甜瓜TILLING平台的构建及多壁碳纳米管与过氧化氢酶互作的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为两部分,第一部分为甜瓜TILLING平台的构建,第二部分为多壁碳纳米管与过氧化氢酶互作的研究。
     甜瓜TILLING平台的构建:
     随着测序技术的发展,越来越多的动植物完成了全基因组的测序,科学家们的研究重点逐渐从基因组测序转移到基因功能的阐释上来。传统反向遗传学的研究手段,能够阐释基因的功能,但是它们依赖转基因技术,在转基因体系不成熟的物种中很难应用。定向诱导基因组局部突变(TILLING)技术,是一种不依赖转基因的全新反向遗传学研究手段,结合化学诱变剂和高通量的筛选技术,目前已经成功地应用于动植物基因功能的研究。
     甜瓜是世界上一种重要的蔬菜作物,近年来,越来越多甜瓜基因组学的信息被挖掘了出来,尤其是甜瓜全基因组测序项目的完成,使它的研究重点逐渐进入了后基因组学的时代。但是,传统反向遗传学手段限制了甜瓜基因功能的研究,因而在本研究中,以冬甜瓜(Inodorus melon)Piel de Sapo为材料,构建了TILLING的研究平台,希望为甜瓜提供一个有力的反向遗传学工具,本研究的主要内容为以下几个方面:
     1. EMS诱变群体的构建及表型变异的调查
     本研究以Piel de Sapo DH系的M62-113为野生型亲本材料,选用0.5%,1%和1.5%的甲基磺酸乙酯(EMS)浓度做预备实验,根据M2代种子的发芽率和植株在田间的生命力,最终选用1%的EMS浓度作为大群体的诱变浓度,构建了包含2368个M2家系的EMS群体。经过性状调查发现,甜瓜的EMS群体中包含大量的突变体。约有5%的家系发生了子叶的改变;约有4.3%的家系为侏儒株或者半侏儒株;2.1%的M2家系出现了黄化或者白化现象;2%的M2家系在茎和叶的形态上发生了改变。
     2. TILLING体系的建立及突变位点的筛选
     在甜瓜TILLING平台的建立试验中,2368个M2家系形成了592个4倍池用于分析。4个与果实成熟相关的基因在群体中筛选得到9个突变位点,其中,Cm-NOR基因没有筛选到突变位点;Cm-ACO1、Cm-DET1和Cm-DHS分别筛选到基因筛选1、5、3个突变位点,产生突变的家系分别为C142;I76、F201、F1876、C487和F1248;F1728、C348和C519。序列分析表明,家系C142、F201、F1876、F1728、C348和C519发生错义突变,I76发生同义突变,C487和F1248的突变发生在非编码区。
     3.突变家系的表型分析
     对错义突变的6个M2家系做表型分析,结果表明Cm-NOR、Cm-ACO1、Cm-DET1和Cm-DHS的突变体没有发生目标性状的可辨改变。其中,家系C519测序分析没有检测到突变株,这一结果表明家系C519的突变可能为假阳性。因而,在果实成熟的基因中共检测到8个突变位点。除了与果实成熟相关的基因以外,在本研究中,还对基因Cm-PDS的突变家系C384和Cm-eIF4E的突变家系F57和F2036做了表型分析。Cm-PDS基因与类胡萝卜素合成相关,C384的纯合突变株出现白化现象,与拟南芥PDS基因突变体的表型一致,验证了Cm-PDS基因的功能。纯合突变株的表型变化与Cm-PDS基因功能相关,表明TILLING技术是甜瓜反向遗传学研究的有效工具。
     4.甜瓜Piel de Sapo EMS突变群体的评价
     在甜瓜Piel de Sapo的TILLING平台中,选用7个基因Cm-NOR、Cm-ACO1、Cm-DET1、 Cm-DHS、Cm-eIF4E、Cm-eIFI(iso)4E和Cm-PDS(共12个片段)在EMS诱变群体中筛选到14个突变位点,对甜瓜Pielde Sapo TILLING平台的突变频率进行计算,得出突变频率约为~1/1.5Mb。这个突变密度与目前已经建立TILLING平台的物种比较,处于中间水平。
     本研究,首次尝试在冬甜瓜(Inodorus melon)甜瓜Piel de Sapo中构建在TILLING平台,由于经验不足,文献依据不多,最终得到突变群体的效率处于中等水平。但是,本平台的构建,能够用于甜瓜的后基因组学的研究,研究结果能够为构建高效的甜瓜TILLING平台提供依据。多壁碳纳米管与过氧化氢酶互作的研究:
     碳纳米管是现代纳米材料中性能独特、应用前景广阔的新型材料。它易于制备,易于生物修饰的优点,使其在生物学领域中得到了广泛的应用。但是,关于碳纳米管的生物学效应缺乏深入系统的研究,碳纳米管与生物大分子的作用机理仍然不够清晰。
     在碳纳米管大量应用的同时,它的安全性问题也引起了广泛的关注。目前,“氧化应激学说”是碳纳米管引起生物毒性,被普遍接受的一个原因。在本研究中,选用与氧化应激紧密相关的酶之一过氧化氢酶为靶蛋白,利用透射电镜、红外光谱、圆二色性光谱、紫外-可见吸收光谱及荧光光谱等技术或手段从不同角度研究了碳纳米管与过氧化氢酶的作用机理,一方面能够为碳纳米管与功能蛋白质在分子水平上作用的机理提供一定的数据参考;另一方面也能为阐释碳纳米管引起氧化应激现象,提供新的思路。本论文的主要研究内容为以下几个方面:
     1.透射电镜的表征,发现过氧化氢酶有效地结合在碳纳米管的外壁上,吸附饱和值约为40mg过氧化氢酶/100mg碳纳米管;两者的吸附导致了酶活性的降低,抑制率最高达到45%,这有可能碳纳米管导致体内毒性的重要原因之一。
     2.通过红外光谱、圆二色光谱的研究,发现与碳纳米管互作后,过氧化氢酶的二级结构发生了变化,α-螺旋比例从26.7%下降到25.1%,β-折叠由20.7%变为23.4%,β-转角由24.6%变为22.2%,这些比例变化表明过氧化氢酶的肽链骨架可能结构变得松散,分子链状结构展开,内部疏水区域的色氨酸、酪氨酸等芳香族氨基酸有可能暴露出来。
     3.通过紫外-可见吸收光谱的研究,发现与碳纳米管互作后,过氧化氢酶的肽链骨架结构变得疏松,蛋白质主链酰胺键的微环境由原来的较为疏水变为相对亲水,色氨酸等芳香族氨基酸也因两者的结合而暴露出来。
     4.通过荧光光谱的研究,发现与碳纳米管互作后,过氧化氢酶的荧光信号发生了猝灭,根据Stern-Volmer方程曲线和荧光寿命的检测断定这种猝灭为静态猝灭,说明碳纳米管与过氧化氢酶形成了稳定的复合物。同步荧光光谱的结果表明两者的结合为非特异性结合。
     5.选用荧光共振能量转移的方法,计算出碳纳米管与过氧化氢酶的荧光基团(色氨酸)之间的平均距离为2.98nm,这个距离说明两者之间具备发生相互作用以及能量转移的条件。
     本研究在分子水平上全面分析碳纳米管与过氧化氢酶的相互作用,建立了一种全新研究两者作用机理的方法;以过氧化氢酶为靶蛋白,能够为碳纳米管引起氧化应激反应机理的研究提供了新的思路,丰富了碳纳米材料生物毒理学的研究手段。
This dissertation is divided into tow parts, one is construction ofTILLING platform in melon; the other is study on interactions betweencatalase and muti-walled carbon nanotubes.
     Construction of TILLING platform in melon:
     With the rapid development of sequence technologies, the wholegenome sequence of many species including animals and plants have beenfinished. The focus on genomics has thus been shifted from the collection ofwhole sequenced genomes to the study of functional genomics. Traditionalreverse genetic approaches such as T-DNA, RANi and reverse RNAtechnologies have been used to deduce the gene function in the species ofinterest. However, these technologies rely on the creation of transgenicmaterial, which is not feasible for many species. Targeting Induced LocalLesions IN Genomes (TILLING) is a non-transgenic method, combined withchemical mutagenesis and high-throughout detecting approaches, has beensuccessfully applied on functional genomic in animals and plants.
     Melon (Cucumis melo L.) is an important vegetable crop. Genetic andgenomic information has been explored significantly due to several nationaland international projects, and the whole genome sequence initiated bySpanish group was already finished. However, the tools employed to conductthe functional validation of various genes in melon were limited. As a result, we constructed a TILLING platform in order to afford one powerful reversegenetic tool for melon. The research contents are as follows:
     1. The establishment of EMS population and the investigation ofphenotypic variations.
     The double haploid line, M62-113, belonging to the Piel de Sapocommercial type, was used as the starting cultivar.0.5%,1%and1.5%EMSdosage were selected as the pre-experiment dosage, according to M2seedviability and seedling vigor,1%EMS dosage was chosen as the finalconcentration. Totally,2,368M2families were sampled for DNA and usedfor TILLING purpose. All M2plants were scrutinized for visible variantphenotypes:5%of the M2families showed variation in cotyledons; about4.3%were segregated for "dwarf" or "semidwarf" plants;2.1%showedalbinism and chlorophyll deficiency and over2%of the families showedalterations in leaves and shoot morphology.
     2. The construction of TILLING system and identifying mutations intarget genes.
     In the TILLING platform, the M2samples were pooled four-fold to bescreened, a total of592four-fold pools were obtained. Four genes (Cm-NOR,Cm-ACO1,Cm-DET1and Cm-DHS) involved in fruit ripening were selectedto identify mutations, nine mutations were got in eight target amplicons. Nomutation was found in Cm-NOR; one, five and three mutations were found inCm-ACO1, Cm-DET1and Cm-DHS, respectively. The mutant families wereC142, I76, F201, F1876, C487F1248, F1728, C348and C519. The results ofsequence analysis indicated that mutations in C142、F201、F1876、F1728、C348and C519were missense, I76was silent, C487and F1248wereintronic.
     3. The phenotype analysis in mutant families.
     Six missense mutant families were sown and sequenced to detecthomozygous plant, which were performed phenotype analysis. The resultsshowed that no visible changes in fruit ripening of the four genes (Cm-NOR、Cm-ACO1、Cm-DET1and Cm-DHS) were obtained. No heterozygous andhomozygous M2plants were detected in family C519, which indicated themutation in this family may not be true. As a result, there were only8truemutations in this platform. Besides the six mutant families, one mutantfamily in gene Cm-PDS (C384) and the other two in gene Cm-eIF4E (F57,F2036) were also performed phenotype analysis in this study. F57and F2036were resistance to Melon necrotic spot virus; the mutant plants were selfed toproduce more seeds for further analysis. Cm-PDS was involved in carotenoidsynthesis, the mutant line C384showed albino phenotype which wasexpected for PDS disruption. This mutant phenotype indicated TILLING wasa promising approach for advancement in reverse melon genetics.
     4. The mutation efficiency of Piel de Sapo population
     In Piel de Sapo population, a total of14point mutations were detectedwith7genes (12amplicions). The overall mutation density was calculated bydividing the total base pairs screened, that’s (9,134x2,368)/14=1,544,950,and the mutation density was calculated to be~1/1.5Mb. Compared to otherspecies, the mutation density was moderate.
     Piel de Sapo TILLING platform was the first one in Inodorus melons, asthe little experience in this species, it was normal that the results were not asgood as expected. However, the information presented here will be useful forcreating new melon populations with a higher mutation rate, which willfacilitate the future genomic and breeding studies in melon. Study on interactions between catalase and muti-walled carbonnanotubes:
     Carbon nanotubes (CNTs), one of the most excellent nanomaterials, mayspark on abundance of application in biological field because of theirstartling features such as straightforward synthesis and easily modification.However, the biocompatibility of CNTs has not been thoroughly investigated,as a result, illustrating the interaction between the biomacromolecule andCNTs would be of great value.
     With the wide use of the CNTs, their safety draws a lot of attentionsfrom the government, researchers and public. Now, the toxicology research ofCNTs shows that they will induce oxidative stress in cells. Thus we chosecatalase which is one of the most important oxidation resistance enzymes astarget protein, to study the interactions mechanism between catalase andmuti-walled carbon nanotubes by measns of transmission electronmicroscopy (TEM), fourier transform infrared (FTIR) spectroscopy,circulardichroism (CD) spectroscopy, ultraviolet-visible (UV-vis) absorptionspectroscopy, and fluorescence spectroscopy. The results of these approachesestablished new ways to evaluate the interaction between the CNTs andbiomacromolecules, as well as afford new angles for illustrating the oxidativestress caused by CNTs. The research contents are as follows:
     1. The image of TEM showed that catalase was adsorbed onto the CNTs,the maximum absorption amount was estimated to be40mg catalase/100mgCNTs, after which the absorption process reached equilibrium. Theenzymatic activity of catalase decrease dramatically after interacting withCNTs, with an inhibition rate of45%for the most, which may be one reasonfor inducing toxic effects in organisms.
     2. The results of FTIR and CD showed that the secondary structure ofcatalase changed consequently after adsorbing onto CNTs: α-helix from26.7%to25.1%, β-sheet from20.7%to23.4%, β-turn from24.6%to22.2%,and random coil from28.7%to30.0%. Changes in these ratios showed thatthe backbone structure of catalase became loosen. The chain-structuremolecule became extended, leading to the exposure of Trp and Tyr whichwere originally in hydrophobic regions.
     3. The UV-VIS absorption manifested that the backbone chain of thecatalase became loosen when interacting with CNTs, and the amido bonds aswell as the Trp residues were exposed to a more hydrophilicmicroenvironment.
     4. Fluorescence spectra showed that CNTs induced catalase fluorescencequenching, leading to the amino acid residues (especially Trp) which wereoriginally buried in a hydrophobic environment to a hydrophilic one. Thisphenomenon could act as the evidence of protein unfolding. Time-resolvedfluorescence and the Stern-Volmer revealed that the quenching modefollowed a static one, that was, the two substances interacted and formed astable complex. The results of synchronous fluorescence spectrometryindicated that the interaction mode of catalase and CNTs was non-specificbinding.
     5. By using F rster resonance energy transfer (FRET) calculation, theaverage distance between Trp and carbon nanotubes was estimated to be2.98nm, showing the evidence of formation of stable complexes and highpossibility of energy transfer from Trp to MWCNTs.
     In this study, we have established an effective and innovativemethodology to evaluate the interaction of CNTs and catalase, which may comprehensively reflect the mechanism of protein-CNT interaction at amolecular level. By using catalase as the target protein, this dissertation mayprovide useful information to the research on CNT-induced oxidative stress incells and organism, which may serve as new research method in the field ofnanotoxicology.
引文
[1].Arumuganathan, K., Earle, E. Nuclear DNA content of some important plant species[J]. PlantMolecular Biology Reporter,1991,9(3):208-218.
    [2].Jeffery, C. Systematics of the Cucurbitaceae: an overview. In Biology and Utilization of theCucurbitaceae. New York: Cornell University Press.1990:224-228.
    [3].Nu ez-Palenius, H. G., Gomez-Lim, M., Ochoa-Alejo, N., etc. Melon fruits: genetic diversity,physiology, and biotechnology features[J]. Critical Reviews in Biotechnology,2008,28(1):13-55.
    [4].Monforte, A., Garcia‐Mas, J., Arus, P. Genetic variability in melon based on microsatellitevariation[J]. Plant Breeding,2003,122(2):153-157.
    [5].Nakata, E., Staub, J. E., López-Sesé, A. I., etc. Genetic diversity of Japanese melon cultivars(Cucumis melo L.) as assessed by random amplified polymorphic DNA and simple sequence repeatmarkers[J]. Genetic Resources and Crop Evolution,2005,52(4):405-419.
    [6].López-Sesé, A., Staub, J., Gomez-Guillamon, M. Genetic analysis of Spanish melon (Cucumis meloL.) germplasm using a standardized molecular-marker array and geographically diverse referenceaccessions[J]. Theoretical and Applied Genetics,2003,108(1):41-52.
    [7].Jeffrey, C. A review of the Cucurbitaceae[J]. Botanical Journal of the Linnean Society,1980,81(3):233-247.
    [8].Deakin, J. R., Bohn, G., Whitaker, T. W. Interspecific hybridization in Cucumis[J]. EconomicBotany,1971,25(2):195-211.
    [9].CMaM, T. A. Interspecific Hybridization in Cucumis spp[J]. Cucurbit Genetics Cooperative Report.,1991,14(2):69-70.
    [10].Norton, J.,Granberry, D. Characteristics of progeny from an interspecific cross of Cucumis melowith C. metuliferus[J]. Journal of the American Society for Horticultural Science,1980,105(2):174-180.
    [11]. Kenigsbuch, D., Cohen, Y. The inheritance of gynoecy in muskmelon[J]. Genome,1990,33(3):317-320.
    [12].Boualem, A., Fergany, M., Fernandez, R., etc. A conserved mutation in an ethylene biosynthesisenzyme leads to andromonoecy in melons[J]. Science,2008,321(5890):836-8.
    [13].Martin, A., Troadec, C., Boualem, A., etc. A transposon-induced epigenetic change leads to sexdetermination in melon[J]. Nature,2009,461(7267):1135-1138.
    [14].Noguera, F.,Capel, J.,Alvarez, J., etc. Development and mapping of a codominant SCAR markerlinked to the andromonoecious gene of melon[J]. Theoretical and Applied Genetics,2005,110(4):714-720.
    [15].Ezura, H., Owino, W. O. Melon, an alternative model plant for elucidating fruit ripening[J]. PlantScience,2008,175(1-2):121-129.
    [16].Pech, J. C.,Bouzayen, M.,Latchi, A. Climacteric fruit ripening: ethylene-dependent andindependent regulation of ripening pathways in melon fruit[J]. Plant science,2008,175(1-2):114-120.
    [17].Kirkbride, J. H. Biosystematic monograph of the genus Cucumis (Cucurbitaceae): botanicalidentification of cucumbers and melons. Boone: Parkway Publishers.1993:74-93.
    [18].林德佩.中国栽培甜瓜植物的起源,分类及进化[J].中国瓜菜,2010,23(004):34-36.
    [19].Sebastian, P., Schaefer, H., Telford, I. R. H., etc. Cucumber (Cucumis sativus) and melon (C. melo)have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia[J].Proceedings of the National Academy of Sciences,2010,107(32):14269-14273.
    [20].包海清.新疆甜瓜地方资源遗传多样性及分类[D].中国农业科学院,2007.
    [21].Robinson, R., Decker-Walters, D. Cucurbits. New York: CAB International Publisher.1999:113-143..
    [22].Guis, M., Roustan, J. P.,Dogimont, C., etc. Melon biotechnology[J]. Biotechnology and geneticEngineering Reviews,1998,15289-311.
    [23].李利兰,罗庆熙.嫁接对甜瓜品质影响的研究进展[J].长江蔬菜,2011,7(12):4-7.
    [24].Stepansky, A., Kovalski, I., Perl-Treves, R. Intraspecific classification of melons (Cucumis meloL.) in view of their phenotypic and molecular variation[J]. Plant Systematics and Evolution,1999,217(3-4):313-332.
    [25].Nuez, F., Pico, B., Iglesias, A., etc. Genetics of melon yellows virus resistance derived fromCucumis melo ssp. agrestis[J]. European Journal of Plant Pathology,1999,105(5):453-464.
    [26].Diaz, J., Nieto, C., Moriones, E., etc. Spanish Melon necrotic spot virus isolate overcomes theresistance conferred by the recessive nsv gene of melon[J]. Plant Disease,2002,86(6):694-694.
    [27].Dias, R. C. S., Pico, B., Herraiz, J., etc. Modifying root structure of cultivated muskmelon toimprove vine decline resistance[J]. HortScience,2002,37:1092-1097.
    [28].Dias, R., Pico, B., Espinos, A., etc. Resistance to melon vine decline derived from Cucumis melossp. agrestis: genetic analysis of root structure and root response[J]. Plant Breeding,2004,123(1):66-72.
    [29].Marco, C. F., Aguilar, J. M., Abad, J., etc. Melon resistance to Cucurbit yellow stunting disordervirus is characterized by reduced virus accumulation[J]. Phytopathology,2003,93(7):844-852.
    [30].Pico, B., Sifres, A., Nuez, F. Quantitative detection of Cucumber vein yellowing virus insusceptible and partially resistant plants using real-time PCR[J]. Journal of virological methods,2005,128(1-2):14-20.
    [31].Van Leeuwen, H., Monfort, A., Zhang, H. B., etc. Identification and characterisation of a melongenomic region containing a resistance gene cluster from a constructed BAC library. Microcolinearitybetween Cucumis melo and Arabidopsis thaliana[J]. Plant Molecular Biology,2003,51(5):703-718.
    [32].Van Leeuwen, H., Garcia-Mas, J., Coca, M., etc. Analysis of the melon genome in regionsencompassing TIR-NBS-LRR resistance genes[J]. Molecular Genetics and Genomics,2005,273(3):240-251.
    [33].Monforte, A., Oliver, M., Gonzalo, M., etc. Identification of quantitative trait loci involved in fruitquality traits in melon (Cucumis melo L.)[J]. Theoretical and Applied Genetics,2004,108(4):750-758.
    [34].Gonzalez, V. M., Garcia-Mas, J., Arus, P., etc. Generation of a BAC-based physical map of themelon genome[J]. Genomics,2010,11339.
    [35].Ezura, H., Fukino, N. Research tools for functional genomics in melon (Cucumis melo L.):Current status and prospects[J]. Plant Biotechnology,2009,26(4):359-368.
    [36].Puigdomenech, P., Martínez-Izquierdo, J., Arus, P., etc. The Spanish melon genomics initiative[J].Acta Horticulturae,2007,731:48-54.
    [37].Baudracco-Arnas, S., Pitrat, M. A genetic map of melon (Cucumis melo L.) with RFLP, RAPD,isozyme, disease resistance and morphological markers[J]. Theoretical and Applied Genetics,1996,93(1):57-64.
    [38].Zheng, X., Wolff, D., Baudracco-Arnas, S., etc. Development and utility of cleaved amplifiedpolymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLPs) linked to theFom-2fusarium wilt resistance gene in melon (Cucumis melo L.)[J]. Theoretical and Applied Genetics,1999,99(3):453-463.
    [39].Oliver, M., Garcia-Mas, J., Cardus, M., etc. Construction of a reference linkage map for melon[J].Genome,2001,44(5):836-845.
    [40].Garcia-Mas, J., Van Leeuwen, H., Monfort, A., etc. Cloning and mapping of resistance genehomologues in melon[J]. Plant Science,2001,161(1):165-172.
    [41].Gonzalo, M., Oliver, M., Garcia-Mas, J., etc. Simple-sequence repeat markers used in merginglinkage maps of melon (Cucumis melo L.)[J]. Theoretical and Applied Genetics,2005,110(5):802-811.
    [42].Yuste-Lisbona, F. J., Capel, C., Sarria, E., etc. Genetic linkage map of melon (Cucumis melo L.)and localization of a major QTL for powdery mildew resistance[J]. Molecular Breeding,2011,27(2):181-192.
    [43].Perin, C., Hagen, L., De Conto, V., etc. A reference map of Cucumis melo based on tworecombinant inbred line populations[J]. Theoretical and Applied Genetics,2002,104(6):1017-1034.
    [44].Zalapa, J., Staub, J., McCreight, J., etc. Detection of QTL for yield-related traits usingrecombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm[J].Theoretical and Applied Genetics,2007,114(7):1185-1201.
    [45].陆芳,许勇,赵越, etc.新疆哈密瓜永久遗传图谱构建及比较分析[J].园艺学报,2009,36(12):1767-1774.
    [46].Brotman, Y., Silberstein, L., Kovalski, I., etc. Resistance gene homologues in melon are linked togenetic loci conferring disease and pest resistance[J]. Theoretical and Applied Genetics,2002,104(6):1055-1063.
    [47].Brotman, Y., Kovalski, I., Dogimont, C., etc. Molecular markers linked to papaya ring spot virusresistance and Fusarium race2resistance in melon[J]. Theoretical and Applied Genetics,2005,110(2):337-345.
    [48].Morales, M., Luís-Arteaga, M.,álvarez, J. M., etc. Marker saturation of the region flanking thegene NSV conferring resistance to the melon necrotic spot Carmovirus (MNSV) in melon[J]. Journal ofthe American Society for Horticultural Science,2002,127(4):540-544.
    [49].Morales, M., Orjeda, G., Nieto, C., etc. A physical map covering the nsv locus that confersresistance to Melon necrotic spot virus in melon (Cucumis melo L.)[J]. Theoretical and AppliedGenetics,2005,111(5):914-922.
    [50].Garcia-Mas, J., Benjak, A., Sanseverino, W., etc. The genome of melon (Cucumis melo L.)[J].Proceedings of the National Academy of Sciences,2012,109(29):11872-11877.
    [51].McCALLUM, C. M.,Comai, L.,Greene, E. A., etc. Targeted screening for induced mutations[J].Nature Biotechnology,2000,18(4):455-457.
    [52].Shendure, J., Porreca, G. J., Reppas, N. B., etc. Accurate multiplex polony sequencing of anevolved bacterial genome[J]. Science,2005,309(5741):1728-1732.
    [53].Drmanac, R., Sparks, A. B., Callow, M. J., etc. Human genome sequencing using unchained basereads on self-assembling DNA nanoarrays[J]. Science,2010,327(5961):78-81.
    [54].Metzker, M. L. Sequencing technologies—the next generation[J]. Nature Reviews Genetics,2009,11(1):31-46.
    [55].Rothberg, J. M., Hinz, W., Rearick, T. M., etc. An integrated semiconductor device enablingnon-optical genome sequencing[J]. Nature,2011,475(7356):348-352.
    [56].Seo, T. S., Bai, X., Kim, D. H., etc. Four-color DNA sequencing by synthesis on a chip usingphotocleavable fluorescent nucleotides[J]. Proceedings of the National Academy of Sciences,2005,102(17):5926-5931.
    [57].Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., etc. Accurate whole human genomesequencing using reversible terminator chemistry[J]. Nature,2008,456(7218):53-59.
    [58].Harris, T. D., Buzby, P. R., Babcock, H., etc. Single-molecule DNA sequencing of a viralgenome[J]. Science,2008,320(5872):106-109.
    [59].Eid, J., Fehr, A., Gray, J., etc. Real-time DNA sequencing from single polymerase molecules[J].Science,2009,323(5910):133-138.
    [60].Venter, J. C. Multiple personal genomes await[J]. Nature,2010,464(7289):676-677.
    [61].Huang, S., Li, R., Zhang, Z., etc. The genome of the cucumber, Cucumis sativus L[J]. NatureGenetics,2009,41(12):1275-1281.
    [62].Shulaev, V., Sargent, D. J., Crowhurst, R. N., etc. The genome of woodland strawberry (Fragariavesca)[J]. Nature Genetics,2010,43(2):109-116.
    [63].Xu, X., Pan, S., Cheng, S., etc. Genome sequence and analysis of the tuber crop potato[J]. Nature,2011,475(7355):189.
    [64].Wang, X., Wang, H., Wang, J., etc. The genome of the mesopolyploid crop species Brassicarapa[J]. Nature Genetics,2011,43(10):1035-1039.
    [65].Sato, S., Tabata, S., Hirakawa, H., etc. The tomato genome sequence provides insights into fleshyfruit evolution[J]. Nature,2012,485:635-641.
    [66].D’Hont, A., Denoeud, F., Aury, J. M., etc. The banana (Musa acuminata) genome and theevolution of monocotyledonous plants[J]. Nature,2012,488:213-217..
    [67].Gilbertson, L. Cre–lox recombination: Cre-ative tools for plant biotechnology[J]. Trends inBiotechnology,2003,21(12):550-555.
    [68].Thole, V., Alves, S. C., Worland, B., etc. A protocol for efficiently retrieving and characterizingflanking sequence tags (FSTs) in Brachypodium distachyon T-DNA insertional mutants[J]. NatureProtocols,2009,4(5):650-661.
    [69].Mathieu, M., Winters, E. K., Kong, F., etc. Establishment of a soybean (Glycine max Merr. L)transposon-based mutagenesis repository[J]. Planta,2009,229(2):279-289.
    [70].Li, X., Song, Y., Century, K., etc. A fast neutron deletion mutagenesis‐based reverse geneticssystem for plants[J]. The Plant Journal,2001,27(3):235-242.
    [71].Gong, J. M., Waner, D. A., Horie, T., etc. Microarray-based rapid cloning of an ion accumulationdeletion mutant in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of theUnited States of America,2004,101(43):15404-15409.
    [72].Huang, C. J., Qian, Y. J., Li, Z. H., etc. Virus-induced gene silencing and its application in plantfunctional genomics[J]. Science China Life Sciences,2012,55(2):99-108.
    [73].Townsend, J. A., Wright, D. A., Winfrey, R. J., etc. High-frequency modification of plant genesusing engineered zinc-finger nucleases[J]. Nature,2009,459(7245):442-445.
    [74].Miller, J. C., Tan, S., Qiao, G., etc. A Tale nuclease architecture for efficient genome editing[J].Nature Biotechnology,2010,29(2):143-148.
    [75].Moffat, J., Sabatini, D. M. Building mammalian signalling pathways with RNAi screens[J]. NatureReviews Molecular Cell Biology,2006,7(3):177-187.
    [76].McCallum, C. M.,Comai, L.,Greene, E. A., etc. Targeting induced local lesions in genomes(TILLING) for plant functional genomics [J]. Plant Physiol,2000,123(2):439-442.
    [77].O'Donovan, M. C., Oefner, P. J., Roberts, S. C., etc. Blind analysis of denaturinghigh-performance liquid chromatography as a tool for mutation detection[J]. Genomics,1998,52(1):44-49.
    [78].Bentley, A., MacLennan, B., Calvo, J., etc. Targeted recovery of mutations in Drosophila[J].Genetics,2000,156(3):1169-73.
    [79].Henikoff, S., Comai, L. Single-nucleotide mutations for plant functional genomics[J]. AnnualReview of Plant Biology,2003,54(1):375-401.
    [80].Oleykowski, C., Bronson Mullins, C., Godwin, A., etc. Mutation detection using a novel plantendonuclease[J]. Nucleic Acids Research,1998,26(20):4597.
    [81].Greene, E. A., Codomo, C. A., Taylor, N. E., etc. Spectrum of chemically induced mutations froma large-scale reverse-genetic screen in Arabidopsis[J]. Genetics,2003,164(2):731-40.
    [82].Henikoff, S.,Till, B. J.,Comai, L. TILLING. Traditional mutagenesis meets functional genomics[J].Plant Physiol, Jun,2004,135(2):630-636.
    [83].Perry, J. A., Wang, T. L., Welham, T. J., etc. A TILLING reverse genetics tool and a web-accessiblecollection of mutants of the legume Lotus japonicus[J]. Plant Physiology,2003,131(3):866-871.
    [84].Till, B. J., Reynolds, S. H.,Greene, E. A., etc. Large-scale discovery of induced point mutationswith high-throughput TILLING[J]. Genome Research,2003,13(3):524-30.
    [85].Uauy, C., Paraiso, F., Colasuonno, P., etc. A modified TILLING approach to detect inducedmutations in tetraploid and hexaploid wheat[J]. BMC Plant Biology,2009,9(1):115.
    [86].Dong, C., Dalton-Morgan, J., Vincent, K., etc. A modified TILLING method for wheat breeding[J].The Plant Genome,2009,2(1):39-47.
    [87].Sato, Y., Shirasawa, K., Takahashi, Y., etc. Mutant selection from progeny of gamma-ray-irradiatedrice by DNA heteroduplex cleavage using Brassica petiole extract[J]. Breeding Science,2006,56(2):179-183.
    [88].Gady, A. L. F., Hermans, F. W. K., Van, M. H. B. J., etc. Implementation of two high through-puttechniques in a novel application: detecting point mutations in large EMS mutated plant populations[J].Plant Methods,2009,5(1):13.
    [89].Davies, H., Dicks, E., Stephens, P., etc. High throughput DNA sequence variant detection byconformation sensitive capillary electrophoresis and automated peak comparison[J]. Genomics,2006,87(3):427-432.
    [90].Vossen, R., Aten, E., Roos, A., etc. High Resolution Melting Analysis (HRMA): More than justsequence variant screening[J]. Human Mutation,2009,30(6):860-866.
    [91].Triques, K., Sturbois, B., Gallais, S., etc. Characterization of Arabidopsis thaliana mismatchspecific endonucleases: application to mutation discovery by TILLING in pea[J]. The Plant Journal,2007,51(6):1116-1125.
    [92].Triques, K., Piednoir, E., Dalmais, M., etc. Mutation detection using ENDO1: application todisease diagnostics in humans and TILLING and Eco-TILLING in plants[J]. BMC Molecular Biology,2008,9(1):42.
    [93].Gilchrist, E. J., Haughn, G. W. TILLING without a plough: a new method with applications forreverse genetics[J]. Current Opinion in Plant Biology,2005,8(2):211-215.
    [94].Martín, B., Ramiro, M., Martínez-Zapater, J. M., etc. A high-density collection of EMS-inducedmutations for TILLING in Landsberg erecta genetic background of Arabidopsis[J]. BMC Plant Biology,2009,9(1):147.
    [95].Loechler, E. L., Green, C. L., Essigmann, J. M. In vivo mutagenesis by O6-methylguanine builtinto a unique site in a viral genome[J]. Proceedings of the National Academy of Sciences,1984,81(20):6271-6275.
    [96].Snow, E. T., Foote, R. S., Mitra, S. Base-pairing properties of O6-methylguanine in template DNAduring in vitro DNA replication[J]. Journal of Biological Chemistry,1984,259(13):8095-8100.
    [97].Greene, E. A., Codomo, C. A., Taylor, N. E., etc. Spectrum of chemically induced mutations froma large-scale reverse-genetic screen in Arabidopsis[J]. Genetics,2003,164(2):731-740.
    [98].Cooper, J. L., Till, B. J., Laport, R. G., etc. TILLING to detect induced mutations in soybean[J].BMC Plant Biolology,2008,89.
    [99].Suzuki T.,Eiguchi M.,Kumamaru T., etc. MNU-induced mutant pools and high performanceTILLING enable finding of any gene mutation in rice.[J]. Molecular Genetics and Genomics.2008,279(3):213-223.
    [100].Cooper, J. L.,Till, B. J.,Laport, R. G., etc. TILLING to detect induced mutations in soybean[J].BMC Plant Biology,2008,8(1):9.
    [101].Till, B. J., Cooper, J., Tai, T. H., etc. Discovery of chemically induced mutations in rice byTILLING[J]. BMC Plant Biology,2007,7(1):19.
    [102].Talamè, V., Bovina, R., Sanguineti, M. C., etc. TILLMore, a resource for the discovery ofchemically induced mutants in barley[J]. Plant Biotechnology Journal,2008,6(5):477-485.
    [103].Caldwell, D. G., McCallum, N., Shaw, P., etc. A structured mutant population for forward andreverse genetics in Barley (Hordeum vulgare L.)[J]. The Plant Journal,2004,40(1):143-150.
    [104].Rogers, C., Wen, J., Chen, R., etc. Deletion-based reverse genetics in Medicago truncatula[J].Plant Physiology,2009,151(3):1077-1086.
    [105].Achaz, G., Netter, P., Coissac, E. Study of intrachromosomal duplications among the eukaryotegenomes[J]. Molecular Biology and Evolution,2001,18(12):2280-2288.
    [106].Till, B. J., Burtner, C., Comai, L., etc. Mismatch cleavage by single-strand specific nucleases[J].Nucleic Acids Research,2004,32(8):2632-41.
    [107].Yeung, A. T., Hattangadi, D., Blakesley, L., etc. Enzymatic mutation detection technologies[J].Biotechniques,2005,38(5):749-58.
    [108].Comai, L., Young, K., Till, B. J., etc. Efficient discovery of DNA polymorphisms in naturalpopulations by Ecotilling[J]. The Plant Journal,2004,37(5):778-786.
    [109].Gilchrist, E. J.,Haughn, G. W.,Ying, C. C., etc. Use of Ecotilling as an efficient SNP discoverytool to survey genetic variation in wild populations of Populus trichocarpa[J]. Molecular Ecology,2006,15(5):1367-1378.
    [110].Wang, J., Sun, J., Liu, D., etc. Analysis of Pina and Pinb alleles in the micro-core collections ofChinese wheat germplasm by Ecotilling and identification of a novel Pinb allele[J]. Journal of CerealScience,2008,48(3):836-842.
    [111].Till, B. J., Jankowicz-Cieslak, J., Sági, L., etc. Discovery of nucleotide polymorphisms in theMusa gene pool by Ecotilling[J]. Theoretical and Applied Genetics,2010,121(7):1381-1389.
    [112].Bush, S. M., Krysan, P. J. iTILLING: a personalized approach to the identification of inducedmutations in Arabidopsis[J]. Plant Physiology,2010,154(1):25-35.
    [113].Clark, K. A., Krysan, P. J. Protocol: An improved high-throughput method for generating tissuesamples in96-well format for plant genotyping (Ice-Cap2.0)[J]. Plant Methods,2007,3(1):8.
    [114].Krysan, P. Ice-cap. A high-throughput method for capturing plant tissue samples for genotypeanalysis[J]. Plant Physiology,2004,135(3):1162-1169.
    [115].Koornneeff, M., Dellaert, L., Van der Veen, J. EMS-and relation-induced mutation frequencies atindividual loci in Arabidopsis thaliana (L.) Heynh[J]. Mutation Research/Fundamental and MolecularMechanisms of Mutagenesis,1982,93(1):109-123.
    [116].Men, A. E., Laniya, T. S., Searle, I. R., etc. Fast neutron mutagenesis of soybean (Glycine soja L.)produces a supernodulating mutant containing a large deletion in linkage group H[J]. Genome Letters,2002,1(3):147-155.
    [117].Li, X., Lassner, M., Zhang, Y. Deleteagene: a fast neutron deletion mutagenesis‐based geneknockout system for plants[J]. Comparative and Functional Genomics,2002,3(2):158-160.
    [118].Dierking, E. C.,Bilyeu, K. D. New sources of soybean seed meal and oil composition traitsidentified through TILLING[J]. BMC Plant Biology,2009,989.
    [119].Dalmais, M.,Schmidt, J.,Le Signor, C., etc. UTILLdb, a Pisum sativum in silico forward andreverse genetics tool[J]. Genome Biolology,2008,9(2): R43.
    [120].Sato, S.,Tabata, S. Lotus japonicus as a platform for legume research[J]. Current Opinion in PlantBiology,2006,9(2):128-132.
    [121].Le Signor, C., Savois, V., Aubert, G., etc. Optimizing TILLING populations for reverse geneticsin Medicago truncatula[J]. Plant Biotechnology Journal,2009,7(5):430-441.
    [122].Bennett, M., Leitch, I. Plant DNA C-values database. Kew: Royal Botanic Gardens Publisher,2005.
    [123].Porch, T. G., Blair, M. W., Lariguet, P., etc. Generation of a mutant population for TILLINGcommon bean genotype BAT93[J]. Journal of the American Society for Horticultural Science,2009,134(3):348-355.
    [124].Slade, A. J., Fuerstenberg, S. I., Loeffler, D., etc. A reverse genetic, nontransgenic approach towheat crop improvement by TILLING[J]. Nature Biotechnology,2005,23(1):75-81.
    [125].Till, B. J., Reynolds, S. H.,Weil, C., etc. Discovery of induced point mutations in maize genes byTILLING[J]. BMC Plant Biology,2004,4-12.
    [126].Monde, R. A.,Weil, C. F. Getting the point—mutations in maize[J]. Crop Science,2007,47(Supplement_1): S-60-S-67.
    [127].Storozhenko, S., De Brouwer, V., Volckaert, M., etc. Folate fortification of rice by metabolicengineering[J]. Nature Biotechnology,2007,25(11):1277-1279.
    [128].Feng, Q., Zhang, Y., Hao, P., etc. Sequence and analysis of rice chromosome4[J]. Nature,2002,420(6913):316-320.
    [129].Goff, S., Ricke, D., Lan, T., etc. A draft sequence of the rice genome (Oryza sativa L. ssp.japonica)[J]. Science,2002,296(5565):92.
    [130].Sasaki, T., Matsumoto, T., Yamamoto, K., etc. The genome sequence and structure of ricechromosome1[J]. Nature,2002,420(6913):312-316.
    [131].Wu, J., Wu, C.,Lei, C., etc. Chemical-and irradiation-induced mutants of indica rice IR64forforward and reverse genetics[J]. Plant Molecular Biology,2005,59(1):85-97.
    [132].Caldwell, D. G., McCallum, N., Shaw, P., etc. A structured mutant population for forward andreverse genetics in Barley (Hordeum vulgare L.)[J]. Plant Journal,2004,40(1):143-50.
    [133].Bovina, R., Talame, V., Silvio, S., etc. Starch metabolism mutants in barley: A TILLINGapproach[J]. Plant Genetic Resources: Characterization and Utilization,2011,9(2):170-173.
    [134].Petra, B., Takao, K., Udda, L. TILLING in the two-rowed barley cultivar 'Barke' revealspreferred sites of functional diversity in the gene HvHox1[J]. BMC Research Notes,2:258.
    [135].Xin, Z., Wang, L., Barkley, N., etc. Applying genotyping(TILLING) and phenotyping analyses toelucidate gene function in a chemically induced sorghum mutant population[J]. BMC Plant Biology,2008,8(1):103.
    [136].Chawade, A., Sikora, P., Brautigam, M., etc. Development and characterization of an oatTILLING-population and identification of mutations in lignin and beta-glucan biosynthesis genes[J].BMC Plant Biology,2010,10:86.
    [137].Elias, R., Till, B. J., Mba, C., etc. Optimizing TILLING and Ecotilling techniques for potato(Solanum tuberosum L)[J]. BMC Reseach Notes,2009,2:141.
    [138].Menda, N., Semel, Y., Peled, D., etc. In silico screening of a saturated mutation library oftomato[J]. Plant Journal,2004,38(5):861-72.
    [139].Watanabe, S., Mizoguchi, T., Aoki, K., etc. Ethylmethanesulfonate (EMS) mutagenesis ofSolanum lycopersicum cv. Micro-Tom for large-scale mutant screens[J]. Plant Biotechnology-Tokyo,2007,24(1):33.
    [140].Himelblau, E., Gilchrist, E. J., Buono, K., etc. Forward and reverse genetics of rapid-cyclingBrassica oleracea[J]. Theoretical Applied Genetic,2009,118(5):953-961.
    [141].Wang, N.,Wang, Y.,Tian, F., etc. A functional genomics resource for Brassica napus: developmentof an EMS mutagenized population and discovery of FAE1point mutations by TILLING[J]. NewPhytologist,2008,180(4):751-765.
    [142].Hohmann, U., Jacobs, G., Jung, C. An EMS mutagenesis protocol for sugar beet and isolation ofnon-bolting mutants[J]. Plant Breeding,2005,124(4):317-321.
    [143].Tadmor, Y., Katzir, N., Meir, A., etc. Induced mutagenesis to augment the natural geneticvariability of melon (Cucumis melo L.)[J]. Israel Journal of Plant Sciences,2007,55(2):159-169.
    [144].González, M., Xu, M., Esteras, C., etc. Towards a TILLING platform for functional genomics inPiel de Sapo melons[J]. BMC Research Notes,2011,4(1):289.
    [145].Dahmani-Mardas, F., Troadec, C., Boualem, A., etc. Engineering melon plants with improvedfruit shelf life using the TILLING approach[J]. PLos One,2010,5(12): e15776.
    [146].Lababidi, S., Mejlhede, N., Rasmussen, S. K., etc. Identification of barley mutants in the cultivar‘Lux’at the Dhn loci through TILLING[J]. Plant Breeding,2009,128(4):332-336.
    [147]. Giovannoni, J. J. Fruit ripening mutants yield insights into ripening control[J]. Current Opinionin Plant Biology,2007,10(3):283-289.
    [148].Yamamoto, M., Miki, T., Ishiki, Y., etc. The synthesis of ethylene in melon fruit during the earlystage of ripening[J]. Plant and Cell Physiology,1995,36(4):591-596.
    [149].Alexander, L., Grierson, D. Ethylene biosynthesis and action in tomato: a model for climactericfruit ripening[J]. Journal of Experimental Botany,2002,53(377):2039.
    [150].Lin, Z., Zhong, S., Grierson, D. Recent advances in ethylene research[J]. Journal of ExperimentalBotany,2009,60(12):3311.
    [151].Davuluri, G. R., Tuinen, A., Mustilli, A. C., etc. Manipulation of DET1expression in tomatoresults in photomorphogenic phenotypes caused by post-transcriptional gene silencing[J]. The PlantJournal,2004,40(3):344-354.
    [152].Wei, S., Li, X., Gruber, M. Y., etc. RNAi-mediated suppression of DET1alters the levels ofcarotenoids and sinapate esters in seeds of Brassica napus[J]. Journal of Agricultural and FoodChemistry,2009,57(12):5326-5333.
    [153].Park, M. H., Joe, Y., Kang, K. R. Deoxyhypusine synthase activity is essential for cell viability inthe yeast Saccharomyces cerevisiae[J]. Journal of Biological Chemistry,1998,273(3):1677.
    [154].Bevec, D., Klier, H., Holter, W., etc. Induced gene expression of the hypusine-containing proteineukaryotic initiation factor5A in activated human T lymphocytes[J]. Proceedings of the NationalAcademy of Sciences,1994,91(23):10829.
    [155].Wang, T. W., Lu, L., Zhang, C. G., etc. Pleiotropic effects of suppressing deoxyhypusine synthaseexpression in Arabidopsis thaliana[J]. Plant Molecular Biology,2003,52(6):1223-1235.
    [156].薛健.反义RNA抑制番茄DHS基因表达的研究[D].吉林大学2009.
    [157].Kende, H. Ethylene biosynthesis[J]. Annual review of plant biology,1993,44(1):283-307.
    [158].Kende, H. Enzymes of ethylene biosynthesis[J]. Plant Physiology,1989,91(1):1.
    [159].Davuluri, G. R.,van Tuinen, A.,Mustilli, A. C., etc. Manipulation of DET1expression in tomatoresults in photomorphogenic phenotypes caused by post-transcriptional gene silencing[J]. Plant Jounal,2004,40(3):344-354.
    [160].Pepper, A., Delaney, T., Washburnt, T., etc. DET1, a negative regulator of light-mediateddevelopment and gene expression in Arabidopsis, encodes a novel nuclear-localized protein[J]. Cell,1994,78(1):109-116.
    [161].Mustilli, A. C., Fenzi, F., Ciliento, R., etc. Phenotype of the tomato high pigment-2mutant iscaused by a mutation in the tomato homolog of DEETIOLATED1[J]. The Plant Cell Online,1999,11(2):145-158.
    [162].王宏芝,马荣才,李瑞芬, etc.病毒诱导的烟DHS基因的沉默[J].科学通报,2005,50(21):2359-2364.
    [163]. Ng, P. C., Henikoff, S. SIFT: Predicting amino acid changes that affect protein function[J].Nucleic Acids Research,2003,31(13):3812-3814.
    [164]Nieto, C., Piron, F., Dalmais, M., etc. EcoTILLING for the identification of allelic variants ofmelon eIF4E, a factor that controls virus susceptibility[J]. BMC Plant Biology,2007,7(1):34.
    [165].Qin, G., Gu, H., Ma, L., etc. Disruption of phytoene desaturase gene results in albino and dwarfphenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis[J]. CellResearch,2007,17(5):471-482.
    [166].Britt, A. B. DNA damage and repair in plants[J]. Annual Review of Plant Biology,1996,47(1):75-100.
    [1].Iijima, S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58.
    [2].王昆林,韦进全,张先锋.碳纳米管宏观体[M].北京:清华大学出版社,2006:5-13.
    [3].Saito, R., Dresselhaus, G., Dresselhaus, M. S. Physical properties of carbon nanotubes[M]. London:Imperial College Press,1998.
    [4].Saito, R., Fujita, M., Dresselhaus, G., etc. Electronic structure and growth mechanism of carbontubules[J]. Materials Science and Engineering: B,1993,19(1):185-191.
    [5].De Heer, W. A., Bacsa, W., Chatelain, A., etc. Aligned carbon nanotube films: production andoptical and electronic properties[J]. Science-New-York Then Washington1995:845.
    [6].Shen, W., Huggins, F. E., Shah, N., etc. Novel Fe–Ni nanoparticle catalyst for the production ofCO-and CO2-free H2and carbon nanotubes by dehydrogenation of methane[J]. Applied Catalysis A:General,2008,351(1):102-110.
    [7].Zhang, A., Zhou, M., Han, L., etc. Combined potential of three catalysis types on TiO2nanotube(TNT)/Ti and nanoparticle (TNP)/Ti photoelectrodes: A comparative study[J]. Applied Catalysis A:General,2010,385(1):114-122.
    [8].Lebedkin, S., Hennrich, F., Skipa, T., etc. Near-infrared photoluminescence of single-walled carbonnanotubes prepared by the laser vaporization method[J]. The Journal of Physical Chemistry B,2003,107(9):1949-1956.
    [9].Lefebvre, J., Homma, Y., Finnie, P. Bright band gap photoluminescence from unprocessed single-walledcarbon nanotubes[J]. Physical review letters,2003,90(21):217401.
    [10].Brennan, M., Coleman, J., In het Panhuis, M., etc. Nonlinear photoluminescence in multiwall carbonnanotubes[J]. Synthetic metals,2001,119(1-3):641-642.
    [11].Bonard, J. M., Stockli, T., Maier, F., etc. Field-emission-induced luminescence from carbonnanotubes[J]. Physical Review Letters,1998,81(7):1441-1444.
    [12].Park, J., Kim, Y., Lee, J. Effect of dye dopants in poly (methylphenyl silane) light-emittingdevices[J]. Current Applied Physics,2005,5(1):71-74.
    [13].Kim, J. Y., Kim, M., Kim, H., etc. Electrical and optical studies of organic light emitting devicesusing SWCNTs-polymer nanocomposites[J]. Optical Materials,2003,21(1)-3:147-151.
    [14].Iijima, S., Ichihashi, T. Single-shell carbon nanotubes of1-nm diameter[J]. Nature:1993,363:603-605.
    [15].Hsu, W., Zhu, Y., Trasobares, S., etc. Solid-phase production of carbon nanotubes[J]. AppliedPhysics A: Materials Science and Processing,1999,68(4):493-495.
    [16].Hatta, N., Murata, K. Very long graphitic nano-tubules synthesized by plasma-decomposition ofbenzene[J]. Chemical Physics Letters,1994,217(4):393-402
    [17].Cassell, A. M., Raymakers, J. A., Kong, J., etc. Large scale CVD synthesis of single-walled carbonnanotubes[J]. The Journal of Physical Chemistry B,1999,103(31):6484-6492.
    [18].Su, M., Zheng, B., Liu, J. A scalable CVD method for the synthesis of single-walled carbonnanotubes with high catalyst productivity[J]. Chemical Physics Letters,2000,322(5):321-326.
    [19].Kitiyanan, B., Alvarez, W., Harwell, J., etc. Controlled production of single-wall carbon nanotubesby catalytic decomposition of CO on bimetallic Co–Mo catalysts[J]. Chemical Physics Letters,2000,317(3):497-503.
    [20].孟洁,宋礼,孔桦, etc.血浆蛋白分子在单壁碳纳米管无纺膜表面吸附行为的研究[J].生物医学工程学杂志,2007,24(1):55-60.
    [21].Liu, Y., Wu, D. C., Zhang, W. D., etc. Polyethylenimine‐grafted multiwalled carbon nanotubesfor secure noncovalent immobilization and efficient delivery of DNA [J]. Angewandte Chemie,2005,117(30):4860-4863.
    [22].Kam, N. W. S., Dai, H. Carbon nanotubes as intracellular protein transporters: generality andbiological functionality[J]. Journal of the American Chemical Society,2005,127(16):6021-6026.
    [23].Singh, R., Pantarotto, D., McCarthy, D., etc. Binding and condensation of plasmid DNA ontofunctionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors[J].Journal of the American Chemical Society,2005,127(12):4388-4396
    [24].Yao, D. S., Cao, H., Wen, S., etc. A novel biosensor for sterigmatocystin constructed bymulti-walled carbon nanotubes (MWNT) modified with aflatoxin–detoxifizyme (ADTZ)[J].Bioelectrochemistry,2006,68(2):126-133.
    [25].Shobha Jeykumari, D., Sriman Narayanan, S. A novel nanobiocomposite based glucose biosensorusing neutral red functionalized carbon nanotubes[J]. Biosensors and Bioelectronics,2008,23(9):1404-1411.
    [26].Zheng, M., Jagota, A., Strano, M. S., etc. Structure-based carbon nanotube sorting bysequence-dependent DNA assembly[J]. Science,2003,302(5650):1545-1548.
    [27].Heller, D. A., Jeng, E. S., Yeung, T. K., etc. Optical detection of DNA conformationalpolymorphism on single-walled carbon nanotubes[J]. Science,2006,311(5760):508-511.
    [28].Yang, R., Tang, Z., Yan, J., etc. Noncovalent assembly of carbon nanotubes and single-strandedDNA: an effective sensing platform for probing biomolecular interactions[J]. Analytical Chemistry,2008,80(19):7408-7413.
    [29].Guo, X., Gorodetsky, A. A., Hone, J., etc. Conductivity of a single DNA duplex bridging a carbonnanotube gap[J]. Nature Nanotechnology,2008,3(3):163-167.
    [30].Mart nez, M. T., Tseng, Y. C., Ormategui, N., etc. Label-free DNA biosensors based onfunctionalized carbon nanotube field effect transistors[J]. Nano Letter,2009,9:530-536.
    [31].Roman, T., Di o, W. A., Nakanishi, H., etc. Glycine adsorption on single-walled carbonnanotubes[J]. Thin Solid Films,2006,509(1):218-222.
    [32].Roman, T., Dino, W., Nakanishi, H., etc. Amino acid adsorption on single-walled carbonnanotubes[J]. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics,2006,38(1):117-120.
    [33].Ganji, M. Density functional theory based treatment of amino acids adsorption on single-walledcarbon nanotubes[J]. Diamond and Related Materials,2009,18(4):662-668.
    [34].Liu, G., Cheng, Y., DONG, M., etc. A study on self-insertion of peptides into single-walled carbonnanotubes based on molecular dynamics simulation[J]. International Journal of Modern Physics C,2005,16(08):1239-1250.
    [35].Cheng, Y., Liu, G., Li, Z., etc. Computational analysis of binding free energies between peptidesand single-walled carbon nanotubes[J]. Physica A: Statistical Mechanics and its Applications,2006,367:293-304.
    [36].Wang, S., Humphreys, E. S., Chung, S. Y., etc. Peptides with selective affinity for carbonnanotubes[J]. Nature Materials,2003,2(3):196-200.
    [37].Su, Z., Leung, T., Honek, J. F. Conformational selectivity of peptides for single-walled carbonnanotubes[J]. The Journal of Physical Chemistry B,2006,110(47):23623-23627.
    [38].Piao, L., Liu, Q., Li, Y., etc. Adsorption of L-phenylalanine on single-walled carbon nanotubes[J].The Journal of Physical Chemistry C,2008,112(8):2857-2863.
    [39].Li, X., Chen, W., Zhan, Q., etc. Direct measurements of interactions between polypeptides andcarbon nanotubes[J]. The Journal of Physical Chemistry B,2006,110(25):12621-12625.
    [40].Pantarotto, D., Charalambos, D., Graff, R., etc. Synthesis, structural characterization, andimmunological properties of carbon nanotubes functionalized with peptides[J]. Journal of the AmericanChemical Society,2003,125(20):6160-6164.
    [41].Pantarotto, D., Partidos, C. D., Hoebeke, J., etc. Immunization with peptide-functionalized carbonnanotubes enhances virus-specific neutralizing antibody responses[J]. Chemistry and Biology,2003,10(10):961-966.
    [42].Pender, M. J., Sowards, L. A., Hartgerink, J. D., etc. Peptide-mediated formation of single-wallcarbon nanotube composites[J]. Nano Letters,2006,6(1):40-44.
    [43].McDevitt, M. R., Chattopadhyay, D., Kappel, B. J., etc. Tumor targeting withantibody-functionalized, radiolabeled carbon nanotubes[J]. Journal of Nuclear Medicine,2007,48(7):1180-1189.
    [44].Chen, Z., Tabakman, S. M., Goodwin, A. P., etc. Protein microarrays with carbon nanotubes asmulticolor Raman labels[J]. Nature Biotechnology,2008,26(11):1285-1292.
    [45].Welsher, K., Liu, Z., Daranciang, D., etc. Selective probing and imaging of cells with single walledcarbon nanotubes as near-infrared fluorescent molecules[J]. Nano Letters,2008,8(2):586-590.
    [46].Holmlin, R. E., Chen, X., Chapman, R. G., etc. Zwitterionic SAMs that resist nonspecificadsorption of protein from aqueous buffer[J]. Langmuir,2001,17(9):2841-2850.
    [47].Hu, P. A., Tanii, T., Zhang, G. J., etc. Ultrasensitive detection of biomolecules using functionalizedmulti-walled carbon nanotubes[J]. Sensors and Actuators B: Chemical,2007,124(1):161-166.
    [48].Yang, Y., Zhu, Y.,Chen, Q., etc. Carbon-Nanotube-Activated Pt Quartz-Crystal Microbalance forthe Immunoassay of Human IgG[J]. Small,2009,5(3):351-355.
    [49].Karajanagi, S. S., Vertegel, A. A., Kane, R. S., etc. Structure and function of enzymes adsorbedonto single-walled carbon nanotubes[J]. Langmuir,2004,20(26):11594-11599.
    [50].Matsuura, K., Saito, T.,Okazaki, T., etc. Selectivity of water-soluble proteins in single-walledcarbon nanotube dispersions[J]. Chemical Physics Letters,2006,429(4):497-502.
    [51].Pope, C. A. Adverse health effects of air pollutants in a nonsmoking population[J]. Toxicology,1996,111(1):149-155.
    [52].Laden, F., Neas, L. M., Dockery, D. W., etc. Association of fine particulate matter from differentsources with daily mortality in six US cities[J]. Environmental Health Perspectives,2000,108(10):941.
    [53].李红,曾凡刚.可吸入颗粒物对人体健康危害的研究进展[J].环境与健康杂志,2002,19(1):85-89.
    [54].Lam, C. W., James, J. T., McCluskey, R., etc. Pulmonary toxicity of single-wall carbon nanotubesin mice7and90days after intratracheal instillation[J]. Toxicological Sciences,2004,77(1):126-134.
    [55].Warheit, D. B., Laurence, B., Reed, K. L., etc. Comparative pulmonary toxicity assessment ofsingle-wall carbon nanotubes in rats[J]. Toxicological Sciences,2004,77(1):117-125.
    [56].Huczko, A., Lange, H., Bystrzejewski, M., etc. Pulmonary Toxicity of1-D NanocarbonMaterials[J]. Fullerenes, Nanotubes, and Carbon Nanostructures,2005,13(2):141-145.
    [57].Muller, J., Huaux, F., Moreau, N., etc. Respiratory toxicity of multi-wall carbon nanotubes[J].Toxicology and Applied Pharmacology,2005,207(3):221-231.
    [58].Wang, H., Wang, J., Deng, X., etc. Biodistribution of carbon single-wall carbon nanotubes inmice[J]. Journal of Nanoscience and Nanotechnology,2004,4(8):1019-1024.
    [59].Jia, G., Wang, H., Yan, L., etc. Cytotoxicity of carbon nanomaterials: single-wall nanotube,multi-wall nanotube, and fullerene[J]. Environmental Science and Technology,2005,39(5):1378-1383.
    [60].Kam, N. W. S.,Jessop, T. C.,Wender, P. A., etc. Nanotube molecular transporters: internalization ofcarbon nanotube-protein conjugates into mammalian cells[J]. Journal of the American Chemical Society,2004,126(22):6850-6851.
    [61].Sayes, C. M., Liang, F.,Hudson, J. L., etc. Functionalization density dependence of single-walledcarbon nanotubes cytotoxicity in vitro[J]. Toxicology Letters,2006,161(2):135-142.
    [62].Cui, D., Tian, F., Ozkan, C. S., etc. Effect of single wall carbon nanotubes on human HEK293cells[J]. Toxicology Letters,2005,155(1):73-85.
    [63].Ding, L., Stilwell, J., Zhang, T., etc. Molecular characterization of the cytotoxic mechanism ofmultiwall carbon nanotubes and nano-onions on human skin fibroblast[J]. Nano Letters,2005,5(12):2448-2464.
    [64].Witzmann, F. A.,Monteiro-Riviere, N. A. Multi-walled carbon nanotube exposure alters proteinexpression in human keratinocytes[J]. Nanomedicine: Nanotechnology, Biology and Medicine,2006,2(3):158-168.
    [65]. Manna, S. K., Sarkar, S., Barr, J., etc. Single-walled carbon nanotube induces oxidative stress andactivates nuclear transcription factor-κB in human keratinocytes[J]. Nano Letters,2005,5(9):1676-1684.
    [66].Nel, A., Xia, T., M dler, L., etc. Toxic potential of materials at the nanolevel[J]. Science,2006,311(5761):622-627.
    [67].Zhang, H., Slutsky, A., Vincent, J. L. Oxygen free radicals in ARDS, septic shock and organdysfunction[J]. Intensive Care Medicine,2000,26(4):474-476.
    [68].Sies, H. Biological redox systems and oxidative stress[J]. Cellular and Molecular Llife Sciences,2007,64(17):2181-2188.
    [69].Seidman, M. D., Quirk, W. S., Shirwany, N. A. Reactive oxygen metabolites, antioxidants andhead and neck cancer[J]. Head and Neck,1999,21(5):467-479.
    [70].Konturek, S., Konturek, P., Brzozowski, T., etc. Role of melatonin in upper gastrointestinal tract[J].Journal of Physiology and Pharmacology,2007,58(6):23-52.
    [71]. Weller, B. L., Crapo, J. D., Slot, J., etc. Site-and cell-specific alteration of lung copper/zinc andmanganese superoxide dismutases by chronic ozone exposure[J]. American Journal of Respiratory Celland Molecular Biology,1997,17(5):522-532.
    [72].黄文涛,胡学智.酶应用手册[M].上海:上海市科技出版杜,1989,15:245-246.
    [73]. Goldberg, I., Hochman, A. Purification and characterization of a novel type of catalase from thebacterium Klebsiella pneumoniae [J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1989,991(2):330-336.
    [74].张闻,罗勤慧.锰过氧化氢酶及其模型物研究进展[J].化学通报,2000,10:4-7.
    [75]. Zámocky, M., Koller, F. Understanding the structure and function of catalases: clues frommolecular evolution and in vitro mutagenesis[J]. Progress in Biophysics and Molecular Biology,1999,72(1):19-66.
    [76].王焕.污染生态学基础[M].云南:云南大学出版社,1990,189-192.
    [77]. Eriksson, S. The operational concept of ecological sensitivity. Applications in physical andenvironmental planning[J]. Stockhole: Royal Institute of Technology Publisher,1996:30-45.
    [78]. Chen, T., Furst, A., Chien, P. K. The effects of cadmium and iron on catalase activities inTubifex[J]. International Journal of Toxicology,1994,13(2):112-120.
    [79]. Furst, A., Nguyen, Q. Cadmium-induced metallothionein in earthworms (Lumbricus terrestris)[J].Biological Trace Element Research,1989,21(1):81-85.
    [80]. Galston, A. W. Plant catalase[J]. New York: Interscience Publishers,1991,27-53,69-82.
    [81].Wang, Y., Zhou, A. Spectroscopic studies on the binding of methylene blue with DNA by means ofcyclodextrin supramolecular systems[J]. Journal of Photochemistry and Photobiology A: Chemistry,2007,190(1):121-127.
    [82]. Lynch, I., Dawson, K. A., Linse, S. Detecting cryptic epitopes created by nanoparticles[J]. ScienceSignalling,2006,2006(327): pe14.
    [83].Sreerama, N., Woody, R. W. Computation and analysis of protein circular dichroism spectra[J].Methods in Enzymology,2004,383:318-351.
    [84].Brahms, S., Brahms, J. Determination of protein secondary structure in solution by vacuumultraviolet circular dichroism[J]. Journal of Molecular Biology,1980,138(2):149-178.
    [85].王君,任百祥.药物与蛋白相互作用的分析测试[J].中国新医药,2003,2(005):47-48.
    [86].郭德济.光化学分析法[M].重庆:重庆大学出版社,1994:173.
    [87].Gao, H., Lei, L.,Liu, J., etc. The study on the interaction between human serum albumin and a newreagent with antitumour activity by spectrophotometric methods[J]. Journal of Photochemistry andPhotobiology A: Chemistry,2004,167(2):213-221.
    [88]. Kang, J., Liu, Y., Xie, M. X., etc. Interactions of human serum albumin with chlorogenic acid andferulic acid[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2004,1674(2):205-214.
    [89].Croney, J. C., Jameson, D. M., Learmonth, R. P. Fluorescence spectroscopy in biochemistry:teaching basic principles with visual demonstrations[J]. Biochemistry and Molecular BiologyEducation,2008,29(2):60-65.
    [90]. Wei, A. P., Blumenthal, D. K., Herron, J. N. Antibody-mediated fluorescence enhancement basedon shifting the intramolecular dimer. dblarw. monomer equilibrium of fluorescent dyes[J]. AnalyticalChemistry,1994,66(9):1500-1506.
    [91].陈国珍.荧光分析法[M].北京:科学出版社,1990.
    [92].Wang, C. X., Yan, F. F., Zhang, Y. X., etc. Spectroscopic investigation of the interaction betweenrifabutin and bovine serum albumin[J]. Journal of Photochemistry and Photobiology A: Chemistry,2007,192(1):23-28.
    [93].唐江宏,有机小分子与人血清白蛋白的相互作用[D],兰州大学,2006.
    [94]. Hu, Y. J., Li, W., Liu, Y., etc. Fluorometric investigation of the interaction between methylene blueand human serum albumin[J]. Journal of Pharmaceutical and Biomedical Analysis,2005,39(3):740-745.
    [95].Lloyd, J. Synchronized excitation of fluorescence emission spectra[J]. Nature,1971,231(20):64-65.
    [96]. Miller, J. Recent advances in molecular luminescence analysis[A]. In Proceed AnalyticalDiversion Chemistry Soceity,1979:203-208.
    [97].Burstein, E., Vedenkina, N., Ivkova, M. Fluorescence and the location of tryptophan residues inprotein molecules[J]. Photochemistry and Photobiology,1973,18(4):263-279.
    [98].Soengas, M. S., Alarcon, R., Yoshida, H., etc. Apaf-1and caspase-9in p53-dependent apoptosisand tumor inhibition[J]. Science,1999,284(5411):156-159.
    [99]. Forster, T. Intramolecular energy migration and fluorescence [J]. Annals of Physics1948,2:55.
    [100].Li., D. D. A theory of sensitized luminescence in solid[J]. Journal of Chemical Physics,1953,21(5):836-850
    [101].堀江一之.分子光子学[M].北京:科学出版社,2004.
    [102].Surewicz, W. K., Mantsch, H. H., Stahl, G. L., etc. Infrared spectroscopic evidence ofconformational transitions of an atrial natriuretic peptide[J]. Proceedings of the National Academy ofSciences,1987,84(20):7028-7030.
    [103].Bourassa, P., Kanakis, C., Tarantilis, P., etc. Resveratrol, genistein, and curcumin bind bovineserum albumin[J]. The Journal of Physical Chemistry B,2010,114(9):3348-3354.
    [104].Zhou, X. M., Lv, W. J., Su, L., etc. Binding of phthalate plasticizers to human serum albumin invitro: A multispectroscopic approach and molecular modeling[J]. Journal of Agricultural and FoodChemistry,2012,60(4):1135-1145.
    [105].Zhao, X., Liu, R., Chi, Z., etc. New insights into the behavior of bovine serum albumin adsorbedonto carbon nanotubes: comprehensive spectroscopic studies[J]. The Journal of Physical Chemistry B,2010,114(16):5625-5631.
    [106].Chi, Z., Liu, R., Teng, Y., etc. Binding of oxytetracycline to bovine serum albumin: spectroscopicand molecular modeling investigations[J]. Journal of Agricultural and Food Chemistry,2010,58(18):10262-10269.
    [107].Katrahalli, U., Kalalbandi, V. K. A., Jaldappagari, S. The effect of anti–tubercular drug,ethionamide on the secondary structure of serum albumins: A biophysical study[J]. Journal ofPharmaceutical and Biomedical Analysis,2011.
    [108].Zhang, G. C., Xu, J. Y.,Wang, Y. Q. Studies on the interaction between chromium (VI) and humanserum albumin: Spectroscopic approach[J]. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy,2011..
    [109].Khan, A. Y., Hossain, M., Suresh Kumar, G. Investigations on the interaction of the phototoxicalkaloid coralyne with serum albumins[J]. Chemosphere,2012,87(7):775-781.
    [110].Su kowska, A. Interaction of drugs with bovine and human serum albumin[J]. Journal ofMolecular Structure,2002,614(1):227-232.
    [111].Wu, Y. Study on the interaction between salicylic acid and catalase by spectroscopic methods[J].Journal of Pharmaceutical and Biomedical Analysis,2007,44(3):796-801.
    [112].Stevens, R. M. New carbon nanotube AFM probe technology[J]. Materials Today,2009,12(10):42-45.
    [113].Van de Weert, M. Fluorescence quenching to study protein-ligand binding: common errors[J].Journal of Fluorescence,2010,20(2):625-629.
    [114].Gu, Q., Kenny, J. E. Improvement of inner filter effect correction based on determination ofeffective geometric parameters using a conventional fluorimeter[J]. Analytical Chemistry,2008,81(1):420-426.
    [115].Dubeau, S., Bourassa, P., Thomas, T., etc. Biogenic and synthetic polyamines bind bovine serumalbumin[J]. Biomacromolecules,2010,11(6):1507-1515.
    [116].Cheng, X. X., Lui, Y., Zhou, B., etc. Probing the binding sites and the effect of berbamine on thestructure of bovine serum albumin[J]. Spectrochimica Acta Part A: Molecular and Biomolecularspectroscopy,2009,72(5):922-928.
    [117].Gentili, P. L., Ortica, F., Favaro, G. Static and dynamic interaction of a naturally occurringphotochromic molecule with bovine serum albumin studied by UV-Visible absorption and fluorescencespectroscopy[J]. The Journal of Physical Chemistry B,2008,112(51):16793-16801.
    [118].Yue, Y., Chen, X., Qin, J., etc. Characterization of interaction between CI Acid Green1andhuman serum albumin: Spectroscopic and molecular modeling method[J]. Dyes and Pigments,2009,83(2):148-154.
    [119].Sklar, L. A., Hudson, B. S., Simoni, R. D. Conjugated polyene fatty acids as fluorescent probes:binding to bovine serum albumin[J]. Biochemistry,1977,16(23):5100-5108.
    [120].Joseph, R. L., Lakowicz, R. Principles of Fluorescence Spectroscopy[J]. New York: Plenum Press,1983,301-331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700