锂离子电池SnO_2与CuO纳米线负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的工作主要集中在SnO_2纳米线、CuO纳米线的合成以及其作为负极材料在锂离子电池中的应用。详细讨论了他们的储锂性能以及储锂机理。具体内容如下:用碳热还原的方法成功制备出SnO_2纳米线,通过XRD、SEM以及TEM等实验对其结构形貌作出了分析,并通过循环伏安、充放电性能测试以及循环性能测试对其电化学性能作出分析。实验结果表明,单晶SnO_2纳米线完全可以达到SnO_2的理论比容量。此外由于其线状结构相对于SnO_2纳米颗粒具有在体积膨胀收缩过程中不容易粉化的优点,所以可以有效抑制因粉化导致的电极材料与集流体脱落,进而抑制容量损失。其循环性能要优于SnO_2纳米颗粒。16次循环后SnO_2纳米线的比容量仍可保持在550mAh/g。还研究了具有产业化应用前景的SnO_2纳米颗粒的性能以及不同种导电添加剂对其电化学性能的影响。结果发现导电剂可以减少SnO_2纳米颗粒的首次不可逆容量,但对其循环性能影响并不大。还用湿化学法成功合成了大量的多晶CuO纳米线。通过电化学性能测试,发现其具有出色的循环性能以及良好的高倍率性能。100次循环后容量仍保持在600mAh/g,1C充放电时的比容量仍可达到0.1C时充放电比容量的90%。初步分析认为多晶CuO纳米线一方面其大的比表面积提供了更多的储锂位置,另一方面其小的直径以及结构缺陷使得锂离子在其中的扩散更加迅速。
All work of this dissertation mainly focuses on the synthesis of SnO_2 nanowires and CuO nanowires and the application of them as anode materials in lithium ion batteries. The storing Li performance and mechanism of them are discussed in detail. The details are as follows. SnO_2 nanowires are synthesized through Carbon-Thermal Reduction method. Their morphology and structure are analyzed through XRD, SEM and TEM experiment, their electrochemical performance are analyzed through CV, discharge-charge test and cycling test. The experiment results shows that single crystal SnO_2 nanowires can reach the theoretical specific capacity of SnO_2. Furthermore, because of the advantage of wire-like structure that is not easily destroyed by volume expansion compared with SnO_2 nanoparticles, the electrode is not easily stripped from copper foil. Therefore, the cycling performance is better than that of SnO_2 nanoparticles. After cycling for 16 times, the specific capacity can remain 550mAh/g. The electrochemical performance of SnO_2 nanoparticles which have the prospect of industrial application and the influence of electric additives on their performance are also studied. The results show that the electric additives can effectively reduce the first irreversible capacity but have little influence of on the cycling performance. Moreover, CuO nanowires are synthesized in large scale through wet-chemical method. From electrochemical test, it is found that the cycling performance and high rate performance is excellent. The capacity can remain above 600mAh/g after 100 cycles and the specific capacity at 1.0C can reach 90% of that at 0.1C. It is thought that for the one hand polycrystalline CuO nanowires can provide much more Li-intercalation sites than bulk CuO, for the other hand the small diameter and the structure defect can improve the Li diffusion in the active material.
引文
[1] R M Dell, D A J Rand. Energy storage — a key technology for globalenergy sustainability. Journal of Power Sources, 2001, 100: 2-17
    [2] Tarascon J M, Armand M. Issues and challenges facing rechargeablelithiumbatteries. Nature, 2001, 414: 359-367
    [3] M Stanley Whittingham. Lithium Batteries and Cathode Materials, Chem.Rev.2004, 104: 4271 –4302
    [4] Robert A Huggins. Alternative materials for negative electrodes in lithiumsystems. Solid State Ionics, 2002, 61: 152-153
    [5] 刘伟峰,锂离子电池纳米负极材料研究,中国科学院物理研究所博士学位论文,1997,15-17
    [6] 师丽红,锂离子电池纳米合金/碳复合型负极材料研究,中国科学院物理研究所博士学位论文,2001,13-14
    [7] 王庆,纳米孔碳材料制备及嵌锂性能研究,中国科学院物理研究所博士学位论文,2002,56-57
    [8] M S Whittingham and R Huggins, in Fast Ion Transport in Solids, NorthHolland,Amsterdam, W. van Gool (Ed.), 1973, 645-646
    [9] M Armand. Materials for Advanced Batteries, Steeles (Eds.), PlenumPress, NewYork, 1980, 22-26
    [10] D W Murphy, P A Christian, F J DiSalvo, et al. Lithium Incorporationby V6O13and Related Vanadium (+4, +5) Oxide Cathode Materials. J.Electrochem. Soc.1981, 128: 2053-2060
    [11] A N Dey and B P Sullivan. The Electrochemical Decomposition ofPropylene Carbonate on Graphite. J. Electrochem. Soc. 1970, 117: 222-224
    [12] R Yazami. From Rome to Como: 20 years of active research oncarbon-based electrodes for lithium batteries at INP-Grenoble. Journal ofPower Sources, 2001,97-98: 33-38
    [13] K Mizushima, P C Jones, P J Wiseman, et al. LixCoO2: A New CathodeMaterial for Batteries of High Energy Density. Mater. Res. Bull., 1980, 15:783-799
    [14] D Auburn, Y L Barberio. Lithium Intercalation Cells Without Metallic Lithium. J.Electrochem. Soc. 1987, 134: 638-641
    [15] M Endo, C Kim, K Nishimura, et al. Recent development of carbon materials for Li ion batteries. Carbon, 2000, 38: 183-197
    [16] D E Fenton, J M Parker, and P V Wright. Complexes of alkali metal ions with poly (ethylene oxide). Polymer, 1973, 14: 589-591
    [17] M Armand, J M Chabagno, and M Duclot. in Fast Ion Transport in Solids, North-Holland, New York, P. Vashishta, J. N. Mundy and G. K. Shenoy (Eds.), p.131, 1979
    [18] B Scrosati, F Croce, and S Panero. Progress in lithium polymer battery R&D. Journal of Power Sources, 2001, 100: 93-100
    [19] Feuillade G, Perche P. Ion-conductive macromolecular gels and membr anes for solid lithium cells. J Appl Electrochem, 1975, 5: 63-69
    [20] T Tanaka, K Ohta, and N Arai. Year 2000 R&D status of large-scale lithium ion secondary batteries in the national project of Japan. Journal of Power Sources,2001,97-98:2
    [21] Otmar Bitsche, Guenter Gutmann. Systems for hybrid cars. Journal of Power Sources, 2004 127: 8-14
    [22] N J Dudney. Solid-state thin-film rechargeable batteries. Materials Science and Engineering B, 2005, 116: 245-249
    [23] M Winter, R J Brodd. What are batteries, fuel cells, and supercapacitors? Chem.Rev. 2004, 104: 4245-4269
    [24] G X Wang, S Zhong, D H Bradhurst. Synthesis and characterization of L1MO2 compounds as cathodes for rechargeable lithium batteries. Journal of Power Sources, 1998, 76: 141-146
    [25] A R Armstrong, P G Bruce. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 1996, 381: 499-500
    [26] D Linden(Ed.), Handbook of Batteries and Fuel Cells, McGraw Hill, New York,1984,96-104
    [27] Y Yamada, T Imamura, H Kakiyama, et al. Characteristics of meso-carbon microbeads separated from pitch. Carbon, 1974, 12: 307-319
    [28] A D Dey. Electrochemical Alloying of Lithium in Organic Electrolytes. J. Electrochem. Soc. 1971, 118: 1547-1549
    [29] L Y Beaulieu, K W Eberman, L J Krause, et al. Colossal Reversible Volume Changes in Lithium Alloys. Electrochem. Solid-State Lett, 1999, 4: A137-A140
    [30] M Lazzari, B Scrosati. A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes. J. Electrochem. Soc. 1980, 127: 773-774
    [31] M M Thackeray, W I F David, J B Goodenough. Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0    [32] S Morzilli, B Scrosati, F Sgarlata. Iron oxide electrodes in lithium organic electrolyte rechargeable batteries. Electrochimica Acta, 1985, 30: 1271-1276
    [33] P Novak. CuO cathode in lithium cells. II: Reduction mechanism of CuO Electrochimica Acta, 1985,30: 1687-1692
    [34] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407: 496-499
    [35] M N Obrovac, R A Dunlap, R J Sanderson, et al. The Electrochemical Displacement Reaction of Lithium with Metal Oxides. J.Electrochem.Soc. 2001,148: A576-A588
    [36] M N Obrovac, J R Dahn. Electrochemically Active Lithia/Metal and LithiumSulfide/Metal Composites. Electrochemical and Solid-State Letters, 2002, 5:A70-A73
    [37] M M Thackeray, A de Kock, M H Rossouw, et al. Spinel Electrodes from the Li-Mn-O System for Rechargeable Lithium Battery Applications. J. Electrochem.Soc. 1992, 139: 363-366
    [38] T Ohzuku, A Ueda, N Yamamoto. Zero-Strain Insertion Material ofLi[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells. J. Electrochem. Soc, 1995, 142:1431-1435
    [39] Franger S, Bourbon C, Le Cras F. Optimized Lithium Iron Phosphate for High-Rate Electrochemical Applications. J. Electrochem. Soc, 2004, 151: A1024-A1027
    [40] Z Ying, Q Wan, H Cao, et al. Characterization of SnO2 nanowires as an anode material for Li-ion batteries. Appl. Phys. Lett, 2005, 87: 113108-113110
    [41] J Huang, A Lu, B Zhao, et al. Branched growth of degenerately Sb-doped SnO2 nanowires. Appl. Phys. Lett, 2007, 91: 073102- 073104
    [42] Y J Chen, L Nie, X Y Xue, et al. Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Appl. Phys. Lett, 2006, 88: 083105- 083107
    [43] Y J Chen, X Y Xue, Y G Wang, et al. Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods. Appl. Phys. Lett, 2005, 87 : 233503-233505
    [44] Z W Pan, Z R Dai, Z L Wang. Nanobelts of Semiconducting Oxides. Science, 2001,219: 1947- 1949
    [45] I A Courtney and J R Dahn, Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites. J. Electrochem. Soc, 1997 144: 2045-2052
    [46] I Sandu, T Brousse, D M Schleich, et al. SnO2 negative electrode for lithium ion cell: in situ Mossbauer investigation of chemical changes upon discharge. J. Solid. State. Chem. 2004, 177: 4332-4340.
    [47] Okubo M, Hosono E, Kim J, et al. Nanosize Effect on High-Rate Li-Ion Intercalation in LiCoO2 Electrode. J. Am. Chem. Soc, 2007, 129: 7444 - 7452
    [48] Li G, Pang S, Jiang L, et al. Environmentally Friendly Chemical Route to Vanadium Oxide Single-Crystalline Nanobelts as a Cathode Material for Lithium-Ion Batteries. J. Phys. Chem. B, 2006, 110: 9383-9386
    [49] Wang Q, Wen Z H, Li J H. A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a TiO2-B Nanowire Anode. Adv. Func. Mate, 2006,16: 2141-2146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700