分布式发电接入电力系统若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在电力市场环境和可持续发展战略影响下,分布式发电技术以其独有的安装灵活、供电方便、环保等特点引起全球范围内的关注。在集中式发电和大电网基础上,大力发展分布式发电(Distributed Generation,DG)技术,建立混合型网络成为未来电力系统发展的必然趋势。因此,全面了解不同类型分布式发电技术,对分布式发电接入电力系统合理规划,研究其在电力系统应用和影响具有重要的理论意义和实践价值。本文在概述了不同类型分布式发电技术特点基础上,对联网DG混合电力系统规划运行、DG在电力系统中辅助服务和可靠性方面应用、DG对系统运行负面影响及解决方案进行了深入研究。主要研究成果如下:
     1)针对分布式发电与大电网联合供电发展趋势,建立了联网分布式发电系统规划模型。根据各种输电网情况:输电网全年正常运行且电价固定、考虑输电网停运状态、输电网实时电价,应用启发式算法得到了对应情况下联合系统最优供电方案,讨论了各种因素对DG选型、容量配置等优化结果的影响。根据负荷曲线和各类型分布式能源资源分布数据,得到了不同类型DG和输电网小时功率输出运行结果。规划结果和运行性能充分说明了分布式电源之间及其与输电网联合供电的经济、可靠互补优势,为DG成为可行的电网扩容计划提供了理论论证,并对实际含分布式发电配电系统规划提供了重要的指导意义。
     2)辅助服务市场正在建立和发展,本文讨论了分布式发电提供AGC辅助服务的潜力。通过引入“微型电网”概念,在配电系统范围内建立了含分布式发电系统AGC调度模型。模型求解得到了DG参与AGC辅助服务市场前后AGC调度分配结果,结果显示了分布式电源参加AGC服务的经济性能;在选择控制参数优良的分布式电源类型后,频率,非计划交换电量响应仿真结果说明了DG提供AGC服务的技术优势以及发电机类型对AGC运行性能的影响。进一步,基于不同类型机组对控制性能指标——区域控制偏差(ACE)的贡献系数,提出了对AGC辅助服务费用简单直观的比例分摊方法,在一定程度上体现了市场环境下费用分摊的公平性。
     3)在电力市场环境,用户对配电系统可靠性要求日益提高的情况下,提出了DG作为配电系统故障下的备用机组应用。通过权衡比较购买DG备用费用增加和负荷中断费用减少,得到了最优容量配置。其中,购买备用费用计及了因机组自身FOR造成的失机组损失费用;可中断费用根据不同负荷类型停电损失函数(SCDF)精确得到。算例显示该模型具有较好的经济效益,DG备用容量满足了不同负荷类型的可靠性需求,极大减少了传统统一可靠性指标下的备用交叉补贴。通过计算DG做后备机组前后负荷点可靠性指标和系统中断费用,结果说明DG能够有效降低可中断费用、缩短负荷点平均停运时间和停运持续时间,并对靠近DG的负荷可靠性影响更大。
     4)风力发电机等可再生能源发电接入系统比例逐年增加,针对风力发电随机波动引起的电压波动问题,建立了系统无功设备最优改造计划。通过引入静止无功补偿器(SVC),配电网已有柴油发电机作为快速补偿设备,根据蒙特卡罗仿真得到的各种风力发电状态,确定了SVC最优安装位置,各无功源最优出力。仿真算例表明,风力发电机具有功率输出随机,发出有功同时消耗无功功率特点,通过安装足够的SVC容量,可以大幅度降低系统网损和电压偏差,达到克服电压波动,提高系统电能质量目的。
     5)针对风力发电机接入系统引起的无功支持费用分摊问题,采用基于公理的Shapley值分摊方法实现了无功服务费用在不同风力发电机组间的分摊。该方法满足了经济学公理特征,分摊结果公平、合理,易被市场参与者接受,对风力发电机合理的接入位置和容量提供了经济信号,对分布式发电机联网收费问题提供了解决方案。
Distributed generation (DG) has been widely used in the deregulated electric power systems for its immense benefits. Studies of distributed generation and its application in electric power system become more important to utilize DG efficient and refine power system operation. Based on the introduction of various types of distributed generators, a systematic study on planning for grid-connected distributed generation system, the potential of DG providing ancillary service, the backup generation application, negative impacts of DG on power system and its control strategy is carried out in this dissertation. Contributions are summarized as follows,
     1) Following the trend of developing grid-connected distributed generation system, an optimal generation expansion planning model is presented in this paper. The system optimal results and operation performances under various transmission system scenarios are determined by using heuristic method. Effects of transmission system outage indexes, real time price and randomness of renewable generation resource on the system design are discussed. Optimal results and hourly system operation performance suggest the advantages of grid-connected distributed generation system. They also provide guide for expansion planning of distribution system with DG.
     2) The potential benefits of DG providing ancillary services are discussed. By introducing "microgrid" concept, a novel AGC dispatch model in distributed system is proposed. By comparing the optimal AGC dispatch results in the two cases with and without DGs, the economic prominence of DG to provide AGC services is discussed. By selecting DGs with good regulation characteristics, simulations to frequency and inadvertent interchange are performed. The results indicate the technical feasibility of DG to provide AGC services too. Based on the contribution of generators to the Area Control Error (ACE), the cost of AGC services is allocated by a transparent proportional method.
     3) Distribution system reliability becomes important in electric power market. This paper introduces DGs as backup generators in distribution system. The optimal reserve procurement model aims to balance the interruption cost and reserve purchased cost. The effect of Forced Outage Rate (FOR) of distributed generators is included in reserve purchase cost, while the interruption cost is calculated accurately according to the Sector Customer Damage Function (SCDF) of different types of load. Case studies show that the model increases the economic benefits and decreases the crossover subsidy of reserve caused by some traditional reserve procurement method. The optimal results suggest DG can improve load and system reliability effectively, especially for those loads near DGs.
     4) With the numbers of wind power generators increasing rapidly, they may cause voltage variations due to the random-like outputs of wind turbines. To solve this problem, we introduce Static Var Compensator (SVC) into distribution systems, and combine the reactive power support from distributed diesel units for voltage control. An optimal reactive power planning model is proposed in this paper. Monte-Carlo simulation is used to simulate the uncertainty of wind power generation. The locations and the outputs of SVCs and distributed diesel units are determined by hybrid encoding genetic algorithm. Case studies show WPG has characteristics of generating active power randomly and absorbing reactive power at the same time. By installing enough capacities of SVC, the system loss and voltage deviation can be reduced significantly.
     5) Since the main purpose of installing SVCs is to regulate the voltage variations caused by wind turbines, a shapley value criterion based on cooperative theory is proposed to allocate the reactive power support cost. The allocation result is equit and acceptable to all participants. It provides some economic signals to decision-makers to determine the appropriate locations of DGs and provides a new way to allocate some grid-connected cost caused by DG.
引文
[1] Lawrence R, Middlekawff S. Distributed generation-the new guy on the block. IEEE industry applications society 50~(th) annual: IEEE, 2003: 223-228.
    [2] 王庆一.能源形势评估.能源政策研究,2001:1-11.
    [3] Willis H L, Scott W G. Distributed power generation planning and evaluation. New york: Marcel Decker, Inc, 2000.
    [4] Borbely A M, Kreider J F. Distributed Generation. Boca Raton London &New York Washington, D. C. CRC Press. American, Nov, 2003.
    [5] 王建,李兴源,邱晓燕.含分布式发电装置的电力系统研究综述.电力系统自动化,2005,29(24):90-97.
    [6] EI-Khattam W, Salama M M A . Distributed generation technologies, definitions and benefits. Electric power system research, 2004, 71: 119-128.
    [7] 梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述.电网技术,2003,27(12):71-75.
    [8] 吴靖,江昊.分布式发电系统的应用及前景.农村电气化,2003,7:19-20.
    [9] Peter A D, Jay M. Understanding the potential benefits of distributed generation on power delivery systems. Rural electric power conference: IEEE, 2001, Vol 29: A2/1-A213.
    [10] Maurhoff B, Wood G. Dispersed generation-reduce power costs and improve service reliability. Rural electric power conference: IEEE, 2000: C5/1-C5/7.
    [11] Kaarsberg T M, Roop J M. Combined heat and power-how much carbon and energy can manufacturers save. IEEE AES system magine, 1999, Jan: 7-12.
    [12] Hadjsaid N, Canard J F, Dumas F. Dispersed generation increases the complexity of controlling, protecting and maintaining the distribution system. IEEE computer applications in power, 1999, Vol 12: 22-28.
    [13] Regulatory issues, http://www.distributed-generation.com/regulatory issues.htm. 2005.
    [14] 美国与欧洲分布式发电的比较. http://www.opet.org.cn/article/amuropele.ht m. 2003.
    [15] 何季明.分布式电源技术展望.东方电气评论,2003,17(1):9-14.
    [16] 欧盟成员国热电发展战略的若干建议.http://www.opet.org.cm/article/uropchp.htm.2000.
    [17] 徐二树.分散能源的研究与应用.保定:华北电力大学,2003.
    [18] 梁振锋,杨晓萍,张娉.分布式发电技术及其在中国的发展.西北水电,2006,Vol 1:51-53.
    [19] 中国热电联产发展前景的分析.http://info.hvacr.hc360.com/2006/09/20081972321.shtml. 2006.
    [20] 国家发改委张国宝副主任在国际可再生能源大会部长论坛上的讲话.http://www.china5e.com/dissertation/newenergy/20051108182019.html. 2005
    [21] 中国热电联产的现状与市场潜力.http://energy.icxo.com/htmlnews/2004/06/28/253000.htm. 2004.
    [22] 梁志鹏,谢正武.中国分布式发电的机遇和挑战.节能与环保,2004,11:11-13.
    [23] 丁明,王敏.分布式发电技术.电力自动化设备,2004,24(7):31-36.
    [24] Barker P P, Mello R W d. Determining the impact of distributed generation on power systems. I. Radial distribution system. Power engineering society summer meeting: IEEE, 2000, Vol 3: 1645-1656.
    [25] Doyle M T. Reviewing the impacts of distributed generation on distribution system protection. Power engineering society summer meeting: IEEE, 2002, Vol 1: 103-105.
    [26] Slootweg J G, Kling W L. Impacts of distributed generation on power system transient stability. Power engineering society summer meeting: IEEE, 2002, Vol 2: 862-867.
    [27] McCusker S A, et al. Distributed Utility Planning Using Probabilistic Production Costing and Generalized Benders decomposition. IEEE transactions on power systems, 2002, 17(2): 497-505.
    [28] Dolezal J, Santarius R Tlusty J, Valouch V, Vybiralik F. The effect of dispersed generation on power quality in distribution system. Quality and Security of Electric Power Delivery Systems. CIGRE/PES 2003. CIGRE/IEEE PES international symposium. 2003: 204-207.
    [29] Kojovic L. Impact of DG on voltage regulation. Power engineering society summer meeting: IEEE, 2002, Vol 1: 97-102.
    [30] Girgis A, Brahma S. Effect of distributed generation on protective device coordination in distribution system. Power Engineering, LESCOPE '01. 2001 large engineering systems conference: 2001: 115-119.
    [31] Slootweg J G, de Haan S W H, Polinder H, Kling W L. Modeling new generation and storage technologies in power system dynamics simulations, power engineering society summer meeting: IEEE, 2002, Vol 2: 868-873.
    [32] Chowdhury A A, Agarwal S K, Koval D O. Reliability modeling of distributed generation in conventional distribution systems planning and analysis. IEEE transactions on industry applications, 2003, 39(5): 1493-1498.
    [33] Agustoni A, Brenna M, Faranda R, Yironi E, Pincella C, Simioli G.Constraints for the interconnection of distributed generation in radial distribution systems. 10th international conference on harmonics and quality of power: IEEE, 2002, Vol 1: 310-315.
    [34] Resource Dynamics Corporation. DG interconnection technology-will the black box get the job done. 2002.
    [35] Kroposki B, Basso T, DeBlasio R. Interconnection Testing of Distributed Resources. power engineering society general meeting, June, 2004: IEEE, 2004, Vol 2: 1892-1897.
    [36] Jun Y, Chang L C, Diduch C. Recent developments in islanding detection for distributed power generation. 2004 large engineering systems conference on power engineering, July 28-30, 2004: IEEE, 2004: 124-128.
    [37] 小型天然气热电联产示范.http://www.bjenergy.net.cn/Public/Pub News.asp?NewsID=NEWS20030731000043.2003.
    [38] 一种广泛适用的新型动力设备——美国STM动力公司外燃机.http://www.china5e.com/dissertation/gasturbines/20030731140424.html.2003.
    [39] 郑健超.电力前沿技术现状和前景.中国电力,1999.32(10):9-12.
    [40] Gilbert M. Renewable and efficient electric power systems. Wiley-IEE Press, 2004.
    [41] National Renewable Energy laboratory. Gas-fired distributed energy resource technology characterizations, 2003.
    [42] 我国发展电力的一个方向.http://www.jxsina.com/xxzx/lwj/dldx/200505/260.html. 2005.
    [43] 张颖颖,曹广益,朱新坚.燃料电池——有前途的分布式发电技术.电网技术,2005,29(2):57-61.
    [44] 国家发展和改革委员会.国家科学技术部.光伏/风力及互补发电村落系统.北京:中国电力出版社,2004,2.
    [45] 纪先兵,蒲超选,谢建,等.太阳能热发电技术.阳光能源,2005,4:66-68.
    [46] 赵军,李新国,陈雁.太阳能热发电技术及其在我国的应用前景.太阳能,2005,4.
    [47] 大型风力发电场规划和运行技术研究.http://www.newenergy.org.cn.html/2005-620056667.html. 2005.
    [48] 梅柏杉.风力发电技术.电气时空,2002,2:20-21.
    [49] 地热能——地心热的开发利用.http://www.china5e.com/dissertation/newenergy/0003.htm.
    [50] 海洋能源发电.http://211.167.68.243/chinese2/power/ocean.html#b.
    [51] 生物质气化发电.http://www.newenergy.org.cn/html/2005-6/20056689.htm.1. 2005.
    [52] 小水电.http://www.cws.net.cn/water-power/.
    [53] 王敏,丁明.含分布式电源的配电系统规划.电力系统及其自动化学报,2004,6(16):5-8.
    [54] 王成山,陈恺,谢莹华,等.配电网扩展规划中分布式电源的选址和定容.电力系统自动化,2006,30(3):38-43.
    [55] Khattam W E, et al. Optimal investment planning for distributed generation in a competitive electricity market. IEEE transactions on power systems, 2004, 19(3): 1674-1684.
    [56] Khattam W E, et al. An integrated distributed generation optimization model for distribution system planning. IEEE transactions on power system, 2005, 20(2): 1158-1165.
    [57] Chedid R, et al. Unit sizing and control of hybrid wind-solar power systems. IEEE transactions on energy conversion, 1997, 12(1): 79-85.
    [58] Giraud F, et al. Steady-state performance of a grid-connected rooftop hybrid wind photovoltaic power system with battery storage. IEEE transactions on energy conversion, 2001, 16(1): 1-7.
    [59] 马立克,王成山.计及风能/光能混合发电系统的配电系统可靠性分析.电力系统自动化,2005,29(23):33-39.
    [60] Grigg C, Wong P, et al. The IEEE Reliability test system-1996. IEEE transactions on power systems, 1999, 14(3): 1010-1020.
    [61] 王锡凡.电力系统规划基础.北京:中国电力出版社,1997.
    [62] http://www.nrel.gov/homer/,2006,5.
    [63] 于洋.发电系统中长期备用计算及其可靠性评估.杭州:浙江大学,2005.
    [64] 别朝红,王锡凡.蒙特卡罗法在评估电力系统可靠性中的应用.电力系统自动化,1997,21(6):68-75.
    [65] http://www.iso-ne.com.
    [66] Methodology for quantifying economic and environmental benefits of microgrids. The university of Manchester, 2005, 7.
    [67] Simburger E J, Cretcher C K. Load following impacts of a large wind farm on an interconnected electric utility system. IEEE transactions on power apparatus and systems, 1983, Vol. PAS-102 (3): 687-692.
    [68] Chan S M, et al. Operations requirements of utilities with wind power generation. IEEE Trans on power Apparatus and Systems, 1983, Vol. PAS-102 (9): 2850-2860.
    [69] Bose A, et al. Impact of new energy technologies on generation scheduling. IEEE transactions on power apparatus and systems, 1983, Vol. PAS-103(1): 66-71.
    [70] Bae I S, et al. Optimal operating strategy for distributed generation considering hourly reliability worth. IEEE transactions on power systems, 2004, 19(1): 287-292.
    [71] Hegazy A R, et al. Adequacy assessment of distributed generation systems using Monte Carlo Simulation. IEEE transactions on power systems, 2003, 18(1): 48-52.
    [72] Pipattanasomporn M, Wi llingham M, Rahman S. Implications of on-site distributed generation for commercial/industrial facilities. IEEE transactions on power systems, 2005, 20(1): 206-212.
    [73] Feijoo A E, Cidras J, Domelas J L G. The potential of distributed generation to provide ancillary services. IEEE power engineering society summer meeting, July 16-20, 2000: IEEE, 2000, Vol3: 1762-1767.
    [74] Verbic G; Gubina F. Cost based models for the power reserve pricing of Frequency control. IEEE transactions on power systems, 2004, 19(4): 1853-1857.
    [75] Hirst E, Kirby B. Costs for Electric-Power Ancillary Services. Electricity journal, 1996, 9(10): 26-30.
    [76] Prowse D C H. Experience with joint AGC regulation. IEEE transactions on power systems, 1994, 9(4): 1974-1979.
    [77] Jaleeli N, VanSlyck L S. NERC's New Control Performance Standards. IEEE transactions on power systems, 1999, 14(3): 1092-1099.
    [78] Kirischen D, Strbac G. Fundamentals of Power system economics. UK: John Wiley&Sons, Ltd, 2004.
    [79] Borges C L T, Falcao D M. Impact of distributed generation allocation and sizing on reliability, losses and voltage profile. 2003 IEEE power tech conference proceedings, June 23-26, 2003, Bologna: IEEE, 2003, Vol 2: 23-26.
    [80] Rajabi-Ghahnavie A, Fotuhi-Firuzabad M, Pamiani M. Impact of distributed generation resources on customer interruption cost. 2004 international conference on power system technology, Nov 21-24, 2004: IEEE, 2004, Vol 1: 856-861.
    [81] Pipattanasompom M, Willingham M, Rahman S. Implications of on-site distributed generation for commercial/industrial facilities. IEEE transactions on power systems, 2005, 20(1): 206-212.
    [82] Bae I S, Kim J O, Kim J C, Singh C. Optimal operating strategy for distributed generation considering hourly reliability worth. IEEE transactions on power systems, 2004, 19(1): 287-292.
    [83] Chaitusaney S, Yokoyama A. An appropriate distributed generation sizing considering recloser fuse coordination. 2005 IEEE/PES transmission and distribution onference and exhibition: IEEE, 2005: 1-6.
    [84] 王建学,王锡凡,张显.电力市场中弹性运行备用研究.中国电机工程学报, 2005, 25(18): 20-27.
    [85] Tollefson G, Billinton R, Wacker G, Chan E, Aweya J. A Canadian customer survey to assess power system reliability worth. IEEE transactions on power systems, 1994, 9(1): 443-450.
    [86] Flynn M, Sheridan W P, Dillon J D, O'Malley M J. Reliability and reserve in competitive electricity market scheduling. IEEE transactions on power systems, 2001, 16(1): 78-87.
    [87] IEEE Std. 493-1990, IEEE recommended practice for the design of reliable Industrial and comm. ercial power systems (ANSI).
    [88] Goel L, Billinton R. Determination of reliability worth for distribution system planning. IEEE transactions on power delivery, 1994, 9(3): 1577-1583.
    [89] Allan R N, Billinton R, Sjarief I, Goel L, So K S. A reliability test system for educational purposes-basic distribution system data and results. IEEE transactions on power systems, 1991, 6(2): 813-820.
    [90] 郭永基.电力系统可靠性分析.北京:清华大学出版社,2003.
    [91] 王志群,朱守真,周双喜.分布式发电对配电系统电压分布影响.电力系统自动 化,2004,28(16):56-60.
    [92] Kojovic L, WIF. Impact of DG on Voltage regulation. 2002 IEEE power engineering society summer meeting: IEEE, 2002, Vol 1: 97-102.
    [93] Kim J E, et al. Methods of determining the introduction limit of dispersed generation systems in a distribution system from the viewpoint of voltage regulation. Electrical engineering in japan, 1997, 120(4): 48-58.
    [94] Kim J E, et al. Impacts of Dispersed storage and generation on the sending-end voltage in a distribution substation and a method of their introduction limits. Proceedings of ICEE, July, 19-21, 1995, Korea: 1995: 89-93.
    [95] Choi J H, Kim J C. Advanced voltage regulation method at the power distribution systems Interconnected with dispersed storage and generation systems. IEEE trans power delivery, 2000, 15(2): 691-696.
    [96] Sott N, Son D J A, Morrell J E. Use of load control to regulated voltage on Distribution networks with embedded generation, IEE transactions on power systems, 2002, 17(2): 510-515.
    [97] 文劲宇,江振华,姜霞,等.基于遗传算法的无功优化在鄂州电网中的实现.电力系统自动化,2000,24(2):45-47.
    [98] 张勇军,任震,等.基于灾变遗传算法的无功规划优化.电力系统自动化,2002,26(23):29-32.
    [99] 周双喜,杨彬.实现无功优化的新算法——遗传算法.电力系统自动化,1995,19(11):19-23.
    [100] Feijoo A E, Cidras J and Dornelas J L. Wind speed simulation in wind farms for steady-state security assessment of electrical power systems. IEEE transactions on energy conversion, 1999, 14(4): 1582-1588.
    [101] Carpinelli G, Gelli G, Pilo F, Russo A. Distributed generation siting and sizing under uncertainty. 2001 IEEE Porto Power Tech conference, Sep 10-13, 2001: IEEE, 2001, Vol 4: DRS4-376.
    [102] European Wind Turbine Testing Procedure Developments. DDSI Danka Services International, 2001.
    [103] Baran M E and Wu F F. Optimal capacitor placement on radial distribution systems. IEEE Transactions on power delivery, 1989, 4(1): 725-734.
    [104] Zhong J, Bhattacharya K. Toward a competitive market for reactive power. IEEE transactions on power systems, 2002, 17(4): 1206-1215.
    [105] 毕鹏翔,苗竹梅,刘健.浮点数编码的无功优化遗传算法.电力系统自动化设备,2003,24(9):42-45.
    [106] 周明,孙树栋.遗传算法原理及应用.国防工业出版社,2001.
    [107] 张振安,唐国庆.基于小生境技术改进遗传算法在供电规划中的应用.江苏电机工程,2005,24(2):30-33.
    [108] Baran M E and Wu F F. Network Reconfigulation in distribution systems for loss reduction and load balancing. IEEE transactions on power Delivery, 1989, 4(2): 1401-1407.
    [109] Young H P. Handbook of Game Theory. Elsevier Science, 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700