喹唑啉类化合物抗肿瘤活性的筛选及Erlotinib抗肿瘤新机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤的治疗一直是一个世界性的难题。随着人们对肿瘤细胞信号转导途径知识的不断增加,针对肿瘤的特异性分子靶点设计抗肿瘤药物越来越受到关注。加上晶体衍射技术、组合化学、分子模型、高通量筛选技术以及计算机化学的发展,靶向性药物日新月异,为肿瘤的治疗提供了新策略。基于结构和作用机制的药物设计已成为当前发展抗肿瘤药物的主流方式。
     表皮生长因子受体(epidermal growth factor receptor,EGFR)是ErbB家族的成员之一,具有酪氨酸激酶(tyrosine kinase,TK)活性,是一种重要的跨膜受体。EGFR信号通路关乎细胞的迁移、黏附、增殖、分化、凋亡,与肿瘤的形成和恶化密切相关。从1984年EGFR基因首次被克隆,20多年来的研究显示,EGFR是肿瘤治疗中一个富有前景的靶分子。近年来对喹唑啉类化合物生物活性的分析可见,该类化合物是一类具有多重药理作用的小分子化合物,其对EGFR-TK活性的抑制作用尤为突出。埃罗替尼(Erlotinib)是Genentech公司、Roche公司和OSI公司联合开发的一种小分子EGFR-TK抑制剂(EGFR-TK inhibitor,EGFR-TKI),属喹唑啉类化合物。其主要作用机制为竞争性抑制三磷酸腺苷(adenosine-triphosphate,ATP)与EGFR胞内催化位点的结合,降低EGFR的自身磷酸化作用,从而导致细胞生长停滞并走向凋亡。另有研究发现,Erlotinib可诱导细胞周期抑制蛋白p27~(KIP1)的表达,使细胞周期阻滞于G1期。
     虽然对靶向EGFR的抗肿瘤药物的研究已取得许多具有里程碑意义的成绩,但仍有很多问题亟待解决:如何使此类药物只作用于肿瘤细胞的拟定靶点,而不作用于正常细胞的相同靶点;在联合疗法中,如何进行疗效相加或协同的选择等。这些都阻碍了靶向EGFR的抗肿瘤药物的临床应用。因此,关于靶向EGFR的抗肿瘤药物的作用机制和适用范围等的研究具有深远的意义。
     本文工作第一部分是在离体水平初步筛选系列喹唑啉类新化合物的抗肿瘤作用并研究其对TK活性的影响;第二部分以Erlotinib为代表,探讨喹唑啉类化合物抗肿瘤作用的新机制,旨在为肿瘤的分子靶向治疗提供新的候选化合物,并为将喹唑啉类化合物发展为更有效的抗肿瘤药物积累必要的学术与实验基础。
     第一部分喹唑啉类化合物抗肿瘤活性的筛选
     目的:筛选系列喹唑啉类新化合物的抗肿瘤作用并研究其对TK活性的影响。
     方法:MTT法测定肿瘤细胞活力;酶联免疫吸附测定(enzyme-linked immunosorbent assay,ELISA)试剂盒测定TK活性。
     结果:与Gefitinib、Erlotinib相比,GⅠ系列2~6号化合物,GⅡ系列2~5号化合物,GⅣ系列2、6号化合物,BⅠ系列2~8号化合物,BⅡ系列2、5、7、8号化合物明显抑制肿瘤细胞增殖,其中BⅠ系列2~8号化合物抑制效应明显强于同浓度阳性药物,最高抑制率超过90%。ELISA法测定21种初筛有效的新化合物对细胞TK活性的影响,结果显示,GⅠ系列5、6号化合物,GⅡ系列4、5号化合物,BⅠ系列8号化合物,BⅡ系列5、7号化合物可显著抑制TK活性。
     结论:七个系列共计44种新化合物中,GⅠ系列2~6号化合物,GⅡ系列2~5号化合物,GⅣ系列2、6号化合物,BⅠ系列2~8号化合物,BⅡ系列2、5、7、8号化合物能够明显抑制肿瘤细胞株的增殖,体外显示良好的生物抑瘤作用,BⅠ系列2~8号化合物作用明显强于同浓度的Gefitinib、Erlotinib和其他新化合物;其中GⅠ系列5、6号化合物,GⅡ系列4、5号化合物,BⅠ系列8号化合物,BⅡ系列5、7号化合物对细胞TK活性的抑制效应显著(P<0.05),具有良好的分子靶向性,有望成为肿瘤靶向治疗的候选化合物。
     第二部分Erlotinib抗肿瘤新机制的研究
     目的:探讨Erlotinib抗肿瘤效应的新机制。
     方法:hoechst 33342荧光染色测定细胞凋亡;DCFH-DA荧光探针检测胞内活性氧簇(reactive oxygen species,ROS);提取A549细胞线粒体,氧电极法测定线粒体呼吸功能;DHE荧光探针检测胞内超氧化物阴离子(O_2~-);RT-PCR法测定NADPH氧化酶催化亚基gp91的表达变化;MTT法测定细胞活力;JC-1荧光探针检测线粒体膜电位(mitochondrial membrane potential,△Ψ_m);western-blotting法测定细胞色素C,凋亡诱导因子(apoptosis-inducing factor,AIF),c-Jun NH_2端激酶(c-Jun NH_2-terminal kinase,JNK),磷酸化JNK(p-JNK)的表达变化。
     结果:1)Erlotinib呈浓度依赖性诱导A549细胞的凋亡。2)Erlotinib作用30 min呈浓度依赖性增加A549细胞胞内的ROS水平。3)Erlotinib呈浓度依赖性增加A549细胞的线粒体呼吸控制率(respiratory control ratio,RCR),Erlotinib(10μM)可降低Ⅳ态呼吸。4)Erlotinib作用30 min呈浓度依赖性促进A549细胞O_2~-的产生并增加A549细胞NADPH氧化酶催化亚基gp91的mRNA水平。5)抗氧化剂N-乙酰半胱氨酸(N-acetyl-L-cysteine,NAC)(1 mM)可抑制Erlotinib(10μM)降低细胞活力的作用。6)Erlotinib作用24 h呈浓度依赖性降低A549细胞的△Ψ_m,并促进A549细胞线粒体内细胞色素C和AIF的释放。7)Erlotinib作用24 h呈浓度依赖性促进A549细胞JNK的磷酸化。
     结论:Erlotinib可通过增加ROS的产生,活化JNK,激活线粒体凋亡通路而发挥抗肿瘤作用。
     本文研究工作表明喹唑啉类化合物经优化设计后,可形成活性较高的新化合物。它们不仅能抑制肿瘤细胞增殖,且对TK活性有较强的抑制作用。Erlotinib能促进A549细胞ROS的生成,激活JNK信号转导,诱发线粒体途径的凋亡,该新机制的发现为将喹唑啉类化合物发展为更有效的抗肿瘤药物积累了必要的学术与实验基础。
Tumor therapy has been a worldwide problem. As our knowledge of signal transduction pathways in tumor cells increases, drug design against tumor-specific molecular targets attracts more and more attention. Furthermore, with the development of the crystal diffraction techniques, combinatorial chemistry, molecular model, high-throughput screening technology and computer chemistry, targeted agents change with each passing day, providing new stratigies for tumor therapy. Drug design based on the structure and mechanism has become the mainstream form of developing antitumor agents.
     Epidermal growth factor receptor (EGFR), one member of the ErbB family, is an important transmembrane receptor with tyrosine kinase (TK) activity. EGFR signaling passway is associated with cell migration, adhesion, proliferation, differentiation as well as apoptosis. Therefore, it is closely related to tumor initiation and deterioration. EGFR gene was first cloned in 1984. Studies over the past two decades have shown that EGFR is a promising molecular target for tumor therapy. In recent years, analyses of the bioactivities of quinazoline compounds suggest that they are a class of micromolecular compounds with mutiple pharmacological activities, particularly inhibiting EGFR-TK activity. Erlotinib is a micromolecular EGFR-TK inhibitor (EGFR-TKI) jointly developed by Genentech, Roche and OSI companies, belonging to the quinazoline compounds. It competitively inhibits the binding of ATP with the intracellular catalytic sites of EGFR, thus reducing the autophosphorylation of EGFR and resulting in cell growth arrest and apoptosis. Another study found that Erlotinib could induce the expression of cyclin dependent kinase inhibitor p27~(KIP1) and suppress cell-cycle events involved in the G1/S transition.
     Although people have obtained many milestone achievements of the EGFR-targeted antitumor agents, yet a number of problems remain to be solved: how to make such agents only act on the assumed target of tumor cells, but not the same target of normal cells; in the therapeutic alliance, how to make the choice of combined or synergistic effects. These unsolved problems hamper the clinlical application of EGFR-targeted antitumor agents. Therefore, researches conercering the mechanisms and applications of EGFR-targeted antitumor agents are of great importance.
     In the present study, we first took in vitro screening for the antitumor activities of new quinazoline compounds and investigated their effects on TK activities. Then we explored the novel mechanism involved in the antitumor action of quinazoline compounds, taking erlotinib as a representative agent. The aim of this study is to provide candidate compounds for molecular target-based tumor therapy and accumulate the necessary academic and experimental bases for quinazoline compounds to become more efficient antitumor agents.
     Part I : Screening for the antitumor activities of quinazoline compounds
     AIMS: To screen for the antitumor activities of new quinazoline compounds and investigate their effects on TK activities.
     METHODS: Tumor cell viability was measured by MTT method. ELISA kit was used to determine TK activity.
     RESULTS: Compared with gefitinib or erlotinib group, the proliferation of tumor cells treated with GI-2~GI-6 compounds, GII-2~GII-5 compounds, GIV-2、6 compounds, BI-2~BI-8 compounds, BII-2、5、7、8 compounds was markedly inhibited. The inhibitory effects of BI-2~BI-8 compounds were stronger than those of gefitinib or erlotinib at the same concentration; the highest inhibition ratio was over 90%. The results of ELISA showed that GI-5、6 compounds, GII-4、5 compounds, BI-8 compound, BII-5、7 compounds significantly suppressed TK activity.
     CONCULATIONS: Among the seven series, 44 kinds of new compounds, GI-2~GI-6 compounds, GII-2~GII-5 compounds, GIV-2、6 compounds, BI-2~BI-8 compounds, BII-2、5、7、8 compounds could markedly inhibit tumor cell proliferation, showing more effective biological antitumor activities in vitro. The inhibitory effects of BI-2~BI-8 compounds were stronger than those of gefitinib, erlotinib and other new compounds at the same concentration; GI-5、6 compounds, GII-4、5 compounds, BI-8 compound, BII-5、7 compounds significantly suppressed TK activity (P < 0.05). They were expected to become candidate compounds for tumor targeted therapy with a decent molecular target.
     Part II Study on the novel mechanism involved in the antitumor action of erlotinib
     AIMS: To investigate the novel mechanism involved in the antitumor action of erlotinib.
     METHODS: Cell apoptosis was determined by staining with Hoechst 33324. Intracellular production of ROS was measured by the fluorescent probe DCFH-DA. Mitochondrial preparations from A549 cells were extracted and mitochondrial respiration function was determined by oxygen electrode. Superoxide ions (O_2~-) were detected by the fluorescent probe DHE. RT-PCR was taken for the measurement of NADPH oxidase catalytic subunit gp91~(phox). Cell viability was measured by MTT method. Mitochondrial membrane potential (ΔΨ_m) was assessed with the fluorescent probe JC-1. We introduced western blotting for the analyses of cytochrome C, apoptosis-inducing factor (AIF), c-Jun NH_2-terminal kinase (JNK), p-JNK.
     RESULTS: 1) Erlotinib induced apoptosis in A549 cells concentration-dependently. 2) Erlotinib incubation for 30 min promoted ROS generation in A549 cells in a concentration-dependent manner. 3) Erlotinib increased RCR dose-dependently in A549 cells. Erlotinib (10μM) inhibited state 4 respiration. 4) Erlotinib incubation for 30 min concentration-dependently induced O_2~- production and increased the mRNA levels of NADPH oxidase catalytic subunit gp91 in A549 cells. 5) Pretreatment with NAC (1 mM) inhibited erlotinib (10μM)-induced cell death. 6) Erlotinib incubation for 24 h caused loss ofΔΨ_m and induced the release of cytochrome C and AIF from mitochondria in a dose-dependent manner. 7) Erlotinib incubation for 24 h induced JNK phosphorylation in A549 cells in a concentration-dependent manner.
     CONCLUSIONS: Erlotinib exerts an antitumor activity by activating ROS-dependent, JNK mediated and mitochrondrial-initiated cell apoptosis.
     This study showed that quinazoline compounds could be developed into new agents with better antitumor activities after optimized design. They could not only prevent tumor cell proliferation but also suppress TK activity. Our study also demonstrated that erlotinib could exert an antitumor effect via increasing ROS production, activating JNK, and thereby initiating mitochondrial death pathways. These findings accumulated the necessary academic and experimental bases for quinazoline compounds to become more efficient antitumor agents.
引文
1. Newell DR: How to develop a successful cancer drag-molecules to medicines or targets to treatments? Eur J Cancer 2005; 41: 676-682.
    2. Paul MK, Mukhopadhyay AK: Tyrosine kinase-Role and significance in Cancer. Int J Med Sci 2004; 1: 101-115.
    3. Pawson T: Regulation and targets of receptor tyrosine kinases. Eur J Cancer 2002;38 Suppl 5:S3-10.
    4. Blume-Jensen P, Hunter T: Oncogenic kinase signalling. Nature 2001; 411: 355-365.
    5. Krause DS, Van Etten RA: Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005; 353: 172-187.
    6. Laskin JJ, Sandier AB: Epidermal growth factor receptor: a promising target in solid tumours. Cancer Treat Rev 2004; 30: 1-17.
    7. Vlahovic G, Crawford J: Activation of tyrosine kinases in cancer. Oncologist 2003; 8: 531-538.
    8. Bianco R, Gelardi T, Damiano V, Ciardiello F, Tortora G: Rational bases for the development of EGFR inhibitors for cancer treatment. Int J Biochem Cell Biol 2007;39: 1416-1431.
    9. Smaill JB, Rewcastle GW, Loo JA, Greis KD, Chan OH, Reyner EL, Lipka E, Showalter HD, Vincent PW, Elliott WL, Denny WA: Tyrosine kinase inhibitors. 17. Irreversible inhibitors of the epidermal growth factor receptor: 4-(phenylamino)quinazoline-and 4-(phenylamino)pyrido[3,2-d]pyrimidine-6-acrylamides bearing additional solubilizing functions. J Med Chem 2000; 43: 1380-1397.
    
    10. Ghosh S, Liu XP, Zheng Y, Uckun FM: Rational design of potent and selective EGFR tyrosine kinase inhibitors as anticancer agents. Curr Cancer Drug Targets 2001; 1:129-140.
    11. Fry DW: Mechanism of action of erbB tyrosine kinase inhibitors. Exp Cell Res 2003; 284: 131-139.
    12. Cohen MH, Johnson JR, Chen YF, Sridhara R, Pazdur R: FDA drug approval summary: erlotinib (Tarceva) tablets. Oncologist 2005; 10: 461-466.
    13. Giaccone G: Targeting HER1/EGFR in cancer therapy: experience with erlotinib. Future Oncol 2005; 1: 449-460.
    
    14. Patarca R: Protein phosphorylation and dephosphorylation in physiologic and oncologic processes. Crit Rev Oncog 1996; 7: 343-432.
    
    15. Robinson DR, Wu YM, Lin SF: The protein tyrosine kinase family of the human genome. Oncogene 2000; 19: 5548-5557.
    
    16. Pal SK, Pegram M: Epidermal growth factor receptor and signal transduction: potential targets for anti-cancer therapy. Anticancer Drugs 2005; 16: 483-494.
    
    17. Ciardiello F, Tortora G: A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001; 7: 2958-2970.
    
    18. Sun L, McMahon G: Inhibition of tumor angiogenesis by synthetic receptor tyrosine kinase inhibitors. Drug Discov Today 2000; 5: 344-353.
    
    19. Fabbro D, Parkinson D, Matter A: Protein tyrosine kinase inhibitors: new treatment modalities? Curr Opin Pharmacol 2002; 2: 374-381.
    
    20. Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63.
    
    21. Denizot F, Lang R: Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 1986; 89: 271-277.
    
    22. Twentyman PR, Luscombe M: A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer 1987; 56: 279-285.
    
    23. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J: Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39: 44-84.
    
    24. Kim HJ, Chakravarti N, Oridate N, Choe C, Claret FX, Lotan R: N-(4-hydroxyphenyl)retinamide-induced apoptosis triggered by reactive oxygen species is mediated by activation of MAPKs in head and neck squamous carcinoma cells. Oncogene 2006; 25: 2785-2794.
    
    25. McCord JM: Human disease, free radicals, and the oxidant/antioxidant balance. Clin Biochem 1993; 26: 351-357.
    
    26. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P: Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 2006; 10: 241-252.
    27. Feng R, Ni HM, Wang SY, Tourkova IL, Shurin MR, Harada H, Yin XM: Cyanidin-3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J Biol Chem 2007; 282: 13468-13476.
    28. Wang Y, He QY, Sun RW, Che CM, Chiu JF: GoldIII porphyrin la induced apoptosis by mitochondrial death pathways related to reactive oxygen species. Cancer Res 2005; 65: 11553-11564.
    29. Hunter T: Oncoprotein networks. Cell 1997; 88: 333-346.
    30. Ciardiello F: Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents. Drugs 2000; 60 Suppl 1: 25-32; discussion 41-22.
    31. Rewcastle GW, Denny WA, Bridges AJ, Zhou H, Cody DR, McMichael A, Fry DW: Tyrosine kinase inhibitors. 5. Synthesis and structure-activity relationships for 4-[(phenylmethyl)amino]- and 4-(phenylamino)quinazolines as potent adenosine 5'-triphosphate binding site inhibitors of the tyrosine kinase domain of the epidermal growth factor receptor. J Med Chem 1995; 38: 3482-3487.
    32. Rewcastle GW, Palmer BD, Bridges AJ, Showalter HD, Sun L, Nelson J, McMichael A, Kraker AJ, Fry DW, Denny WA: Tyrosine kinase inhibitors. 9. Synthesis and evaluation of fused tricyclic quinazoline analogues as ATP site inhibitors of the tyrosine kinase activity of the epidermal growth factor receptor. J Med Chem 1996; 39: 918-928.
    33. Lee SH, Doliba N, Osbakken M, Oz M, Mancini D: Improvement of myocardial mitochondrial function after hemodynamic support with left ventricular assist devices in patients with heart failure. J Thorac Cardiovasc Surg 1998; 116: 344-349.
    34. Ungvari Z, Csiszar A, Kaminski PM, Wolin MS, Koller A: Chronic high pressure-induced arterial oxidative stress: involvement of protein kinase C-dependent NAD(P)H oxidase and local renin-angiotensin system. Am J Pathol 2004; 165: 219-226.
    35. Bremer E, van Dam G, Kroesen BJ, de Leij L, Helfrich W: Targeted induction of apoptosis for cancer therapy: current progress and prospects. Trends Mol Med 2006; 12: 382-393.
    36. Adachi M, Sakamoto H, Kawamura R, Wang W, Imai K, Shinomura Y: Nonsteroidal anti-inflammatory drugs and oxidative stress in cancer cells. Histol Histopathol 2007; 22: 437-442.
    37. Wang W, Adachi M, Kawamura R, Sakamoto H, Hayashi T, Ishida T, Imai K, Shinomura Y: Parthenolide-induced apoptosis in multiple myeloma cells involves reactive oxygen species generation and cell sensitivity depends on catalase activity. Apoptosis 2006; 11: 2225-2235.
    38. Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P: Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood 2003; 101: 4098-4104.
    39. Oh SH, Lim SC: A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicol Appl Pharmacol 2006; 212: 212-223.
    40. Alexandre J, Hu Y, Lu W, Pelicano H, Huang P: Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res 2007; 67: 3512-3517.
    41. Orrenius S, Gogvadze V, Zhivotovsky B: Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 2007; 47: 143-183.
    42. Fernandes DC, Wosniak J, Jr., Pescatore LA, Bertoline MA, Liberman M, Laurindo FR, Santos CX: Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. Am J Physiol Cell Physiol 2007; 292: C413-422.
    43. Rueckschloss U, Galle J, Holtz J, Zerkowski HR, Morawietz H: Induction of NAD(P)H oxidase by oxidized low-density lipoprotein in human endothelial cells: antioxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy. Circulation 2001; 104: 1767-1772.
    44. Green DR, Reed JC: Mitochondria and apoptosis. Science 1998; 281: 1309-1312.
    45. Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P: Toxic proteins released from mitochondria in cell death. Oncogene 2004; 23: 2861-2874.
    46. Matsuzawa A, Ichijo H: Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxid Redox Signal 2005; 7: 472-481.
    47. Haddad JJ: Redox and oxidant-mediated regulation of apoptosis signaling pathways: immuno-pharmaco-redox conception of oxidative siege versus cell death commitment. Int Immunopharmacol 2004; 4: 475-493.
    48. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW: Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 2003; 284: 31-53.
    49. Grunwald V, Hidalgo M: Developing inhibitors of the epidermal growth factor receptor for cancer treatment. J Natl Cancer Inst 2003; 95: 851-867.
    50. Ling YH, Li T, Yuan Z, Haigentz M, Jr., Weber TK, Perez-Soler R: Erlotinib, an effective epidermal growth factor receptor tyrosine kinase inhibitor, induces p27KIP1 up-regulation and nuclear translocation in association with cell growth inhibition and G1/S phase arrest in human non-small-cell lung cancer cell lines. Mol Pharmacol 2007; 72: 248-258.
    51. Fang J, Nakamura H, Iyer AK: Tumor-targeted induction of oxystress for cancer therapy. J Drug Target 2007; 15: 475-486.
    52. Los M, Burek CJ, Stroh C, Benedyk K, Hug H, Mackiewicz A: Anticancer drugs of tomorrow: apoptotic pathways as targets for drug design. Drug Discov Today 2003; 8: 67-77.
    53. Schumacker PT: Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 2006; 10: 175-176.
    54. Davies KJ: The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 1999; 48: 41-47.
    55. Fruehauf JP, Meyskens FL, Jr.: Reactive oxygen species: a breath of life or death? Clin Cancer Res 2007; 13: 789-794.
    56. Yamanaka N, Deamer D: Superoxide dismutase activity in WI-38 cell cultures: effects of age, trypsinization and SV-40 transformation. Physiol Chem Phys 1974; 6: 95-106.
    57. Sato K, Ito K, Kohara H, Yamaguchi Y, Adachi K, Endo H: Negative regulation of catalase gene expression in hepatoma cells. Mol Cell Biol 1992; 12:2525-2533.
    58. Hasegawa Y, Takano T, Miyauchi A, Matsuzuka F, Yoshida H, Kuma K, Amino N: Decreased expression of glutathione peroxidase mRNA in thyroid anaplastic carcinoma. Cancer Lett 2002; 182: 69-74.
    59. Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, Imada I, Utsumi K: Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 2003; 10: 2495-2505.
    60. Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, Keating MJ, Huang P: Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 2003; 278: 37832-37839.
    61. Le SB, Hailer MK, Buhrow S, Wang Q, Flatten K, Pediaditakis P, Bible KC, Lewis LD, Sausville EA, Pang YP, Ames MM, Lemasters JJ, Holmuhamedov EL, Kaufmann SH: Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity. J Biol Chem 2007; 282:8860-8872.
    62. Lambeth JD: NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004; 4: 181-189.
    63. Chandra J, Samali A, Orrenius S: Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 2000; 29: 323-333.
    64. Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K: Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ 2006; 13: 730-737.
    65. Antosiewicz J, Herman-Antosiewicz A, Marynowski SW, Singh SV: c-Jun NH(2)-terminal kinase signaling axis regulates diallyl trisulfide-induced generation of reactive oxygen species and cell cycle arrest in human prostate cancer cells. Cancer Res 2006; 66: 5379-5386.
    66. Benhar M, Engelberg D, Levitzki A: ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep 2002; 3: 420-425.
    67. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M: Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005; 120: 649-661.
    68. Eminel S, Klettner A, Roemer L, Herdegen T, Waetzig V: JNK2 translocates to the mitochondria and mediates cytochrome c release in PC12 cells in response to 6-hydroxydopamine. J Biol Chem 2004; 279: 55385-55392.
    69. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ: Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000; 288: 870-874.
    1.Ren R:Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia.Nat Rev Cancer 2005;5:172-183.
    2.Couzin J:Cancer drugs.Smart weapons prove tough to design.Science 2002;298:522-525.
    3.Frantz S:Drug discovery:playing dirty.Nature 2005;437:942-943.
    4.Pelicano H,Carney D,Huang P:ROS stress in cancer cells and therapeutic implications.Drug Resist Updat 2004;7:97-110.
    5.Jezek P,Hlavata L:Mitochondria in homeostasis of reactive oxygen species in cell,tissues,and organism.Int J Biochem Cell Biol 2005;37:2478-2503.
    6.Karihtala P,Soini Y:Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies.Apmis 2007;115:81-103.
    7.Finkel T:Reactive oxygen species and signal transduction.IUBMB Life 2001;52:3-6.
    8.Liu H,Colavitti R,Rovira,Ⅱ,Finkel T:Redox-dependent transcriptional regulation.Circ Res 2005;97:967-974.
    9.Fruehauf JP,Meyskens FL,Jr.:Reactive oxygen species:a breath of life or death? Clin Cancer Res 2007;13:789-794.
    10.Finkel T,Holbrook NJ:Oxidants,oxidative stress and the biology of ageing.Nature 2000;408:239-247.
    11.Zelko IN,Marian TJ,Folz RJ:Superoxide dismutase multigene family:a comparison of the CuZn-SOD(SOD1),Mn-SOD(SOD2),and EC-SOD (SOD3)gene structures,evolution,and expression.Free Radic Biol Med 2002;33:337-349.
    12. Cheng GC, Schulze PC, Lee RT, Sylvan J, Zetter BR, Huang H: Oxidative stress and thioredoxin-interacting protein promote intravasation of melanoma cells. Exp Cell Res 2004; 300: 297-307.
    13. DeYulia GJ, Jr., Carcamo JM, Borquez-Ojeda O, Shelton CC, Golde DW: Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling. Proc Natl Acad Sci U S A 2005; 102: 5044-5049.
    14. Ferraro D, Corso S, Fasano E, Panieri E, Santangelo R, Borrello S, Giordano S, Pani G, Galeotti T: Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene 2006; 25: 3689-3698.
    
    15. Mates JM, Sanchez-Jimenez FM: Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 2000; 32: 157-170.
    
    16. Martindale JL, Holbrook NJ: Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 2002; 192: 1-15.
    17. Rudolph J: Redox regulation of the Cdc25 phosphatases. Antioxid Redox Signal 2005; 7: 761-767.
    18. Xu Q, Konta T, Nakayama K, Furusu A, Moreno-Manzano V, Lucio-Cazana J, Ishikawa Y, Fine LG, Yao J, Kitamura M: Cellular defense against H2O2-induced apoptosis via MAP kinase-MKP-1 pathway. Free Radic Biol Med 2004; 36: 985-993.
    19. Minetti M, Mallozzi C, Di Stasi AM: Peroxynitrite activates kinases of the src family and upregulates tyrosine phosphorylation signaling. Free Radic Biol Med 2002; 33: 744-754.
    20. McCubrey JA, Lahair MM, Franklin RA: Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 2006; 8: 1775-1789.
    21. Bickers DR, Athar M: Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 2006; 126: 2565-2575.
    22. Mantovani G, Maccio A, Madeddu C, Mura L, Gramignano G, Lusso MR, Massa E, Mocci M, Serpe R: Antioxidant agents are effective in inducing lymphocyte progression through cell cycle in advanced cancer patients: assessment of the most important laboratory indexes of cachexia and oxidative stress. J Mol Med 2003; 81: 664-673.
    23. Devi GS, Prasad MH, Saraswathi I, Raghu D, Rao DN, Reddy PP: Free radicals antioxidant enzymes and lipid peroxidation in different types of leukemias. Clin Chim Acta 2000; 293: 53-62.
    24. Hileman EO, Liu J, Albitar M, Keating MJ, Huang P: Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol 2004; 53: 209-219.
    25. Wu XJ, Kassie F, Mersch-Sundermann V: The role of reactive oxygen species (ROS) production on diallyl disulfide (DADS) induced apoptosis and cell cycle arrest in human A549 lung carcinoma cells. Mutat Res 2005; 579: 115-124.
    26. Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P: Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood 2003; 101: 4098-4104.
    27. Park SY, Chang I, Kim JY, Kang SW, Park SH, Singh K, Lee MS: Resistance of mitochondrial DNA-depleted cells against cell death: role of mitochondrial superoxide dismutase. J Biol Chem 2004; 279: 7512-7520.
    28. Behrend L, Henderson G, Zwacka RM: Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 2003; 31: 1441-1444.
    29. Shacter E, Williams JA, Hinson RM, Senturker S, Lee YJ: Oxidative stress interferes with cancer chemotherapy: inhibition of lymphoma cell apoptosis and phagocytosis. Blood 2000; 96: 307-313.
    30. Davies KJ: The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 1999; 48: 41-47.
    31. Kong Q, Beel JA, Lillehei KO: A threshold concept for cancer therapy. Med Hypotheses 2000; 55: 29-35.
    32. Cejas P, Casado E, Belda-Iniesta C, De Castro J, Espinosa E, Redondo A, Sereno M, Garcia-Cabezas MA, Vara JA, Dominguez-Caceres A, Perona R, Gonzalez-Baron M: Implications of oxidative stress and cell membrane lipid peroxidation in human cancer (Spain). Cancer Causes Control 2004; 15: 707-719.
    33. Randerath K, Randerath E, Smith CV, Chang J: Structural origins of bulky oxidative DNA adducts (type II I-compounds) as deduced by oxidation of oligonucleotides of known sequence. Chem Res Toxicol 1996; 9: 247-254.
    34. Lloyd DR, Phillips DH, Carmichael PL: Generation of putative intrastrand cross-links and strand breaks in DNA by transition metal ion-mediated oxygen radical attack. Chem Res Toxicol 1997; 10: 393-400.
    35. Kuchino Y, Mori F, Kasai H, Inoue H, Iwai S, Miura K, Ohtsuka E, Nishimura S: Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature 1987; 327: 77-79.
    36. Copeland WC, Wachsman JT, Johnson FM, Penta JS: Mitochondrial DNA alterations in cancer. Cancer Invest 2002; 20: 557-569.
    37. Jackson AL, Loeb LA: The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res 2001; 477: 7-21.
    38. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA: Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 2000; 28: 1456-1462.
    39. Stadtman ER: Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 1990; 9: 315-325.
    40. Carmody RJ, Cotter TG: Signalling apoptosis: a radical approach. Redox Rep 2001; 6: 77-90.
    41. Higuchi Y: Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem Pharmacol 2003; 66: 1527-1535.
    42. Kroemer G, Dallaporta B, Resche-Rigon M: The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 1998; 60: 619-642.
    43. Kroemer G, Reed JC: Mitochondrial control of cell death. Nat Med 2000; 6: 513-519.
    44. Sugiura K: Effect of hydrogen peroxide on transplanted rat and mouse tumours. Nature 1958; 182: 1310-1311.
    45. Mealey J, Jr.: Regional infusion of vinblastine and hydrogen peroxide in tumor-bearing rats. Cancer Res 1965; 25: 1839-1843.
    46. Kaibara N, Ikeda T, Hattori T, Inokuchi K: Experimental studies on enhancing the therapeutic effect of mitomycin-C with hydrogen peroxide. Jpn J Exp Med 1971; 41: 323-329.
    47. Stegman LD, Zheng H, Neal ER, Ben-Yoseph O, Pollegioni L, Pilone MS, Ross BD: Induction of cytotoxic oxidative stress by D-alanine in brain tumor cells expressing Rhodotorula gracilis D-amino acid oxidase: a cancer gene therapy strategy. Hum Gene Ther 1998; 9: 185-193.
    48. Fang J, Sawa T, Akaike T, Maeda H: Tumor-targeted delivery of polyethylene glycol-conjugated D-amino acid oxidase for antitumor therapy via enzymatic generation of hydrogen peroxide. Cancer Res 2002; 62: 3138-3143.
    49. Fang J, Deng D, Nakamura H, Akuta T, Qin H, Iyer AK, Greish K, Maeda H: Oxystress inducing antitumor therapeutics via tumor-targeted delivery of PEG-conjugated D-amino acid oxidase. Int J Cancer 2008; 122: 1135-1144.
    50. Yoshikawa T, Kokura S, Tainaka K, Naito Y, Kondo M: A novel cancer therapy based on oxygen radicals. Cancer Res 1995; 55: 1617-1620.
    51. Sawa T, Wu J, Akaike T, Maeda H: Tumor-targeting chemotherapy by a xanthine oxidase-polymer conjugate that generates oxygen-free radicals in tumor tissue. Cancer Res 2000; 60: 666-671.
    52. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W: Superoxide dismutase as a target for the selective killing of cancer cells. Nature 2000; 407: 390-395.
    53. Bladier C, Wolvetang EJ, Hutchinson P, de Haan JB, Kola I: Response of a primary human fibroblast cell line to H2O2: senescence-like growth arrest or apoptosis? Cell Growth Differ 1997; 8: 589-598.
    54. Suhara T, Fukuo K, Sugimoto T, Morimoto S, Nakahashi T, Hata S, Shimizu M, Ogihara T: Hydrogen peroxide induces up-regulation of Fas in human endothelial cells. J Immunol 1998; 160: 4042-4047.
    55. Yamakawa H, Ito Y, Naganawa T, Banno Y, Nakashima S, Yoshimura S, Sawada M, Nishimura Y, Nozawa Y, Sakai N: Activation of caspase-9 and -3 during H2O2-induced apoptosis of PC12 cells independent of ceramide formation. Neurol Res 2000; 22: 556-564.
    56. Nathan CF, Cohn ZA: Antitumor effects of hydrogen peroxide in vivo. J Exp Med 1981; 154: 1539-1553.
    57. Ben-Yoseph O, Ross BD: Oxidation therapy: the use of a reactive oxygen species-generating enzyme system for tumour treatment. Br J Cancer 1994; 70: 1131-1135.
    58. McCord JM: The evolution of free radicals and oxidative stress. Am J Med 2000; 108:652-659.
    59. Tanaka S, Akaike T, Fang J, Beppu T, Ogawa M, Tamura F, Miyamoto Y, Maeda H: Antiapoptotic effect of haem oxygenase-1 induced by nitric oxide in experimental solid tumour. Br J Cancer 2003; 88: 902-909.
    60. Iyer AK, Khaled G, Fang J, Maeda H: Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11: 812-818.
    61. Maeda H: The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41: 189-207.
    62. Vicent MJ, Duncan R: Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol 2006; 24: 39-47.
    63. Zalipsky S: Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjug Chem 1995; 6: 150-165.
    64. Konno R, Yasumura Y: D-amino-acid oxidase and its physiological function. Int J Biochem 1992; 24: 519-524.
    65. Fang J, Akaike T, Maeda H: Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment. Apoptosis 2004; 9: 27-35.
    66. Sahoo SK, Sawa T, Fang J, Tanaka S, Miyamoto Y, Akaike T, Maeda H: Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor-targeting capacity. Bioconjug Chem 2002; 13: 1031-1038.
    67. Fang J, Sawa T, Akaike T, Greish K, Maeda H: Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer 2004; 109: 1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700