QTL作图的自适应惩罚最大似然方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多人类疾病和动植物的重要性状都是数量性状,而数量性状大多是由少数的主基因、多数的微效基因及其相互作用所控制。为了对动植物数量性状遗传改良和人类疾病的预防与控制,首先需要检测这些基因及其相互作用。
     随着生物技术的进步,海量SNP标记的出现和数量性状的上位性检测,使得遗传模型中变量的个数远大于样本容量,致使常用的QTL定位方法不敷应用。为此,Zhang和Xu(2005)将贝叶斯压缩估计思想与最大似然方法结合,提出了惩罚最大似然方法。由于方法可行性强和运算速度快,得到广泛使用。然而,实际数据分析时发现:该方法检测紧密连锁QTL和微效QTL时功效偏低,且位置和效应的估计值具有一定的偏性。为克服该缺点,本研究在QTL效应估计时引入了偏性矫正系数;为了自动化实现参数估计过程,将偏性矫正系数改进为偏性矫正函数,这称为自适应惩罚最大似然方法。通过Monte Carlo模拟数据(500次重复)、145个大麦DH系粒重数据集和277个玉米自交系开花期数据集验证了新方法。主要研究结果如下:
     1、在惩罚函数中引入偏性矫正系数,并将每个QTL效应方差的先验分布由均匀分布改为逆卡方分布,改变了QTL效应及其先验分布方差的估计量。Monte Carlo模拟研究表明:新方法在检测效应相同符号相反两紧密连锁QTL的功效从25%增加到88%;对于小效应QTL检测功效从60%增加到80%;位置与效应估计值标准差变小偏性降低;假阳性率保持较低水平;计算速度较快。通过145个大麦DH群体粒重的QTL定位与交互验证试验证实了新方法的可靠性。
     2、为自动化地实现上述参数估计过程,将偏性矫正系数改为偏性矫正分段函数,称为自适应惩罚最大似然方法。Monte Carlo模拟研究表明:QTL检测功效进一步提高,紧密连锁基因的检测功效大约为98%;对于表型方差的贡献率小于1%的QTL检测功效均高于95%;QTL效应的标准差和均方误差进一步减少,假阳性率为1.2%。大麦数据集交互验证试验表明:新方法优于LASSO方法;玉米数据集的分析结果表明:新方法比混合线性模型和压缩混合线性模型两方法的模型适合性更好。
     在海量数据分析、上位性检测、新基因挖掘和全基因组标记辅助育种中,新方法提供了新途径。
Most diseases in human and important traits in plants and animals are quantitative traits, controlled by several major genes, many minor genes and their interactions. To improve these important traits in animals and plants and control these diseases in human, the prerequisite for the improvement and control is to detect the above genes and their interactions.
     With the rapid development of biological techniques, the applications of large scale SNP markers and the detection of epistasis result in the situation that the number of variables in the genetic model is much larger than sample size. The case makes the traditional QTL mapping methods infeasible. Therefore, Zhang and Xu (2005) incorporated the idea of Bayesian sgrinkage estimation approach into maximum likelihood framework in order to develop penalized maximum likelihood method. The method with simple algorithm and quick speed may be widely adopted. However, lower power in the detection of linked QTL with effects in opposite directions and minor QTL, along with biased estimates for QTL effects and posittions, is observed in real data analysis. To overcome the issues, biasedness correction coefficient for QTL effect is incorporated into the estimation of QTL effect. To carry out the correction automatically, the above coefficient is further changed into a founction about QTL effect. This method is called adaptive penalized maximum likelihood method. A Monte Carlo simulation experiment, along with a Barley kernel weight dataset of145doubled lines and maize flowering time dataset of277inbred lines, was used to validate the proposed methods in this study. The main results were as follows.
     1. Biasedness correction coefficients are incorporated into penalized function, and uniform distribution for prior variance of QTL effect is replaced by inverse chi-square prior distribution. Thus, various estimations for QTL effect and its prior variance are obtained in this study. Results from Monte Carlo simulation experiment show that the power is increased from25%to88%in the detection of linked QTL with effects in opposite directions and from60%to80%in the detection of minor QTL; the biasedness and standard deviation of position and effects of QTL are decreased; lower false positive rate and quick speed remain. The proposed approach is validated by mapping QTL for kernel weight in145barley doubled lines and its cross validation experiment.
     2. To perform the above method automatically, the above coefficient should be replaced by a function of QTL effect. This method calls adaptive penalized maximum likelihood method. Results from Monte Carlo simulation experiments show that the power for detection of the above QTL is further increased to more than95%; standard deviation and mean squared error of QTL effect is further decreased; and false positive rate is1.2%. Results from cross-validation experiment of145doubled lines in barley show that the new method is better than the LASSO method; and ones from real data analysis of maize dataset show that the new method has better model goodness-of-fit than mixed linear model and compression mixed linear model approaches.
     In high-throughout data analysis, epistatic detection, novel gene mining and genome-wide marker assisted selection, new method provides a new approach.
引文
1. 盖钧镒,章元明,王建康.QTL混合遗传模型扩展至2对主基因-多基因时的多世代联合分析[J].作物学报,2000,26(4):385-391
    2. 高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179
    3. 高用明.复杂上位性及其与环境互作的QTL定位方法和杂种优势预测研究[D].杭州:浙江大学,2001
    4. 何小红,徐辰武,蒯建敏,顾世梁,李韬.数最性状基因作图精度的主要影响因子[J].作物学报,2001,27(4):469-475
    5. 姜长鉴,莫惠栋.质量一数量性状的遗传分析Ⅳ.极大似然法的应用[J].作物学报,1995,21:641-648
    6. 孔繁玲.植物数量遗传学[M].北京:中国农业出版社,2006
    7. 李梦.水稻分蘖功能作图和压缩混合线性模型方法优化的研究[D].南京:南京农业大学,2012
    8. 李玉梅.关于定位人类复杂性状基因位点的连锁不平衡指数研究[D].长沙:中南大学,2009
    9. 吕海燕.作物品种群体基因挖掘新方法研究[D].南京:南京农业大学,2010
    10.惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较[J].作物学报,1997,23(2):129-136
    11.莫惠栋.质量-数量性状的遗传分析1.遗传组成和主基因基因型鉴别[J].作物学报,1993a,19(1):1-6
    12.莫惠栋.质量-数量性状的遗传分析Ⅱ.世代平均数和遗传方差[J].作物学报,1993b,19(3):193-200
    13.钱能.陆地棉遗传多样性与育种目标性状基因(QTL)的关联分析[D].南京:南京农业大学,2009
    14.沈圣泉.水稻若干重要性状的QTL主效应、上位性效应及GE互作效应分析[D].杭州:浙江大学,2003
    15.王平荣.水稻824ys黄绿叶突变基因的图位克隆及功能分析[D].成都:四川农业大学,2010
    16.王建康,盖钧镒.利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应[J].遗传学报,1997,24(5):432-440
    17.王建康,盖钧镒.数量性状主-多基因混合遗传的P1、P2、F1、F2和F2:3联合分析方法[J].作物学报,1998,24(6):651-659
    18.汪霞,徐宇,李广军,李河南,章元明.大豆株高QTL定位及Meta分析[J].南京农业大学学 报,2011,34(3):13-19
    19.危文亮,赵应忠.分子标记在作物育种中的应用[J].生物技术通报,2000,2:12-16
    20.吴常信.分子数量遗传学与动物育种[J].遗传,1997,19:1-3
    21.徐云碧,朱立煌.分子数量遗传学[M].1994,北京:中国农业山版社
    22.张天真.作物育种学总论[M].2003,北京:中国农业出版社
    23.张学勇,童依平,游光霞,郝晨阳,盖红梅,王兰芬,李滨,董玉琛,李振声.选择牵连效应分析:发掘重要基因的新思路[J].中国农业科学,2006,39(8):1526-1535
    24.章元明,盖钧镒.数量性状主基因-多基因混合遗传分析中鉴定多基因存在的IECM算法[J].生物数学学报,1999,14(4):429-434
    25.章元明,盖钧镒.利用P1 F1 P2 F2和F2:3家系的联合分离分析[J].西南农业大学学报,2000a,22(1):6-9
    26.章元明,盖钧镒.利用DH或RIL群体鉴定QTL体系并估计其遗传效应[J].遗传学报,2000b,27(7):634-640
    27.章元明.作物QTL定位方法研究进展[J].科学通报,2006,51(19):2223-2231
    28.张月提.作物品种群体抗性性状基因座定位的新方法研究[D].南京:南京农业大学,2011
    29.张祖新,刘纪.分子标记在作物育中的应用[J].湖北农学院学报,1998,13(3):228-234
    30.钟金城.分子数量遗传学和动物分子育种[J].草食家畜,1997,94:6-10
    31.庄杰云,樊叶杨,吴建利,饶志明,夏英武,郑康乐.水稻CMS-WA育性恢复基因的定位[J].遗传学报,2001a,28(2):129-134
    32.主杰云,樊叶杨,吴建利,夏英武,郑康乐.应用二种定位法比较不同世代水稻产量性状QTL的检测结果[J].遗传学报,2001,28(5):458-464
    33. Akaike H. Information theory and an extension of the maximum likelihood principle [M]. In: Petrox B N, Caski F (eds). Second international symposium on information theory. Akademiai Kiado:Budapest,1973:267-281
    34. Allard R W. Genetic basis of the evolution of adaptedness in plants [J], Euphytica,1996,92(1-2): 1-11
    35. Aulchenko Y S, Koning D J, Haley C. Genomewide rapid association using mixed model and regression:a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis [J]. Genetics,2007,177:577-585
    36. Ball R D. Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian information criterion [J]. Genetics,2001,159:1351-1364
    37. Ball R D. Statistical analysis and experimental design [C]. In:Oraguzie N C, A Rikkerink E H, Gardiner S E, de Silva H N (eds.). Association mapping in plants, Springer Sciences + Business Media, LLC,2007:133-196
    38. Benjamini Y, Hochberg Y. Controlling the false discovery rate:a practical and powerful approach to multiple testing [J]. Journal of the Royal Statistical Society.Series B (Methodological),1995: 289-300
    39. Boer M P, Braak C J F, Jansen R C.A penalized likelihood method for mapping epistatic quantitative trait loci with one-dimensional genome searches [J]. Genetics,2002,162:951-960
    40. Bostein B, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment polymorphisms [J]. Am J Hum Genet,1980,32:314-331
    41. Broman K W, Speed T P. A model selection approach for the identification of quantitative trait loci in experimental crosses [J]. J R Stat Soc B,2002,64:641-656
    42. Buckler E S, Holland J B, Bradbury P J, Acharya C B, Brown P J, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz J C, et al. The genetic architecture of maize flowering time [J]. Science,2009, 325:714-718
    43. Burr B, Burr F A, Thompson K H, Albertson M C, Stuber C W. Gene mapping with recombinant inbreds in maize [J]. Genetics,1988,118:519-526
    44. Burr B, Burr F A. Recombinant inbreds for moleeular mapping in maize:theoretical and practical considerations [J]. Trends Genet,1991,7:55-60
    45. Carlborg O, Andersson L, Kinghorn B. The use of agenetoc algorithm for simultaneous mapping of multiple interacting quantitative traits loci [J]. Genetics,2000,155:2003-2010
    46. Carlborg O, Haley C S. Epistasis:too often neglected in complex trait studies [J]. Nat Rev Genet, 2004,5:618-625
    47. Causse M, Rocher J P, Henry A M, Charcosset A, Prioul J L, Vienne D. Genetic dissection of the relationship between carbon metabolism and early growth in maize with emphasis on key-enzyme loci [J]. Molecular Breeding,1995,1(3):259-272
    48. Chanock S J, Manolio T, Boehnke M, Boerwinkle E, Hunter J D, Thomas G, Hirschhorn N J, Abecasis G, Altshuler D, Bailey-Wilson E J, et al. Replicating genotype-phenotype associations [J]. Nature,2007,447(7145):655-660
    49. Chen X, Zhao F, Xu S. Mapping environment specific quantitative trait loci [J]. Genetics,2010,186: 1053-1066
    50. Cheverud J M, Routman E J. Epistasis and its contribution to genetic variance components [J]. Genetics,1995,139:1455-1461
    51. Comstock R E, Robinson H F. The components of genetic variance in population [J]. Biometrics, 1948,4:254-266
    52. Comstock R E, Robinson H F. Estimation of average dominance of genes. In:Gowen J W eds. Heterosis [M]. Ames:Iowa State College Press,1952:494-516
    53. Coulson A, Sulston J, Brenner S, Karn J. Toward a physical map of the genome of the nematode Caenorhabditis elegans [J]. Proc Natl Acad Sci USA,1986,83:7821-7825
    54. Cowen N M. The use of replication progenies in marker-based mapping of QTLs [J]. Theor Appl Genet,1988,75:857-862
    55. Doerge R W. Mapping and analysis of quantitative trait loci in experimental populations [J]. Nat Rev Genet,2002,3:43-52
    56. Devlin B, Roeder K.. Genomic control for association study [J]. Biometrics,1999,55:997-1004
    57. East E M. Studies on size inheritance in Nicotiana [J]. Genetics,1916,1:164-176
    58. Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action [J]. Genetics,1987, 116(1):113-125
    59. Falconer D S, Mackay T F C. Introduction to Quantitative Genetics [M]. Longman Group, Harlow, England,1996
    60. Elkind Y, Cahaner A. A mixed model for the effects of single gene, polygenes and their interation on quantitative traits.1. The model and experimental design [J]. Theor Appl Genet,1986,72:377-383
    61. Elkind Y, Cahaner A. A mixed model for the effects of single gene, polygenes and their interaction on quantitative traits.2.The effects of the major gene and polygene on tomato fruit softness [J]. Heredity,1990,64:205-213
    62. Elston R C, Stewart J A. General model for the genetic analysis of pedigree data [J]. Hum Hered, 1971,21:523-542
    63. Elston R C, Stewart J A. The analysis of quantitative traits for simple genetic models from parental F, and backcross data [J]. Genetics,1973,73:695-711
    64. Elston R C. The genetic analysis of quantitative trait difference between two homozygouse lines [J]. Genetics,1984,108:733-744
    65. Emerson R A, East E M. The inheritance of quantitative characters in maize [M]. Bull Agr Exp Sta Nebrask, Res Bull,1913
    66. Falconer D S. Introduction to quantitative genetics [M]. Edinburgh/London:Oliver & Boyd.1960a
    67. Falush D, Stephens M, Pritchard J K. Inference of population structure using multilocus genotype data:linked loci and correlated allele frequencies [J]. Genetics,2003:164:1567-1587
    68. Fan J Q, Li R Z. Variable selection via nonconcave penalized likelihood and its oracle properties [J]. J Am Stat Assoc,2001,96(456):1348-1360
    69. Fernando R L, Stricker C, Elston R C. The finite polygenic mixed modal:an alternative formulation for the mixed modal of inheritance [J]. Theor Appl Genet,1994,88:573-580
    70. Figueiredo M A T. Adaptive sparseness for supervised learning [J]. IEEE trans Pattern Anal Mach Intell,2003,25:1151-1159
    71. Fisher R A. The correlations between relatives on the supposition of Mendelian inheritance [J]. Trans Roy Soc Edinb,1918,52:399-433
    72. Fisher R A, lmmer F R, Tedin O. The genetical interpretation of statistics of the third degree in the study of quantitative inheritance [J]. Genetics,1932,17:107-124
    73. Fisher R A. Yates F. Statistical tables for biological, agricultural and medical research (3rd ed.) [M]. London:Oliver & Boyd.1948 [1938]:26-27
    74. Flint-Garcia S A, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plants [J]. Annual Review of Plant Biology,2003,54:357-374
    75. Flint-Garcia S A, Thuillet A C, Yu J, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population:a high-resolution platform for quantitative trait locus dissection [J]. Plant J,2005,44:1054-1064
    76. Gai J Y, Wang J K. Identification and estimation of a QTL model and its effects [J]. Theor Appl Genet,1998,97(7):1162-1168
    77. Galton F. Regression towards mediocrity in hereditary stature [J]. Journal of Anthropological Institute,1885,15:246-263
    78. George E I, McMulloch R E. Variable selection via Gibbs sampling [J]. J Am Stat Assoc,1993,91: 883-904
    79. Griffing B. A generalized treatment of the use of diallel crosses in quantitative inheritance [J]. Heredity,1956,10:31-50
    80. Green P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination [J]. Bismetrika,1995,82:711-732
    81. Guo Z. Novel method for increasing efficiency of quantitative trait locus mapping [D]. PhD thesis Kansas State University:Manhattan, Kansas,2007
    82. Haley C S, Knott S A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers [J]. Heredity,1992,69:315-324
    83. Haldane J B S. Mathematical theory of natural and artificial selection I-V [M]. Trans Cambridge Philos Soc,1924-1927
    84. Hardy H G. Mendelian proportions in a mixed population [J]. Science,1908,28:49-50
    85. Hayman B 1. The theory and analysis of diallel crosses Ⅰ, Ⅱ, Ⅲ [J].Genetics,1954,1958,1960,39: 789-809,43:63-85,45:155-172
    86. Hazel L N. The genetic basis for constructing selection indexes [J]. Genetics,1943,28:476-490
    87. He X H, Zhang Y M. Mapping epistatic QTL underlying endosperm traits using all markers on the entire genome in random hybridization design [J]. Heredity,2008,101:39-47
    88. He X H, Qin H D, Hu Z L, Zhang T Z, Zhang Y M. Mapping of epistatic quantitative trait loci in four-way crosses [J]. Theor Appl Genet,2011,122:33-48
    89. Heath S C. Markov chain Monte Carlo segregation and linkage analysis for oligogenic models [J]. Am J Hum Genet,1997,61:748-760
    90. Hill A P. Quantitative linkage:A statistical procedure forits detection and estimation [J]. Ann Hum Genet Lond,1975,38:439-449
    91. Hocking R R. The analysis and selection of variables in linear regression [J]. Biometrics,1976,32: 1-49
    92. Hoerl A E, Kennard R W. Ridge regression:biased estimation for nonorthogonal problems [J]. Technometrics,1970,12:55-67
    93. Hoeschele I. Genetic evaluation with data presenting evidence of mixed major gene and polygenic inheritance [J]. Theor Appl Genet,1988a,76:81-92
    94. Hoeschele I. Statistical techniques for detection of major genes in animal breeding data [J]. Theor Appl Genet,1988b,76:311-319
    95. Hoggart C J, Whittaker J C, De I M, Balding D J. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies [J]. PLoS Genet,2008,4(7):e1000130
    96. Holm S. A simple sequentially rejective multiple test procedure [J]. Scandinavian Journal of Statistics,1979:65-70
    97. Holland J B. EPISTACY:A SAS program for detecting two-locus epistatic interactions using genetic marker information [J]. J Hered,1998,89:374-375
    98. Hyne V, Kearsey M J, Pike D J, Snape J W. QTL analysis:unreliability and bias in estimation procedures [J]. Molecular Breeding,1995,1:273-282
    99. Iwata H, Uga Y, Yoshioka Y, Ebana K, Hayashi T. Bayesian association mapping of multiple quantitative trait loci and its application to the analysis of genetic variation among Oryza sativa L. germplasms [J]. Theor Appl Genet,2007,114:1437-1449
    100. Iwata H, Ebana K, Fukuoka S, Jannink J L, Hayashi T. Bayesian multilocus association mapping on ordinal and censored traits and its application to the analysis of genetic variation among Oryza sativa L. germplasms [J]. Theor Appl Genet,2009,118:865-880
    101. Jiang C, Zeng Z B. Multiple trait analysis of genetic mapping for quantitative trait loci [J]. Genetics, 1995,140:1111-1127
    102. Jansen R C.A general mixture model for mapping quantitative trait loci by using molecular markers [J]. Theor Appl Genet,1992,85:252-260
    103. Jansen R C. Interval mapping of multiple quantitative trait loci [J]. Genetics,1993,135:205-211
    104. Jansen R C. Controlling the type Ⅰ and type Ⅱ errors in mapping quantitative trait loci [J]. Genetics, 1994,138:871-881
    105. Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci [J]. Theor Appl Genet,1989,78:613-618
    106. Jansen R C, Stam P. High resolution of quantitative traits into multiple loci via interval mapping [J]. Genetics,1994,136:1447-1455
    107. Jasienski M, Ayala F J, Bazzaz F A. Phenotypic plasticity and similarity of DNA among genotypes of an annual plant [J]. Heredity,1997,78 (2):176-181
    108. Kang H M, Zaitlen N A, Wade C M, Kirby A, Heckerman D, Daly M J, Eskin E. Efficient control of population structure in model organism association mapping [J]. Genetics,2008,178:1709-1723
    109. Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci [J]. Genetics, 1999,152:1203-1216
    110. Kearsey M J, Hyne V. QTL analysis:a simple 'marker regression'approach [J]. Theor Appl Genet, 1994,89:698-702
    111. Kempthorne O. An introduction to genetic statistics [M]. Iowa:Iowa State University Press.1957
    112. Kilpikari R, Sillanpaa M J. Bayesian analysis of multilocus association in quantitative and qualitative traits [J]. Genet Epidemiol,2003,25:122-135
    113. Knapp S J, Bridges W C, Birkes D. Mapping quantitative trait loci using molecular marker linkage maps [J]. Theor Appl Genet,1990,79:583-592
    114. Knott S A, Haley C S, Thanpson R. Methods of segregation analysis for animal breeding data:a comparison of power [J]. Heredity,1991,68(3):299-320
    115.Knowler W C, Williams R C, Pettitt D J, Steinberg A G. Gm3; 5,13,14 and Type 2 diabetes mellitus:an association in American Indians with genetic admixture [J]. Am J Hum Genet,1988,43: 520-526
    116. Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations [J]. Genomics,1987,1(2):174-181
    117. Lander E S, Botstein D. Mapping medelian factor underlying quantitative traits using RFLP linkage maps [J]. Genetics,1989,121:185-199
    118. Lander E S, Schork N J. Genetic dissection of complex traits [J]. Science,1994,265(5181): 2037-2048
    119. Lander E S, Kruglyak L. Genetic dissection of complex traits guidelines for interpreting and reporting linkage results [J]. Nat Genet,1995,11:241-247
    120. Li C C. First course in population genetics [M]. CA:Pacific Grove,1975
    121. Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping [J]. Genetics,2007,175:361-374
    122. Loisel P, Goffinet B, Monod H, Montes D O G. Detecting a major gene in an F2 population [J]. Biometrics,1994,50:512-516
    123. Luo L, Mao Y, Xu S. Correcting the bias in estimation of genetic variances contributed by individual QTL [J]. Genetica,2003,119:107-113
    124. Lush J L. Animal breeding plan [M]. Ames:Aowa State Univ Press,1937
    125. Lu H Y, Li M, Li G J, Yao L L, Lin F, Zhang Y M. Multiple loci in silico mapping in inbred lines [J]. Heredity,2009,103:346-354
    126. Lynch M, Walsh J B. Genetics and analysis of quantitative traits [M]. Sinauer Associates, Sunderland, MA,1998
    127. Malmberg R L, Held S, Waits A, Mauricio R. Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grownin thefield and in the greenhouse [J]. Genetics,2005,171:2013-2027
    128. Mather K. Variation and selection of polygenic characters [J]. J Genet,1941,41:159-193
    129. Mather K. Biometrical Genetics [M]. London:Methuen & Co. Ltd.1949
    130. Martinez O, Curnow R N. Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers [J]. Theor Appl Genet,1992,85:480-488
    131. Mcrnillan I, Robertson A. The power of methods for the detection of major genes affecting quantitative traits [J]. Heredity,1974,32:349-356
    132. McMullen M D, Kresovich S, Villeda H S, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, et al. Genetic properties of the maize nested association mapping population [J]. Science,2009,325:737-740
    133. Melchinger A E, Utz H F, Piepho H P, Zeng Z B, Schon C C. The role of epistasis in the manifestation of heterosis:a systems-oriented approach [J]. Genetics,2007,177:1815-1825
    134. Meng X L, Rubin D B. Maximun likelihood estimation via the ECM algorithm:A general framework [J]. Biometrika,1993,80:267-278
    135. Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps [J]. Genetics,2001,157:1819-1829
    136. Moreno-Gonzalez J. Efficiency of generations for estimating marker-associated QTL effects by multiple regressions [J]. Genetics,1993,135:223-231
    137. Morton N E, MacLean C J. Analysis of family resemblance. Complex segregation of quantitative traits [J]. Am J Hum Genet,1974,26:489-503
    138. Monforte A J, Tanksley S D. Fine mapping of a QTL from Lycopersicon hirsute chromosome 1 affecting fruit characteristics and agronomic traits:breaking linkage among QTLs affecting different traits and disseetion of heterosis for yield [J]. Theor Appl Genet,2000,100:471-479
    139. Nilsson-Ehle H. Kreuzungsuntersuchungen anHafer und Weizen [J]. Lunds Univ series 2,1909, 5(2):1-122
    140. Oraguzie C N, Rikkerink H E, Gardiner E S, Silva N H. Association mapping in plants [M].The Horticulture and Food Research Institute of New Zealand Ltd (Hort Research) Havelock North, New Zealand.2006:57-67
    141. Park T, Casella G. The Bayesian Lasso [J]. J Am Stat Assoc,2008,103:681-686
    142. Parisseaux B, Bernardo R. In silico mapping of quantitative trait loci in maize [J]. Theor Appl Genet,2004,109:508-514
    143. Pearson K. Skew variation in homogeneous material [J]. Philos Trans,1895, A:186-343
    144. Pearson K. Supplement to a memoir on skew variation [J]. Philos Trans,1901, A:197-443
    145. Pearson K. Second supplement to a memoir on skew variation [J]. Philos Trans,1916, A:216-429
    146. Pritchard J K, Stephens M, Rosenberg N A, Donnelly P. Association mapping in structured populations [J]. Am J Hum Genet,2000,67:170-181
    147. Pritchard J K, Wen W. Documentation for structure software:Version 2 [M]. http://pritchbsduchicag oedu/sofrware/readme_structure2_1pdf,2004
    148. Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data [J]. Genetics,2000,155:945-959
    149. Pushpendra K G, Sachin R, Pawan L K. Linkage disequilibrium and association studies in higher Plants:Present status and future prospects [J]. Plant Molecular Biology,2005,57:461-485
    150. Qin H, Guo W, Zhang Y, Zhang T. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. [J]. Theor Appl Genet,2008,117:883-894
    151. Rao S, Xu S. Mapping quantitative trait loci for ordered categorical traits in four-way crosses [J]. Heredity,1998,81:214-224
    152. Remington D L, Thornsberry J M, Matsuoka Y, Wilson L M, Whitt S R, Doebley J, Kresovich S, Goodman M M, Buckler E S, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome [J]. Proc Natl Acad Sci USA,2001,98:11479-11484
    153. Rieseberg L H, Sinervo B, Linder C R, Ungerer M C, Arias D M. Role of gene interactions in hybrid speciation:evidence from ancient and experimental hybrids [J]. Science,1996,272(5262): 741-745
    154. Rodolphe F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity [J]. Genetics,1993,134:1277-1288
    155. Satagopan J M, Yandell B S, Newton M A, Osborn T C. A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo [J]. Genetics,1996,144:805-816
    156. Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris [J]. Genetics,1923,8:552-560
    157. Schwarz G E. Estimating the dimension of a model [J]. The Annals of Statistics,1978,6:461-464
    158. Scott F. The LASSO linear mixed model for mapping quantitative trait loci [D]. PhD thesis The University of Adelaide,2007
    159. Shaffer J P. Modified sequentially rejective multiple test procedures [J]. Journal of the American Statistical Association,1986,81:826-831
    160. Sillanpaa M A, Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data [J]. Genetics,1998,148:1373-1388
    161. Sillanpaa M A, Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data [J]. Genetics,1999,151:1605-1619
    162. Sillanpaa M J, Bhattacharjee M. Bayesian association-based fine mapping in small chromosomal segments [J]. Genetics,2005,169:427-439
    163. Simko I, Costanzo S, Haynes K G, Christ B J, Jones R W. Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach [J]. Theor Appl Genet,2004,108:217-224
    164. Smith H F. A discriminant function for plant selection [J]. Ann Eugenics,1936,7:240-250
    165. Soller M, Brody T, Genizi A. In the power of experimental designs for detection of linkage between marker loci and quantitative loci in crosses between inbred lines [J]. Theor Appl Genet,1976,47: 35-39
    166. Spraque G F, Tatum L A. General vs. specific combining ability in single cross of corn [J]. J Am Soc Agron,1942,34:923-932
    167. Stephens D A, Fiseh R D. Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo [J]. Biometrics,1998,54:1334-1347
    168. StuberC W, Edwards M D, Wendel J F. Molecular-marker-facilitated investigations of quantitative trait loci in maize. Ⅱ. Factors influencing yield and its component traits [J]. Crop Sci,1987,27: 639-648
    169. Tanksley S D, Medina-Hilho H, Rick C M. Use of naturally-occurring enzyme variation to detect and map gene controlling quantitative traits in an interspecific backcross of tomato [J]. Heredity, 1982,49:11-25
    170. Tanksley S D. Mapping polygenes [J]. Annu Rev Genet,1993,27:205-233
    171. Thaller G, Hoeschelel. A Monte Carlo method for Bayesian analysis of linkage between single markers and quantitative trait loci:Ⅰ. Methodology [J]. Theor Appl Genet,1996a,93:1161-1166
    172. Thaller G, Hoeschele 1. A Monte Carlo method for Bayesian analysis of linkage between single markers and quantitative trait loci:Ⅱ. Methodology [J]. Theor Appl Genet,1996b,93:1167-1174
    173. Thoday J M. Location of polygenes [J]. Nature,1961,191:368-370
    174. Tibshirani R. Regression Shrinkage and Selection via the Lasso [J]. Journal of the Royal Statistical Society Series (Methodological),1996,58:267-288
    175. Tinker N A, Mather D E, Rossnagel B G, Kasha K J, Kleinhofs A, Hayes P M, Faik D E, Ferguson T, Shugar L P, Legge W G, et al. Regions of the genome that affect agronomic performance in two-row barley [J]. Crop Sci,1996,36:1053-1062
    176. Uimari P, Hoeschele I. Mapping linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms [J]. Genetics,1997,146:735-743
    177. Wang H, Zhang Y M, Li X, Masinde G L, Mohan S, Baylink D J, Xu S. Bayesian shrinkage estimation of QTL parameters [J]. Genetics,2005,170:465-480
    178. Wang S, Basten C, Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.,2007
    179. Weinberg W. On the demonstration of heredity in man [M]. NJ:Prentice Hall,1908
    180. Weller J I, Soller M, Brody T. Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum × Lycopersicon pimpinellifolium) by means of genetic markers [J]. Geneties,1988,118:329-339
    181. Wu T T, Chen Y F, Hastie T, Sobel E, Lange K. Genome-wide association analysis by Lasso penalized logistic regression [J]. Bioinformatics,2009,25:714-721
    182. Whittaker J C, Thompson R, Denham M C. Marker-assisted selection using ridge regression [J]. Genet Res,2000,75:249-252
    183. Wright S. Systems of mating [J]. Genetics,1921,6:111-123,144-161
    184. Wright S. Evolution in Mendellian population [J]. Genetics,1931,16:97-159
    185. Wright S. The analysis of variance and the correlations between relatives with respect to deviation from an optimum [J]. J Genet,1935,30:243-256
    186. Wu T T, Chen Y F, Hastie T, Sobel E, Lange K. Genome-wide association analysis by lasso penalized logistic regression [J]. Bioinformatics,2009,25:714-721
    187. Xu S. Estimating polygenic effects using markers of the entire genome [J]. Genetics,2003,163: 789-801
    188. Xu S. An empirical Bayes method for estimating epistatic effects of quantitative trait loci [J]. Biometrics,2007,63:513-521
    189. Xu S, Jia Z. Genome-wide analysis of epistatic effects for quantitative traits in barley [J]. Genetics, 2007,175:1955-1963
    190. Xu S. Derivation of the shrinkage estimates of quantitative trait locus effects [J]. Genetics,2007b, 177:1255-1258
    191. Xu S. An expectation-maximization algorithm for the Lasso estimation of quantitative trait locus effects [J]. Heredity,2010,105:483-494
    192. Xu Y. Quantitative trait loci:Separating, pyramiding, and cloning [J]. Plant Breed Rev,1997,15: 85-139
    193. Xu Y,Li H N, Li G J, Wang X, Cheng L G, Zhang Y M. Mapping quantitative trait loci for seed size traits in soybean(Glycine max L. Merr.) [J]. Theor Appl Genet,2011,122:581-594
    194. Yano M, Saaski T. Genetic and molecular dissection of quantitative traits in rice [J]. Plant Mol Biol, 1997,35:145-153
    195. Yi N J, George V, Allison D B. Stochastic search variable selection for identifying multiple quantitative trait loci [J]. Genetics,2003,164:1129-1138
    196. Yi N, Xu S, Allison D B. Bayesian model choice and search strategies for mapping interacting quantitative trait loci [J]. Genetics,2003b,165:867-883
    197. Yi N, Yandell B S, Churchill G A, Allison D B, Eisen E J, Pomp D. Bayesian model selection for genome-wide epistatic quantitative trait loci analysis [J]. Genetics,2005,170:1333-1344
    198. Yi N J. A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci [J]. Genetics,2004,167:967-975
    199. Yi N J, Xu S. Bayesian Lasso for quantitative trait loci mapping [J]. Genetics,2008,179: 1045-1055
    200. Yi N J, Banerjee S. Hierarchical generalized linear models for QTL mapping [J]. Genetics,2009, 181:1101-1113
    201. Yu J, Pressoir G, Briggs W H, Vroh B I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness [J]. Nat Genet,2006,38:203-208
    202. Yu J, Holland J B, McMullen M D, Buckler E S. Genetic design and statistical power of nested association mapping in maize [J]. Genetics,2008,178:539-551
    203. Zhang M, Montooth K L, Wells M T, Clark A G, Zhang D. Mapping multiple quantitative trait loci by Bayesian classification [J]. Genetics,2005,169:2305-2318
    204. Zhang Y M, Xu S. Mapping quantitative trait loci in F2 incorporating phenotypes of F3 progeny [J]. Genetics,2004,166:1981-1993
    205. Zhang Z, Ersoz E, Lai C Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J, Arnett D K, Ordovas J M, et al. Mixed linear model approach adapted for genome-wide association studies [J]. Nat Genet,2010,42:355-360
    206. Zhao K, Aranzana M J, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, et al. An Arabidopsis example of association mapping in structured samples [J]. PLoS Genet,2007, e31
    207. Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics,1994,136:1457-1468
    208. Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping of quantitative trait loci [J]. Proc Natl Acad Sci USA,1993,90:10972-10976
    209. Zou H. The adaptive LASSO and its oracle properties [J]. J Am Stat Assoc,2006,101:1418-1429
    210. Zhu J, Weir B S. Mixed model approaches for genetic analysis of quantitative traits [M]. Zhejiang: Zhejiang University,1998:321-330
    211. Zhu C S, Gore M, Buckler E S, Yu J. Status and prospects of association mapping in plants [J]. The Plant Genome,2008,1:5-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700