279-288.
    132. Watts, J.A., Kline, J.A., Thornton, L.R., Grattan, R.M., and Brar, S.S.2004. Metabolic dysfunction and depletion of mitochondria in hearts of septic rats. J Mol Cell Cardiol 36:141-150.
    133. Soriano, F.G, Nogueira, A.C., Caldini, E.G, Lins, M.H., Teixeira, A.C., Cappi, S.B., Lotufo, P.A., Bernik, M.M., Zsengeller, Z., Chen, M., et al.2006. Potential role of poly(adenosine 5'-diphosphate-ribose) polymerase activation in the pathogenesis of myocardial contractile dysfunction associated with human septic shock. Crit Care Med 34:1073-1079.
    134. Fink, M.P.2002. Cytopathic hypoxia. Is oxygen use impaired in sepsis as a result of an acquired intrinsic derangement in cellular respiration? Crit Care Clin 18:165-175.
    135. Muzio, M., Natoli, G., Saccani, S., Levrero, M., and Mantovani, A.1998. The human toll signaling pathway:divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). JExp Med 187:2097-2101.
    136. Eichacker, P.Q., Hoffman, W.D., Farese, A., Banks, S.M., Kuo, GC., MacVittie, T.J., and Natanson, C.1991. TNF but not IL-1 in dogs causes lethal lung injury and multiple organ dysfunction similar to human sepsis. J Appl Physiol 71:1979-1989.
    137. Weinberg, J.R., Boyle, P., Meager, A., and Guz, A.1992. Lipopolysaccharide, tumor necrosis factor, and interleukin-1 interact to cause hypotension. JLab Clin Med 120:205-211.
    138. Zou, L., Feng, Y., Chen, J.-C., Si, R., Shen, S., Zhou, Q., Ichinose, F., Scherrer-Crosbie, M., and Chao, W.2010. Toll-like receptor 2 plays a critical role in cardiac dysfunction during polymicrobial sepsis. Crit Care Med. In Press.
    139. Aliprantis, A.O., Yang, R.B., Mark, M.R., Suggett, S., Devaux, B., Radolf, J.D., Klimpel, G.R., Godowski, P., and Zychlinsky, A.1999. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285:736-739.
    140. Hirschfeld, M., Kirschning, C.J., Schwandner, R., Wesche, H., Weis, J.H., Wooten, R.M., and Weis, J.J.1999. Cutting edge:inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J Immunol 163:2382-2386.
    141. Akira, S., Takeda, K., and Kaisho, T.2001. Toll-like receptors:critical proteins linking innate and acquired immunity. Nat Immunol 2:675-680.
    142. Akira, S.2001. Toll-like receptors and innate immunity. Adv Immunol 78:1-56.
    143. Akira, S., and Takeda, K.2004. Toll-like receptor signalling. Nat Rev Immunol 4:499-511.
    144. Meng, G., Rutz, M., Schiemann, M., Metzger, J., Grabiec, A., Schwandner, R., Luppa, P.B., Ebel, F., Busch, D.H., Bauer, S., et al.2004. Antagonistic antibody prevents toll-like receptor 2-driven lethal shock-like syndromes. J Clin Invest 113:1473-1481.
    145. Takeuchi, O., Takeda, K., Hoshino, K., Adachi, O., Ogawa, T., and Akira, S. 2000. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int Immunol 12:113-117.
    146. Takeuchi, O., Hoshino, K., and Akira, S.2000. Cutting edge:TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 165:5392-5396.
    147. Scanga, C.A., Aliberti, J., Jankovic, D., Tilloy, F., Bennouna, S., Denkers, E.Y., Medzhitov, R., and Sher, A.2002. Cutting edge:MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. J Immunol 168:5997-6001.
    148. Weighardt, H., Kaiser-Moore, S., Vabulas, R.M., Kirschning, C.J., Wagner, H., and Holzmann, B.2002. Cutting edge:myeloid differentiation factor 88 deficiency improves resistance against sepsis caused by polymicrobial infection. J Immunol 169:2823-2827.
    149. Czermak, B.J., Sarma, V., Pierson, C.L., Warner, R.L., Huber-Lang, M., Bless, N.M., Schmal, H., Friedl, H.P., and Ward, P.A.1999. Protective effects of C5a blockade in sepsis. Nat Med 5:788-792.
    150. Huber-Lang, M., Sarma, V.J., Lu, K.T., McGuire, S.R., Padgaonkar, V.A., Guo, R.F., Younkin, E.M., Kunkel, R.G., Ding, J., Erickson, R., et al.2001. Role of C5a in multiorgan failure during sepsis. J Immunol 166:1193-1199.
    151. Niederbichler, A.D., Hoesel, L.M., Westfall, M.V., Gao, H., Ipaktchi, K.R., Sun, L., Zetoune, F.S., Su, GL., Arbabi, S., Sarma, J.V., et al.2006. An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction. J Exp Med 203:53-61.
    152. Ashkenazi, A., and Dixit, V.M.1998. Death receptors:signaling and modulation. Science 281:1305-1308.
    153. Ashkenazi, A., and Dixit, V.M.1999. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11:255-260.
    154. Green, D.R., and Reed, J.C.1998. Mitochondria and apoptosis. Science 281:1309-1312.
    155. Thornberry, N.A., and Lazebnik, Y.1998. Caspases:enemies within. Science 281:1312-1316.
    156. Thornberry, N.A.1998. Caspases:key mediators of apoptosis. Chem Biol 5:R97-103.
    157. Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M., and Horvitz, H.R.1993. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641-652.
    158. Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., Aunins, J., et al. 1992. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768-774.
    159. Yuan, J.1997. Transducing signals of life and death. [Review] [31 refs]. Current Opinion in Cell Biology 9:247-251.
    160. Strasser, A., O'Connor, L., and Dixit, V.M.2000. Apoptosis signaling. Annu Rev Biochem 69:217-245.
    161. Li, H., Zhu, H., Xu, C.J., and Yuan, J.1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491-501.
    162. Deng, Y., Ren, X., Yang, L., Lin, Y., and Wu, X.2003. A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell 115:61-70.
    163. Deng, Y., Lin, Y, and Wu, X.2002. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 16:33-45.
    164. Bialik, S., Cryns, V.L., Drincic, A., Miyata, S., Wollowick, A.L., Srinivasan, A., and Kitsis, R.N.1999. The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res 85:403-414.
    165. Malhotra, R., and Brosius, F.C.,3rd.1999. Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem 274:12567-12575.
    166. Wollert, K.C., Heineke, J., Westermann, J., Ludde, M., Fiedler, B., Zierhut, W., Laurent, D., Bauer, M.K., Schulze-Osthoff, K., and Drexler, H.2000. The cardiac Fas (APO-1/CD95) Receptor/Fas ligand system:relation to diastolic wall stress in volume-overload hypertrophy in vivo and activation of the transcription factor AP-1 in cardiac myocytes. Circulation 101:1172-1178.
    167. Jeremias, I., Kupatt, C., Martin-Villalba, A., Habazettl, H., Schenkel, J., Boekstegers, P., and Debatin, K.M.2000. Involvement of CD95/Apol/Fas in cell death after myocardial ischemia. Circulation 102:915-920.
    168. Tanaka, M., Ito, H., Adachi, S., Akimoto, H., Nishikawa, T., Kasajima, T., Marumo, F., and Hiroe, M.1994. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 75:426-433.
    169. Kang, P.M., Haunstetter, A., Aoki, H., Usheva, A., and Izumo, S.2000. Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 87:118-125.
    170. Scarabelli, T.M., Stephanou, A., Pasini, E., Comini, L., Raddino, R., Knight, R.A., and Latchman, D.S.2002. Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circ Res 90:145-748.
    171. Lee, P., Sata, M., Lefer, D.J., Factor, S.M., Walsh, K., and Kitsis, R.N.2003. Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol 284:H456-463.
    172. McDonald, T.E., Grinman, M.N., Carthy, C.M., and Walley, K.R.2000. Endotoxin infusion in rats induces apoptotic and survival pathways in hearts. Am J Physiol Heart Circ Physiol 279:H2053-2061.
    173. Li, H.L., Suzuki, J., Bayna, E., Zhang, F.M., Dalle Molle, E., Clark, A., Engler, R.L., and Lew, W.Y.2002. Lipopolysaccharide induces apoptosis in adult rat ventricular myocytes via cardiac AT(1) receptors. Am J Physiol Heart Circ Physiol 283:H461-467.
    174. Hotchkiss, R.S., Swanson, P.E., Freeman, B.D., Tinsley, K.W., Cobb, J.P., Matuschak, GM., Buchman, T.G, and Karl, I.E.1999. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27:1230-1251.
    175. Hotchkiss, R.S., Schmieg, R.E., Jr., Swanson, P.E., Freeman, B.D., Tinsley, K.W., Cobb, J.P., Karl, I.E., and Buchman, T.G 2000. Rapid onset of intestinal epithelial and lymphocyte apoptotic cell death in patients with trauma and shock. Crit Care Med 28:3207-3217.
    176. Bannerman, D.D., Tupper, J.C., Erwert, R.D., Winn, R.K., and Harlan, J.M. 2002. Divergence of bacterial lipopolysaccharide pro-apoptotic signaling downstream of IRAK-1. J Biol Chem 277:8048-8053.
    177. Bannerman, D.D., Tupper, J.C., Ricketts, W.A., Bennett, C.F., Winn, R.K., and Harlan, J.M.2001. A constitutive cytoprotective pathway protects endothelial cells from lipopolysaccharide-induced apoptosis. JBiol Chem 276:14924-14932.
    178. Chao, W., Shen, Y., Zhu, X., Zhao, H., Novikov, M., Schmidt, U., and Rosenzweig, A.2005. Lipopolysaccharide improves cardiomyocyte survival and function after serum deprivation. JBiol Chem 280:21997-22005.
    179. Aliprantis, A.O., Yang, R.B., Weiss, D.S., Godowski, P., and Zychlinsky, A. 2000. The apoptotic signaling pathway activated by Toll-like receptor-2. Embo J 19:3325-3336.
    180. Frantz, S., Kelly, R.A., and Bourcier, T.2001. Role of TLR-2 in the activation of nuclear factor kappaB by oxidative stress in cardiac myocytes. J Biol Chem 276:5197-5203.
    181. Jiang, D., Liang, J., Fan, J., Yu, S., Chen, S., Luo, Y., Prestwich, GD., Mascarenhas, M.M., Garg, H.G, Quinn, D.A., et al.2005. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11:1173-1179.
    182. Hua, F., Ha, T., Ma, J., Gao, X., Kelley, J., Williams, D.L., Browder, I.W., Kao, R.L., and Li, C.2005. Blocking the MyD88-dependent pathway protects the myocardium from ischemia/reperfusion injury in rat hearts. Biochem Biophys Res Commun 338:1118-1125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700