准干式深孔加工系统及其冷却润滑机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深孔加工是一种专业化程度较高的机械加工技术,现代深孔加工技术都需采用专用的深孔刀具(如枪钻、内排屑深孔钻、套料钻等)及深孔机床来进行加工,并需使用大量的高压切削油来实现冷却、润滑以及排屑,同时延长刀具使用寿命,提高生产效率和表面质量。然而切削液的使用也带来了负面影响,如对环境的污染、工人健康的危害以及加工成本的增加。
     随着人们的环保意识增强,环保法规日趋严格,使得制造企业面临更大的成本压力,因而,无危害的绿色切削技术成为21世纪机械制造领域的焦点和重点。准干式加工成为深孔加工技术的重要发展方向之一。
     OoW(微量油膜附水滴)技术是一种新型绿色切削加工技术。它通过复合喷雾装置使用高压冷空气和油的表面张力将微量可自然降解油剂(植物油和酯油)以及少量水,形成油膜包覆水滴的雾状切削液。OoW技术廉价、无污染、无公害及勿需回收,因此对OoW技术在深孔钻削中的应用进行深入研究,有重要的理论意义和实用价值。
     本论文以内排屑深孔钻削加工为研究对象,将准干式切削技术与深孔加工技术相结合,采用OoW切削液来实现深孔钻削加工的排屑及刀具的冷却、润滑,实现准干式深孔加工。该方法可以节约能源、降低生产成本、减少环境污染,具有良好的经济效益和社会效益。
     本论文的主要内容和结论:
     (1)通过对国内外绿色切削技术的深入分析,构建了基于OoW技术的准干式深孔加工系统物理模型:以DF系统为载体,以OoW切削液为冷却润滑介质,结合振动切削技术构建准干式深孔加工系统。
     (2)研究了OoW切削液作切削冷却润滑介质的作用机理。OoW切削液作切削冷却润滑介质主要是以气相填充毛细管的,由于没有液相的渗入和蒸发阶段,填充毛细管的时间大大缩短,提高了切削液渗透性。又由于OoW切削液的植物油分子在毛细管部位产生了吸附,同时在刀-屑表面上发生了化学反应,形成,金属皂膜具有减摩抗磨作用的,从而降低了刀-屑间的摩擦系数。OoW切削液具有较强的对流换热能力,这是其直接冷却作用;另外,由于OoW切削液的润滑作用减少了切削热的产生,也间接起到了冷却作用;这样在其双重作用下,切削温度得到了显著降低。另外,还进行了深孔加工系统排屑特性以及刀具技术等研究,为OoW切削液作冷却润滑介质的绿色切削技术的应用提供了理论依据。
     (3)进行了OoW切削液作冷却润滑介质的钻削试验研究。为OoW切削液作冷却润滑介质的绿色切削技术的应用提供了基础。
     从机理理论分析和试验结果来看,OoW切削液起到了良好的润滑作用。基于OoW技术准干式深孔加工系统作为清洁、有效的切削方式有着很大的应用前景。
     本文创新点:
     (1)首次在分析OoW切削液冷却润滑机理时,引入毛细管理论和化学吸附理论,并以此为依据对OoW切削液各组份所起的作用进行了详细分析。
     (2)建立了准干式深孔加工系统喷射泵的数学模型,并根据数学模型对传统喷射泵结构提出了改造的方法。
     (3)完整地构建了基于OoW技术的准干式深孔加工系统的实用物理模型
The deep-hole drilling is a special machining technology.The special deep-holedrill(for example gun-drills,BTA, the ejector drill, the core drills and so on)andmachine tool must be used in the modern deep-hole drilling, and the massivecutting-oil must be used to cooled drill and removed chip in the processing. Thecutting-oil is also used to extend tool life and enhance machining efficiency andsurface finish during drilling.However, conventional cutting fluid also have bad effecton environmental、health problem and the increase of production costs.
     With environment protection awareness enhanced and laws enforced, thenegative influence that the cutting fluid application brought has become a great barrierfor mechanical industry development. Green cutting has become focus of attention inmanufacture field in the21th century. The investigation of pollution-free andeco-friendly green cutting technique has been predominant emphasis in each country.So that, the near dry drilling will be one important development trend of the deep holedrilling technology.
     Because Oils on water (OoW) cutting fluid is cheap, pollution-free, eco-friendlyand no recovery, the cutting technology that OoW cutting fluid is used as coolants andlubricants is a new green cutting technique. It utilizes compressing air strong role,minim nature decomposable plant oil and water create minim Oils on water (OoW)cutting fluid in the specialness multipart nozzles. According above, a research onaction mechanism and experiments with OoW as coolant and lubricant in deep-holedrilling system is issued. Researching results of theory significance and applicationvalue have been drawn.
     The dissertation takes the inner chip-removing deep-hole drilling as the researchobject, unifying the near dry-machining technology,the OoW cutting fluid is used tolubricated and cooled cutter and help to remove chip.The research result show that itsaves the energy, reduces the production cost and environmental pollution, has thegood economic and the social efficiency.Main contents and conclusions:
     (1) The near dry deep hole drilling system with OoW technology has been established base on analyzing the green cutting technique. In the the system, OoWcutting fluid is used to lubricated and cooled cutter, DF (Double Feeder) system isused as foundation.
     (2)The investigation of action mechanism is researched with OoW cutting fluidsas coolants and lubricants. OoW cutting fluids fills up capillary in cutting zone withgaseous state because of canceling infiltration and evaporation explosion of liquidphase, and OoW cutting fluids penetrates capillary time less than liquid phase cuttingfluids. As the plant oil molecular will generate absorption and chemical reaction thatOoW cutting fluids forms boundary lubrication layer in capillary because of severetool-chip contact friction mechanical action and clear metal surface catalysis. Theplant oil of OoW cutting fluids will react to metal surface to generate metallic soaps,and metallic soaps can weaken the interactivity between tool bulk material and chip.OoW cutting fluids has high force-convection heat transfer coefficient and directlyreduces cutting temperature, and OoW cutting fluids has direct cooling action, thestress and length of tool-chip interface are reduced by OoW cutting fluids lubricatingaction, and the cutting thermal is decreased, and OoW cutting fluids has indirectcooling action. Under the conditions of indirect and direct cooling action, the cuttingtemperature is reduced obviously. This topic study chip-removeal Characteristics ofthe deep hole machining system and related tools and technology, provide atheoretical basis to the application of OoW cutting fluid as cooling the lubricationmedium for green cutting technology.
     (3) The research on experiment with OoW cutting fluids as coolant and lubricantis taken as important problem to research. It provides an instance of green cuttingtechnology application of OoW cutting fluids as coolant and lubricant.
     Mechanism theory analysis and experimental results are taken into account, theOoW cutting fluid has well lubrication effect. Accordingly, the near dry deep-holedrilling System with OoW technology as cleaning effective drilling mode has greatpossibilities
     Innovations:
     (1) In analyzing the action mechanism of OoW cutting fluid, the capillary theoryand the theory of chemical adsorption are introduced pioneeringly. As a result, the roleof its components is discussed in detail.
     (2) The mathematical model of injection pump has been established for near-drydeep-hole drilling system. And based on the model,method is put forward for the structure modification of traditional jet pump.
     (3) A complete and practical physical model of near-dry deep-hole drillingsystem is constructed base on OoW technology in this dissertation.
引文
[1]刘志峰.干切削加工技术及应用.北京.机械工业出版社,2005:1~15.
    [2]路冬等.绿色切削加工技术的研究现状与发展.工具技术.2005,39.3:3~6
    [3]里约热内卢环境与发展宣言,1992
    [4]王世清.深孔加工技术.北京.石油工业出版社,1993.
    [5] SIED深孔制造装备项目评估.上海融之杰投资咨询有限公司,2002
    [6]霍尔登J斯温哈特.深孔加工[M].北京:国防工业出版社,1974:1~128.
    [7] N.R. Dhar,M.T. Ahmed, S. Islam. An experimental investigation on effect ofminimum quantity lubrication in machining AISI1040steel. International Journal ofMachine Tools&Manufacture.2007,47:748~753
    [8]周春宏,赵汀,姚振强.最少量润滑切削技术(MQL)——经济有效的绿色制造方法.机械设计与研究.2005,21.5:81~83
    [9]孙建国.论绿色切削液的必要性和可行性.润滑与密封.2001,2:68~74
    [10]贾晓明.未来切削液展望.工具技术.2003,32.1:5~7
    [11]席俊杰、陈华辉、吴中.绿色切削技术的发展及应用.润滑与密封.2006,2:181~183
    [12]韩荣第、吴健.绿色切削技术探讨.工具技术,2006,40.12:8~10
    [13]王爱玲、魏源迁、赵跃文等.油膜附水滴加工液的物理特性与加工性能,金刚石与磨料磨具工程.2004,1:5~9
    [14] E·Brinksmeier, A·Walter, R·Janssen and P. Diersen, Aspects of coolinglubrication reduction in machining advanced materials, Proc·Instn·Mech Engrs·,1999,vol·213part B:769~777·
    [15]Ju C, Keranen L,Haapala K R. Issues associated with MQL implementation:Effect on peripheral milling process Performance and impact on machiningeconomies. American Society of Mechanical Engineers, Manufacturing EngineeringDivision,MED, v16-l,2005:3~12
    [16]王爱玲,魏源迁,祝锡晶等.油膜附水滴加工液的磨削性能.机械工程学报.2005,1:208~211.
    [17] WeinertK, Inasaki I, Sutherland JW. Dry machining and minimum quantitylubrication[J]. CIRP Annals Manufacturing Technology,2004,53(2):511~537.
    [18] Heinemann R, Hinduja S, Barrow G, et a.l Effect of MQL on the tool life ofsmall twist drills in deep-hole drilling [J]. International Journal of MachineTools&Manufacture,2006,46(1):1~6.
    [19] Ge Bofe,i Wang Huabin. Inspiration of sustainable development to teaching ofindustrial design [J].Journal of Jiangsu University:Natural Science Edition,2006,27(5A):52~54.(In Chinese).
    [20] LopezDe Lacalle LN, Angulo C, Lamikiz A. Experimental and numericalinvestigation of the effect of spray cutting fluids in high speed milling[J].Journal ofMaterials Processing Technology,2006,172(1):11~15.
    [21] SaikawaY, Ichikawa T, Aoyama T, et a.l High speed drilling and tapping usingthe technique of spindle through MQL supply [J]. Key Engineering Materials,2004(257/258):559~56.
    [22] Itoigawa F, Childs T H C, Nakamura T. Effects and mechanisms in minimalquantity lubrication machining of an aluminum alloy [J].Wear,2006(260):339~344.
    [23]郑祝堂.论绿色切削加工技术.新彊石油学院学报.2001,6:63~66
    [24]刘飞、曹华军、张华等编著.绿色制造的理论与技术.科学工业出版社.2005:195~196.
    [25]王峻.现代深孔加工技术.哈尔滨.哈尔滨工业大学出版社,2004.
    [26]刘兆华.创新思维与SIED刀具设计理念.电产品开发与创新.2005,4:9~11
    [27] Z.M.Wang E.O.Ezugwu,D.Su. Advances in the precision machining of smalldeep holes. Materials Processing Technology68(1997):257~261.
    [28]薛万夫等.振动深孔加工技术(下)机械工艺师.1992,12:56~59
    [29]白万民等.深孔钻削时的力学特性分析.新技术新工艺2000,6:19~21
    [30]樊铁镔.发展前景良好的DF系统深孔钻.工具技术.1997,2:30~32
    [31]樊铁镔.深孔加工技术综述,工具技术.1994,5:12~15
    [32]朱林.深孔钻削稳定性的研究及应用.机械工程学报.1998,3:101~106
    [33]朱林,赵洪兵.深孔钻的设计与研究.西安工业学院学报.1998,19(3):53~57
    [34]樊铁镔.DF系统振动深孔钻的设计与应用.工具技术.1998,3:19~25
    [35]高本河.深孔振动钻削的断屑条件研究.机械设计与研究.1999,3:63~64
    [36]高本河.振动钻削改善排屑效果机理的研究.机械设计与研究.2000,3:281~283
    [37]杨兆军,王立江.振动钻孔的国内外研究现状.吉林工业大学学报.1994,24(2):119~123.
    [38]罗生梅.单管内排屑深孔钻排屑问题若干解决方法.新技术新工艺.2009,2:78~79.
    [39]李言,薛万夫.钛合金小直径深孔的振动钻削研究.陕西机械学院学报.1989,5(3):209~213.
    [40]苟琪,李云芳.枪钻低频振动钻孔断屑的研究.工具技术.1997,31(7):7~11.
    [41] Zhang Deyuan. Investigation of Chip in Vibration Drilling. Int.J.Mach.ToolsManufact.1998.38(3):165~176.
    [42] Reimund Neugebauer,Andrea Stoll. Ultrasonic application in drilling.MaterialsProcessing Technology.2004(149)633~639
    [43] Zhao Wansheng,Wang Zhen long. Ultrasonic and electric discharge machiningto deep and small hole on titanium alloy. Materials Processing Technology.2002,12:101~10.
    [44] H.Takeyama. Burrless Drilling by Means of Ultrasonic Vibration. Annals ofthe CIRP.1991,40(l):83~86,
    [45] U.Heisel. Ultrasonic deep hole drilling in electrolytic copper ECu57.Materials Processing Technology.2003(57):58~56.
    [46] B.Tasdelen. Studies on minimum quantity lubrication (MQL) and air coolingat drilling. Journal of Materials Processing Technology.2008,(200):339~346.
    [47] Arup Kumar Nandi. A study of drilling performances with minimum quantityof lubricant using fuzzy logic rules. Mechatronics.2009,(19):218~232
    [48] R.Heinemann. Effect of MQL on the tool life of small twist drills in deep-holedrilling. International Journal of Machine Tools&Manufacture.2006(46):1~6.
    [49]郭秀云、勾三利、梁建明等.干切削加工方法的探讨.河北建筑工程学院学报.2005,23.1:97~99
    [50]张德强.干切削加工技术的发展及应用.铝镁通讯,2004,2:44~45
    [51] T.Cselle. Rotating Tooling for Dry and High Speed Cutting. Proceeding ofGermany-France Conference on High Speed Machining.1998:85~89
    [52] C.Dunlap. Should You Try Dry?. Cutting Tool Engineering.1997,2
    [53]侯滨,陈波水,方建华.关于绿色切削液研究开发的几点思考.润滑与密封.2002(4):37~39.
    [54] William E.Lucke. Health and safety of Metalworking Fluids [J]. LubricationEngineering.1996,(8):23~27.
    [55] Radoslav Rakice,Zlata Rakice. Tribological aspects of the choice of metalworking fluid in cutting process. Journal of Materials Processing Technology.2002,(124):25~31
    [56] Motohiko Ii. Development of high water-content cutting fluids with a newconcept fire prevention and environment protection. Journal of the InternationalSocieties for Precision Engineering and Nanotechnology.2000,(24):231~236.
    [57] Zenon Pawlak,Barney E.Klamecki et al. The tribochemical and micellaraspects of cutting fluids. Tribology International38(2005):1~4.
    [58]贾晓鸣,张秀玲.复合硼酸脂添加剂在水基切削液的作用.机械制造.1996(12):23~24.
    [59]贾晓鸣,张秀玲等.硼氮型合成切削液的研究及其应用.机械工艺师.1996(9):9~10
    [60] Shane Y Hone. Advancement of economical cryonenic machining technology.Proceedings of3rdInternational Conference on Manufacturing,1995,15(12):36~40.
    [61]赵岩,马孝江.催化裂化装置高效雾化进料喷嘴的试验研究.大连:大连理工大学出版社,2003:22~26.
    [62]Haenlein. Disintegration of a liquid jet [J]. NACATN,1996,6(3):659
    [63]Xiaoping Li. Study of the jet flow of cooling in machining Part1. Theoreticanalysis. Journal of Material Processing Technology62(1996):149~156.
    [64]任家隆,邱炎宝,王波等.车削加工中射流冷却机理的探讨.华东船舶工业学院学报.1999,08:49~52
    [64]韩荣第,刘俊岩.切削液渗透毛细管的动力学模型研究润滑与密封.2005(1):37~39.
    [65] J A W ILLIAMS, D TABOR. The Role of Lubricants in Machining· Wear,1977,43:275~292·
    [66] L.DeCHIFFRE. Lubrication in Cutting—Critical Review and Experimentswith Restricted Contact Tools[J].ALSETRANSACTIONS.1980,24(3):340~344.
    [67] V.A.Godlevski, A.V. Volkvo, V.N.Latyshev. The Kinetics of LubricationPenetration Action during machining[J]. Lubrication Science.1997,9(2):127~140.
    [68] V.A.Godlevski, A.V. Volkvo, V.N.Latyshev. A Description of the LubricatingAction of the Tribo-Active components of Cutting Fluids [J]. Lubrication Science1998,11:52~62.
    [69]韩荣第.现代机械加工新技术.北京:电子工业出版社,2002·7·
    [70] Xiaoping Yang, C Richard Liu.A new stress-based model of friction behaviorin machining and its significant mi pact on residual stresses computed by finiteelement method. International Journal of Mechanical Sciences,2002,44:703~723·
    [71]刘光复,刘志峰.绿色设计与绿色制造[M].北京:机械工业出版社,2000
    [72] N.R.Dhar, M.W.Islam, S.Islam, M.A.H.Mithu. The influence of minimumquantity of lubrication (MQL) on cutting temperature, chip and dimensionalaccuracy in turning AISI-1040steel. Journal of Materials Processing Technology.2006,171:93~99
    [73] Alger S R. Mists cools the cutting edge. American Machinist.1975,15(3):25~28
    [74] W Donald, Hew son. Development of new metal cutting oils with quantifiableperformance characteristics. Lubrication Engineering.1997,8:23~28
    [75] Varadarajan AS, Philip PK, Ramamoorthy B. Investigation on hard turning withminimal fluid application (HTMF) and its comparison with dry and wet turning. Jof Mat Proc Tech.2002,12:193~200.
    [76] M. Rahman, A. Senthil Kumar, M.U. Salam. Experimental evaluation on theeffect of minimal quantities of lubricant in milling. International Journal of MachineTools&Manufacture.2002,42:539~547
    [77]A. Attanasio, M. Gelfi, C. Giardini, C. Remino. Minimal quantity lubrication inturning: Effect on tool wear. Wear.2006,260:333~338
    [78] Braga Durval. Using a minimum quanitity of lubricant and a diamond coatedtool in drilling of aluminum silicon alloys [J]. J of Mat Proc Tech.2002,122:127~138.
    [79]李新龙.绿色切削中的MQL技术.航空精密制造技术.2005,2:24~27
    [80]陈德成、铃木康夫、酒井克彦.微量润滑油润滑和冷风冷却加工法对高硅铝合金切削面的影响.机械工程学报.2000,36.11:70~74
    [81]陈德成、铃木康夫、加茂进.冷风切削加工对不锈钢加工表面的效果.机械工程学报.1999,35.4:93~95
    [82]陈德成、铃木康夫、酒井克彦.复合喷雾加工法在切削加工过程中的冷却和润滑效果.中国机械工程.2000,11.9:1035~1038
    [83]王爱玲,魏源迁等.论生态加工与环境保护.新技术新工艺.2004,11:28~30.
    [84]何立东闫通海王凡.汽液两相流润滑机理的试验研究.润滑与密封.1996(1):33~36
    [85]刘存祥,胡荣生.切削区的喷雾冷却.工具技术.1996(4):2~4
    [86]文东辉,刘献礼等.硬态切削中的冷却润滑技术.制造技术与机床.2001.12:28~31
    [87] M.Mazurkiewicz. High pressure lubricooling machining of metals, Pat No.5,September(1992)
    [88] M.Mazurkiewicz, Z. Kubala et al. Metal machining with high-pressure water jetcooling assistance—a new possibility, J.Engng Ind,111,(1989):7~12
    [89] Podgorkov V.V.et al: Patent of USSR#1549721MCI B23Q. Method of cuttingin application. in Russia(1992).
    [90] Godlevski V.A.et al. Water steam lubrication during machining Tribologia.1998(11):890~901.
    [91] В.А.ГОДЛЕВСКИЙ,.А.В.ВОЛКОВ.ПРОНИКАЮЩАЯ СПОСОБНОСТЬСМАЗОЧНЫХСРЕД КАКФАКТОР ЭФФЕКТИВНОСТИПРОЧЕССА ОБРАБОТКИ РЕЗАНИЕМ.ТРЕНИЕИИЗНОС,ТОМ,16.No.5(1996),(9~10):938~949.
    [92] В.А.ГОДЛЕВСКИЙ.ПРИМЕНЕНИЕ ВОДЯНОГО ПАРА В КАЧЕСТВЕСОТС ПРИ ОБРАБОТКЕ МЕТАЛЛОВ РЕЗАНИЕМ.ВЕСТНИК МАШИНОСТРОЕНИЯ.1999,No.7:35~39
    [93]李洪钢译.В.А.ГОДЛЕВСКИЙ.采用蒸汽作为金属切削加工冷却润滑剂.国外金属加工.2000(2):39~43
    [94]韩荣第,胡广义.用水蒸汽作冷却润滑剂的切削试验研究.现代制造工程.2003(2):12~13
    [95] DF喷射泵内力学特性研究.现代制造工程.2005,12:112~113
    [96](苏)Е.Я.索科洛夫.喷射器[M].1977:155~180。
    [97]屠大燕.流体力学与流体机械[M].北京:中国建筑工业出版社,1994:1~212.
    [98]徐向荣.流体力学[M].北京:科学出版社,2005:1~256.
    [99]张平宽,王慧霖.深孔加工负压外排屑探讨[J].太原重型机械学院学报.1996,(2):14~16.
    [100]蒋炳炎.DF系统深孔钻的分流比.中南矿冶学院学报.1994,8:502~504
    [101]樊铁镔.内排屑深孔钻导向块的合理分布及设计.工具技术.1997,9:25~28.
    [102]曾万里.关于磨损与润滑的机理问题.贵州农机化.2006,3:20~24.
    [103]王恒.含硫极压抗磨剂在绿色润滑剂基础油中的摩擦学性能研究[D].西安:长安大学,2005.
    [104]胡志孟.羟基和硫化植物油脂肪酸的摩擦学研究[D].上海:上海大学,1999.
    [105]杨汉民,何东平.植物油制备绿色环保润滑油的展望[J].中国油脂,2003,28(11):65~67.
    [106]郑发正等.植物油的粘温性与润滑性[J].合成润滑材料.2009,4:38~40.
    [107]李清华.新型植物油改性润滑剂的研究与开发[D].上海:上海大学,2009.
    [108] J.A.Williams,D.Tabor. The role of lubricants in machining.Wear.43(1977):275~292
    [109]Godleviski V.A,Volkov A.V.The Kinetics of Lubricant Penetration Actionduring machining. Lubrication Science9-2,February1997.(9):127~140
    [110]韩荣第,胡广义.用水蒸汽作冷却润滑剂的切削试验研究.现代制造工程.2003(2):12~13
    [111] L.DeCHIFFRE Lubrication in Cutting—Critical Review and Experiments withRestricted Contact Tools[J].ALSETRANSACTIONS.1980,05:340~344.
    [112] V.A.Godlevski, A.V. Volkvo, V.N.Latyshev. The Kinetics of LubricationPenetration Action during machining[J]. Lubrication Science.19979,2:127~140.
    [113] S.N.波斯特尼柯夫编著,章慈定译.摩擦和切削及润滑中的电物理及电化学现象.国防工业出版社.1983:120~171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700