玉米生物诱导单倍体雄穗育性恢复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米单倍体育种的大规模应用需要对单倍体育种流程中每一个环节的效率进行系统研究。随着诱导率和鉴别效率的不断提高,较低的单倍体加倍效率已经成为高通量单倍体育种的主要限制因素。单倍体雄穗育性自然恢复性能是影响单倍体自然加倍效率的关键因素,本研究针对该性状的遗传规律及其相关控制基因进行了探讨,主要结果如下:
     (1)本研究对单倍体雄穗育性恢复性状进行分级评价,用露药率、露粉率、露药得分和露粉得分四个指标来评价单倍体雄穗育性恢复能力。通过对不同杂种优势群的16个自交系及其组配的23个杂交种F1诱导单倍体的雄穗育性自然恢复进行分析,发现单倍体雄穗育性恢复主要由基因型决定,除露粉得分因显著受环境影响外,其它三个性状遗传力都在60%以上。
     (2)通过对自交系来源单倍体雄穗育性恢复能力进行评价,发现高频雄穗育性恢复材料豫8701和4F1,散粉比例都在80%以上,散粉单株中90%为高等级散粉单株;高露药能力材料许178、齐319和高露粉能力材料K22、B73。通过对杂交种来源单倍体雄穗育性恢复能力进行评价,发现豫8701组配的杂交种后代单倍体均表现出高频雄穗育性恢复,而4F1组配的杂交种后代单倍体雄穗育性恢复能力有高有低,说明豫8701中可能含有更多有利于单倍体雄穗育性恢复的基因位点。本研究发现从两个低频雄穗育性恢复系郑58和昌7-2组配郑单958后代单倍体中观察到超亲育性恢复现象,这说明单倍体育性恢复能力可以通过选择得到提高。
     (3)对单倍体育性恢复其他遗传因素进行研究发现该性状主要受核基因的控制,不受细胞质基因的调控;诱导率不同的诱导系对单倍体雄穗育性恢复能力没有显著影响。
     (4)利用流式细胞仪对不同散粉等级的单倍体在其散粉吐丝期对叶片的倍性进行测定,发现只有10%左右的较高等级的可育单倍体中才会含有部分二倍体细胞,大部分发生育性恢复的单倍体其体细胞仍然停留在未加倍状态,说明单倍体在发生自然加倍时其生殖细胞的加倍应当早于或者优于体细胞的加倍,并且不以体细胞的加倍为前提。
     (5)利用郑单958F2:3群体对单倍体被诱导率进行定位,共检测到两个相关位点qmhirl和qmhir2,分别位于第1和第3号染色体上,解释表型变异的14.7%和8.42%。用该群体对单倍体雄穗育性恢复进行定位,共检测到8个相关位点,分别位于第2、3、8和9号染色体上。其中位于第8号染色体上的位点qHmf7在两年的重复中都被检测到,位于第3.07区的位点qHmf5也在豫8701×郑58以及4F1×郑58的后代单倍体群体中得到验证。这两个位点的贡献率都在10%左右。通过对候选基因预测认为单倍体育性恢复可能受到多个功能基因的调控。
     (6)对单倍体群体中出现的早期加倍单倍体EH进行了系统研究。表型特征统计分析发现EHo当代在二倍化程度上要显著优于一般加倍单倍体,完全可育,植株农艺性状与常规自交系一致。同时分子标记SSR检测以及SNP检测发现EH0代在基因型上与母本被诱导材料或者DH0代基本一致。EH是单倍体自然加倍中一种特殊现象,其可能发生于胚形成过程中。EH在单倍体群体中出现的频率较低,目前发现的最高仅为3%左右。
Large-scale applications of DH breeding require breeders to do systematic research on every step during the process. Haploid induction and identification are not a big problem right now, but haploid doubling techniques are still not efficient enough to meet the high throughput production for DH lines, spontaneous doubling is one of the most convenient ways in DH breeding, however, the rate is so high. Therefore it is necessary to study the genetic characteristics and related genes of haploid male fertility (HMF) in order to explore new ways to increase spontaneous doubling rate. The main results are as follows:
     (1) This study classified the characteristics of HMF into different levels according to different haploid diploidization with different index:anther ratio, pollen ratio, anther score and pollen score were used to describe HMF. Haploids derived from16elite inbred and composed23F1hybrids covering the five heterotic groups were investigated of HMF in different environment in two years. It was found that haploid male fertility was mainly controlled by genetic background; the heritability of all of the traits was more than60%except that pollen score was a little lower and affected by the environment.
     (2) Cluster analysis found that the haploids originated from inbred lines Yu8701and4F1had better HMF capabilities than other materials, the fertile ratio was more than80%and90%of the fertile haploids were with high level. Xu178-derived haploids and Qi319-derived haploids performed well in anther traits; K22-derived haploids and B73-derived haploids performed well in pollen traits. The haploids from the hybrids of Yu8701always performed well in HMF but no same results were found in the haploids from the hybrids of4F1, which meant that there were more positive HMF related genes in Yu8701. Transgressive inheritance was found in the progeny of two low-frequency HMF inbred lines Chang7-2and Zheng58, which indicated that the trait could be improved through selection.
     (3) Other genetic factors of HMF were also investigated and found that HMF was mainly controlled by gene in nuclear, not in the cytoplasm. Inducer lines did not affect HMF.
     (4) Ploidy investigation of the leaf in pollination using flow cytometry found only10%high level fertile haploids contained half of the proportion of diploid cells, vegetative organs of most fertile haploids remained in the state of haploid, indicating that the reproductive cells should be doubled earlier than the vegetative cells.
     (5) A mapping population consisting of186F23family lines derived from the cross between Zheng58and Chang7-2was used to map the maternal QTL of in vivo haploid induction. Two quantitative trait loci (QTLs), qmhirl and qmhir2, were detected on chromosomes1and3and could be explained14.70%and8.42%of the phenotypic variation, respectively. This Zhengdan958F2:3population was also used to locate the HMF related genes. A total of8HMF related genes were detected. The loci on chromosome8qHmf7were detected in two replications; the loci qHmf5on3.07were verified in other genetic background Yu8701×Zheng58and4F1×Zheng58with extreme value chi-square test methods. Each of the contribution of these two loci was about10%. The predicted candidate gene was found to have different functions.
     (6) Early doubled haploid (EH) in haploid populations was studied systematically. Phenotypic characteristics analysis found that EH0performed better than normal doubled haploid in diploidizaion with totally fertile. Agronomic traits of the EH plants consistent with the inbred lines. SSR marker and SNP detections found that genotype of EH0was the same with the donor parents, EH is a kind of special DH from haploid spontaneous doubling in embryo development. The ratio of EH is about3%in haploid population.
引文
[1]敖光明,李广华.从未受精玉米子房诱导出单倍体植株.遗传学报,1982,9:281-283
    [2]蔡得田,周嫦.由向日葵优化或胚珠培养出单倍体植株与胚状体.科学通报,1983,28:1399-1401
    [3]蔡泉,曹靖生,史桂荣,等.玉米单倍体在黑龙江和海南自然加倍效果的对比研究.玉米科学,2012,5:7-9
    [4]才卓,徐国良,刘向辉,等.玉米高频率单倍生殖诱导系吉高诱系3号的选育.玉米科学,2007,15(1):1-4
    [5]陈绍江,黎亮,李浩川,等.玉米单倍体育种技术(第二版)(书).2012,中国农业大学出版社
    [6]陈绍江,宋同明.利用高油分的花粉直感效应鉴别玉米单倍体.作物学报,2003,29:587-590
    [7]褚云霞.百合花药的培养研究.园艺学报,2001,28(5):472-474
    [8]代色平.矮牵牛花药培养及植株再生研究.亚热带植物科学,2003,32(2):55-57
    [9]段明孝,赵久然,刘新香,等.不同种植地点对玉米单倍体自然加倍率的影响.作物杂志,2012,2:68-70
    [10]番兴明,谭静,张世煌,等.利用SSR标记对29个热带和温带玉米自交系进行杂种优势群的划分.作物学报,2003,29:835-840
    [11]付迎军.玉米离体花药培养体系的建立.延边大学农学学报,2004,26:1-5
    [12]胡道芬.植物花培育种进展.1996,中国农业科技出版社
    [13]惠国强,杜何为,杨小红,等.不同除草剂加倍玉米单倍体的效率.作物学报,2012,38(3):416-422
    [14]李浩川,玉米母本孤雌生殖可诱导性遗传及DH系评价方法研究:[博士学位论文].北京:中国农业大学,2011
    [15]李浚明.植物组织培养教程.2002,中国农业大学出版社
    [16]李守岭,庄南生.植物花药培养及其影响因素研究进展.亚热带植物科学,2006,35(3):76-80
    [17]黎亮,玉米单倍体育种技术研究及单倍体诱导性状的遗传与生物学机理探讨:[博士学位论文].北京:中国农业大学,2010
    [18]黎亮,董昕,徐小炜等.玉米单倍体诱导系诱导双生苗的观察.中国农业大学学报,2012,17(5):1-6
    [19]黎亮,李浩川,徐小炜,等.玉米孤雌生殖单倍体加倍技术研究进展.玉米科学,2010,18:12-14
    [20]刘金,郭婷婷,杨培强等.玉米单倍体核磁共振自动分拣系统的开发.农业工程学报,2012,28:233236
    [21]刘志增,宋同明.玉米孤雌生殖单倍体的诱导与父本花粉在离体萌发花粉管中精核间距的相关性分析.西北植物学报2000,20(4):495-502
    [22]潘莉,杨铁钊.烟草未授粉子房胚状体诱导的研究.西北植物学报,2000,20(1):59-63
    [23]许洛,王绍新,冯健英.不同生态环境的玉米单倍体自然加倍效果研究.河北农业科学,2013,17(3):63-65
    [24]王玉英.辣椒和甜椒花药培养的新进展.园艺学报,1981,8(2):41-45
    [25]魏凌基.大麦花药离体培养及植株再生研究初报.石河子农学院学报,1995,4(32):60
    [26]文科,高效玉米单倍体诱导和加倍方法及其SSR和ISSR标记分离研究:[硕士学位论文].北京:中国农业大学,2003
    [27]徐小炜,玉米母本单倍体诱导性状的遗传与生物学机理研究:[博士学位论文].北京:中国农业大学,2013
    [28]闫华,周嫦,杨弘远.向日葵未受精胚珠培养中各种影响因素的实验研究.武汉植物学研究,1988,6(4):319-327
    [29]严建兵,汤华,黄益勤,等.玉米F2群体分子标记偏分离的遗传分析.遗传学报,2003,30:913-918
    [30]赵桂兰.大豆花药培养中胚状体萌发的研究.科学通报,1998,43:1513-1516
    [31]周嫦,杨弘远.未传粉子房与胚珠的离体培养.武汉大学学报:自然科学学报,1982,3:61-72
    [32]祝仲纯,吴海珊.从为授粉的小麦及烟草子房培养出单倍体植株.遗传学报,1979,6:181-183
    [33]Asker S. A monoploid of Potentilla argentea. Hereditas,1983,99:303-304
    [34]Alexandrov NN, Brover W, Feidin S, and et al. Insights into corn genes derived from large scale cDNA sequencing. Plant Mol Bio,2009,69:179-194
    [35]Baierl A, Bogdan M, Frommlet F, and et al. On locating multiple interacting quantitative trait loci in intercross designs. Genetics,2006,173:1693-1703
    [36]Barclay IR. High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature,1975,256:410-411
    [37]Barnabas B, Obert B, Kovacs G Colchicine, an efficient genome-doubling agent for maize (Zea mays L.) microspores cultured in anthero. Plant Cell Reports,1999,18:858-862
    [38]Barret P, Brinkmann M, Beckert M. A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize. Theor Appl Genet,2008, 117:581-594
    [39]Barrientos E, and Bringhurst RS. A haploid of an octoploid strawberry cultivar. HorScience,1973, 8:44
    [40]Barton JE, Maddock SE, Wu XE, et al. Doubling of chromosomes in haploid embryos. US Patent, 2008. Pub No:US 2008/0216191 Al
    [41]Bauman LF. Production of diploid eggs by normal diploid maize. Maize Genet Coop Newsl,1961, 35:128-130
    [42]Belicuas PR, Guimaraes CT, Paiva LV, et al. Androgenetic haploids and SSR markers as tools for the development of tropical maize hybrids. Euphytica,2007,156:95-102
    [43]Bernardo R. Should maize doubled haploids be induced among F1 or F2 plants? Theor Appl Genet, 2009,119:255-262
    [44]Bingham ET. Haploids from cultivated alfalfa, Medicago sativa L. Nature,1969,221:865-871
    [45]Bingham ET. Isolation of haploids of tetraploid alfafa. Crop Sci,1971,11:433-435
    [46]Birchler JA. Dosage analysis of maize endosperm development. Annual Review of Genetics,1993, 27:181-204
    [47]Birchler JA, Gao Z, Sharma A, et al. Epigenetic aspects of centromere function in plants. Current Opinion in Plant Biology,2011,14:217-222
    [48]Blakeslee AF, Belling J, Farnham ME, et al. A haploid mutant in the Jimson weed, Datura stramonium. Science,1922,55:646-647
    [49]Bohanec B, Jakse M, Ihan A, et al. Studies of gynogenesis in onion (Allium cepa L.):induction procedures and genetic analysis of regenerants. Plant Sci,1995,104:215-224
    [50]Bohanec B. Ploidy determination using flow cytometry. In:Doubled Haploid Production in Crop Plants:A Manual, Maluzynski M, Kasha KJ, Forster BP and Szarejko I.2003, Kluwer Academic Publishers, Dordrecht, pp 397-403
    [51]Bordes J, de Vaulx RD, Lapierre A, et al. Haplodiploidizaiton of maize (Zea mays L.) through induced gynogenesis assisted by glossy markers and its use in breeding. Agronomie,1997, 17:291-297
    [52]Borrino E, and Powell W. Stomatal guard-cell length as an indicator of ploidy in microspore-erived plants of barley. Genome,1988,30:158-160
    [53]Buckler IV ES, Phelps-Durr TL, Buckler CSK, et al. Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics,1999,153:415-426
    [54]Burd LH. A preliminary note on a sterile dwarf rogue in Sea Island Cotton. Emp Grow Rev,1924, 1:46-48
    [55]Bylich VG, Chalyk ST. Existence of pollen grains with a pair of morphologically different sperm nuclei as a possible cause of the haploid-inducing capacity in ZMS line. Maize Genet Coop NewsLett,1996,70:30
    [56]Caperta AD, Delgado M, Ressurreicao F, et al. Cochicine-induced polyploidization depends on tubulin polymerization in c-metaphase cells. Protoplasma,2006,227:147-153
    [57]Chalyk ST. Properties of maternal haploid maize plants and potential application to maize breeding. Euphytica,1994,79:13-18
    [58]Chalyk ST. Use of maternal haploids for improving maize inbred lines. Maize Genet Coop Newsl, 1999,74:54-56
    [59]Chalyk ST. Obtaning fertile pollen in maize maternal haploids. Maize Genet Coop Newsl,2000, 74:17-18
    [60]Chalyk ST, Baumann A, Daniel G, et al. Aneuploidy as a possible cause of haploid-induction in maize. Maize Genet Coop Newslett,2003,77:29-30
    [61]Chang MT. Stock 6 induced double haploidy is random. Maize Genet Coop Newslett,1992, 66:98-99
    [62]Chang MT, Coe EH. Doubled haploids. In:Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement. Springer, Berlin, Heidelberg,2009, pp 127-142
    [63]Chase SS. Monoploid frequencies in a commercial double cross hybrid maize and its component single cross hybrids and inbred lines. Genetics,1949,34:328-332
    [64]Chase SS. Efficient methods of developing and improving inbred lines. The monoploid method of developing inbred lines. In:Report of 6th hybrid corn industry research conference,1951, pp 29-34
    [65]Chase SS. Production of homozygous diploids of maize from monoploids. Agron J,1952, 44:263-267
    [66]Chase SS. Monoploids and monoploid derivatives of maize (Zea mays L.). Bot Rev,1969, 35:117-167
    [67]Chat J, Decroocq S, and Petit RJ. A one-step organelle capture:gynogenetic kiwifruits with paternal chloroplasts. Proc R Soc Lond B,2003,270:783-789
    [68]Chen CC, Howarth MJ, Peterson RL, et al. Intrastructure of androgenic microspores of barley during the early stages of anther culture. Can J Genet Cytol,1984,26:484-491
    [69]Chen Z, Tan J, Ingouff M, et al. Chromatin assembly factor 1 regulates the cell cycle but not cell fate during male gametogenesis in Arabidopsis thaliana. Development,2008,135:65-73
    [70]Chen ZZ, Snyder S, Fan ZG, et al. Efficient production of doubling haploid plants through chromosome doubling of isolated microspores in Brassica napus. Plant Breeding,1994, 113:217-221
    [71]Cheng R, Saito A, Takano Y, et al. Estimation of the position and effect of a lethal factor locus on a molecular marker linkage map. Theor Appl Genet,1996,93:494-502
    [72]Choe E, Carbonero CH, Mulvaney K, et al. Improving in vivo maize doubled haploid production efficiency through early detection of false positives. Plant Breeding,2012,131:399-401
    [73]Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics, 1994,138:963-971
    [74]Cistue L, Romagosa I, Tsuchiya T, et al. Karyotype analysis in haploid sugarbeet. Bot Gaz,1985, 146:259-263
    [75]Clausen RE and Mann MC. Inheritance in Nicotiana tabacum:V. The occurrence of haploid plants in interspecific progenies. Proc Natl Acad Sci USA,1924,10:121-124
    [76]Clayton MC, and Yawney HW. Multiple Seedlings in Acer saccharum. Bull Torrey Bot Club,1972, 99:142-144
    [77]Cloutier S, Cappadocia M, Landry BS. Analysis of RFLP mapping inaccuracy in Brassica napus L. Genetics,1997,95:83-91
    [78]Coe EH. A line of maize with high haploid frequency. The American Naturalist 1959,93:381-382
    [79]Coe EH, and Sakar KR. The detection of haploids in maize. JHered,1964,55:231-233
    [80]Corbett KD, Berger JM. Emerging roles for plant topoisomerase VI. Chem Biol,2003,10:107-111
    [81]d'Amato F. Role of polyploidy in reproductive organs and tissues, in Johri BM (ed):Embryology of Angiosperms,1984, pp 519-566
    [82]d'Amato F. Polyploidy in cell differentiation. Caryologia,1989,42:183-211
    [83]Detimiling S, Rober F, Geiger HH. Methodik und genetik der in-vivo-haploideninduktion bei mais. Vortr Pflanzenzuchtg,1997,38:203-224
    [84]De Villena FP, Sapienza C. Nonrandom segregation during meiosis:the unfairness of females. Mammalian Genome,2001,12:331-339
    [85]Dong X, Xu XX, Chen SJ, et al. Fine mapping of qhirl influencing in vivo haploid induciton in maize. Theor Appl Genet,2013,126:1713-1720
    [86]Dore C, Prigent J, and Desprez B. In situ gynogenetic haploid plants of chicory(Cichorium intybus L.) after intergeneric hybridization with Cicerbita alpine Walbr. Plant Cell Rep,1996,15:758-761
    [87]Doswell, Charles A., Harold E. Brooks, et al. Flash Flood Forecasting:An Ingredients-Based Methodology. Wea. Forecasting,1996,11:560-581
    [88]Du Y, Topp CN, Dawe RK. DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA. PLoS Genet,2010,6:e1000835
    [89]Duara BN, and Stebbins GL. A polyhaploid obtained from a hybrid derivative of Sorghum halepense x S. vulgare var. sudanense. Genetics,1952,37:369-374
    [90]Dunwell JM. Haploids in flowering plants:origins and exploitation. Plant Biotechnology Journal, 2010,8:377-424
    [91]Eder J, Chalyk ST. In vivo haploid induction in maize. Theor Appl Genet,2002,104:703-708
    [92]Enaleeva N, Otkalo O, and Tyrnov V. Cytological expression of ig mutation in megagametophyte. Maize Genet Coop NewsLett,1995,69:121
    [93]Evans MMS. The indeterminate gametophyte 1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. The Plant Cell,2007,19:46-62
    [94]Falk DE, Kasha KJ.Genetic studies of the crossability of hexaploid wheat with rye and Hordeum bulbosum.1983. Theor A ppl Genet,1983,64:303-307
    [95]Faris JD, Laddomada B, Gill BS. Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics,1998,149:319-327
    [96]FAOSTAT Statistical databases and data-sets of the Food and Agriculture Organization of the United Nations.
    [97]Ficcadenti N, Sestili S, Annibali S, et al. In vitro gynogenesis to induce haploid plants in melon (Cucumis melo L.). J Genet Breed,1999,53:255-257
    [98]Fischer E. Molekulargenetische Untersuchungen zum Vorkommen paternaler DNA-Ubertragung bei der in-vivo-Haploideninduktion bei Mais (Zea mays L.), Dissertation. University of Hohenheim, Grauer Verlag, Stuttgart,2004
    [99]Fishman L, Saunders A. Centromere-Associated female meiotic drive entails male fitness costs in Monkeyflowers. Science,322:1559-1562
    [100]Fishman L, Willis JH. A novel meiotic drive locus almost completely distorts segregation in Mimulus (Monkeyflower) hybrids. Genetics,2005,169:347-353
    [101]Forster BP, Heberle-Bors E, Kasha KJ, et al. The resurgence of haploids in higher plants. Trends in Plant Sci,2007,12:368-375
    [102]Fuente G, Frei UK and Lubberstedt T. Accelerating plant breeding. Trends in Plant Sci,2013, 1093:1-6
    [103]Gadish I, Zamir D. Differential zygotic abortion in an interspeci Lycopersicon cross. Genome, 1986,29:156-159
    [104]Gaines EF, and Aase HC. A haploid wheat plant. Am JBot,1926,13:373-385
    [105]Gallais A, and Bordes J. The use of doubled haploid in recurrent selection and hybrid development in maize. Crop Sci,2007,47:190-201
    [106]Gardiner JM, Coe EH, Melia-Hancock S, et al. Development of a core RFLP map in maize using an immortalized F2 population. Genetics,1993,134:917-930
    [107]Gayen P, Madan JK., Kumar R, et al. Chromosome doubling in haploids through colchicine. Maize Genet Coop Newsl,1994,68:65-65
    [108]Geiger HH, Braun MD, Gordillo GA, et al. Variation for female fertility among haploid maize lines. Maize Genet Coop Newsl,2006,80:28-29
    [109]Geiger HH, Gordillo GA. Doubled haploids in hybrid maize breeding. Maydica,2009,54:485-499
    [110]Geiger, HH, Schonleben M. Incidence of male fertility in haploid elite dent maize germplasm. Maize Genet Coop Newsl,2011,85:22-32
    [111]Gehring M, Bubb KL, Henikoff S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science,2009,324:1447-1451
    [112]Gemes-Juhasz A, Balogh P, Ferenczy A, et al. Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Report,2002,21:105-111
    [113]Germana MA and Chiancone B. Gynogenetic haploids of Citrus after in vitro pollination with triploid pollen grains. Plant Cell Tissue Organ Cult,2001,66:59-66
    [114]Gernand D, Rutten T, Varshney A, et al. Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. The Plant Cell,2005,17:2431-2438
    [115]Gerstel DU, and Mishanec W. On the inheritance of apomixis in Parthenium argentattm. Bot Gaz, 1950,112:96-106
    [116]Gonzalez-Melendi P, Ramirez C, Testillano PS, et al. Three dimensional confocal and electron microscopy imaging define the dynamics and mechanisms of diploidisation at early stages of barley microspore-derived embryogenesis. Planta,2005,222:47-57
    [117]Graner A, Jahoor A, Schondelmaier J, et al. Construction of an RFLP map of barley. Theor Appl Genet,1991,83:250-256
    [118]Greenblatt IM, Bock M. A commercially desirable procedure for detection of monoploids in maize. JHered,1967,58:9-13
    [119]Grini PE, Schnittger A, Schwarz H, et al. Isolation of ethyl methanesulfonate-induced gametophytic mutants in Arabidopsis thaliana by a segregation distortion assay using the multimarker chromosome 1. Genetics,1999,151:849-863
    [120]Groh S, Gonzalez-De-Leon D, Khairallah MM, et al. QTL Mapping in tropical maize:Ⅲ. Genomic regions for resistance to Diatraea spp. and associated traits in two RIL Polulations. Crop Sci,1998,38:1062-1072
    [121]Grzebelus E, and Adamus A. Effect of anti-mitotic agents on development and genome doubling of gynogenic onion (Allium cepa L.) embryos. Plant Sci,2004,167:569-574
    [122]Guha S, and Maheshwari SC. In vitro production of embryos from anthers of Datura. Nature, 1964,204:497
    [123]Guha S. Development of embryoids from pollen grains of Datura in vitro. Phtomorphology,1967, 17:454-461
    [124]Haley CS, Knott SA. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity,1992,69:315-324
    [125]Hall MC, Willis JH. Transmission Ratio Distortion in Intraspecific Hybrids of Mimulus guttatus: Implications for Genomic Divergence. Genetics,2005,170:375-386
    [126]Hallauer AR, Carena MJ, and Miranda JB. Quantitative genetics in maize breeding. Springer Science and Business Media,2010, LLC, New York, NY
    [127]Hantzschel KR, Weber G. Blockage of mitosis in maize root tips using colchicine-alternatives. Protoplasma,2010,241:99-104
    [128]Harland SC. Plant Breeding:Present Position and Future Perspective. Third Bateson Lecture. Cambridge:University Press,1955, pp15
    [129]Harushima, Y, Nakagahra M, Yano M, et al. A genome-wide survey of reproductive barriers in an intra specific hybrid. Genetics,2001,159:883-892
    [130]Haustein E. Eine androgene haploide Oenothera scabra. Planta,1961,56:475-478
    [131]Helentjaris T, Slocum M, Wright S, et al. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. TheorAppl Genet,1986,72(6):761-769
    [132]Henry Y. Origin of microspore-derived dihaploid and polyhaploid in vitro plants. Plant Tissue Cult Biotech,1998,4:127-135
    [133]Hesse CO. Monoploid peaches, Prunus persica L. Batch:description and meiotic analysis. J Am Soc Hor Sci,1971,96:326-330
    [134]Ho KM, Jones GE. Mingo barly. Can J Plant Sci,1980,60:279-280
    [135]Hoekstra S, Vanzijderveld MH, Heidekamp F, et al. Microspore culture of Hordeum vulgare L. the influence of density and osmolality. Plant Cell Rep,1993,12:661-665
    [136]Honys D, Twell D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiology,2003,132:640-652
    [137]Houben A, Pickering R. Applying cytogenetics and genomics to wide hybridizations in the genus Hordeum. In:Genetics and Genomics of the Triticeae, Plant Genetics and Genomics:Crops and Models 7, Berlin:Springer,2009, pp:137-162
    [138]Hu G, Liang GH and Wassom CE. Chemical induction of apomictic seed formation in maize. Euphytica,1991,56:97-105
    [139]Hu TC, Kasha KJ. A cytological study of pretreatments used to improve isolated microspore cultures of wheat (Triticum aestivum L.) cv. Chris. Genome,1999,42:432-441
    [140]Huck N, Moore JM, Federer M, et al. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development,2003,130:2149-2159
    [141]Illies ZM. Auftreten haploider Keimlinge bei Picea abies. Naturwissensch,1964,51:442
    [142]Inoue E, Sakuma F, Kasumi M, et al. Maternal haploidization of Japanese pear through intergeneric hybridizaiton with apple. Acta Hortic,2004,663:815-818
    [143]Inze D, De Veylder L. Cell cycle regulation in plant development. Ann Rev Genet,2006, 40:77-105
    [144]Iwakawa H, Shinmyo A, Sekine M. Arabidopsis CDKA1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. The Plant Journal,2006,45:819-831
    [145]James CD, Carlbom E, Nordenskjold M, et al. Mitotic recombination of chromosome 17 in astrocytomas. Proceedings of the National Academy of Sciences, USA,1989,86:2858-2862
    [146]Jenczewski E, Gherardi M, Bonnin I, et al. Insight on segregation distortions in two intraspecific crosses between annual species of Medicago (Leguminosae). TheorAppl Genet,1997,94:682-691
    [147]Jensen CJ. Chromosome doubling techniques in haploids, in Kasha KJ (ed):Haploid in Higher Plants:Advances and Potential,1974, pp 153-190
    [148]Johnston SA, Nijs TPM, Peloquin SJ, et al. The significance of genicbalance to endosperm development in interspecific crosses. TheorAppl Genet,1980,57:5-9
    [149]Joubes J, Chevalier C. Endoreduplication in higher plants. Plant Mol Biol,2000,43:735-745
    [150]Kappert H. Botanische Untersuchungen zur Erblichkeit der Polyembryonie. Mod Biol,1950, 80-194
    [151]Karasawa K. On the occurrence of haploid seedlings in Citrus natsudaidai Hayata. Bull. Sakushingakuin Junior Coll. Women,1971,1:1-2
    [152]Kasha KJ, Hu TC, Oro R, et al. Nuclear fusion leads to chromosome doubling during mannitol pretreatment of barley (Hordeum vulgare L.) microspores. JExp Bot,2001,52:1227-1238
    [153]Kasha KJ, Kao KN. High frequency haploid production in barley (Hordeum vulgare L.). Nature, 1970,225:874-876
    [154]Kasha KJ, Shim YS, Simion E, et al. Haploid production and chromosome doubling, in Fari MG, Holb I, Bisztray GD (eds):Acta Horticulturae Vol 735,2006, pp 817-828
    [155]Kato A. Chromosome doubling of haploid maize seedlings using nitrous oxide gas at the flower primordial stage. Plant Breed,2002,121:370-377
    [156]Kebede AZ, Dhillon BS, Schipprack W, et al. Effect of source germplasm and season on the in vivo haploid induction rate in tropical maize. Euphytica,2011,180:219-226
    [157]Kermicle JL. Androgenesis conditioned by a mutation in maize. Science,1969,166:1422-1424
    [158]Kindiger B, Hamam S. Generation of haploids in maize:a modification of the indeterminate gametophyte (ig) system. Crop Sci,1993,33:342-344
    [159]Kasha KJ, Kao KN.1970. High frequency haploid production in barley (Hordeum vulgare L.). Nature,225:874-876
    [160]Kendall J. A parthenogenetic aberrant tobacco plant. JHered,1934,21:363-366
    [161]Kermicle JL. Androgenesis conditioned by a mutation in maize. Science,1969,166:1422-1424
    [162]Kermicle, JL. Pleiotropic effects on seed development of the indeterminate gametophyte gene in maize. Am JBot,1971,58:1-7
    [163]Kermicle JL, Alleman M. Gametic imprinting in maize in relation to the angiosperm life cycle. Dev Suppl,1990,108:9-14
    [164]Khokhlov SS, Tyrnov VS, Grishina EV, et al. Haploidy and Breeding, Nauka, Moscow,1976, pp:221
    [165]Khoshoo TN. A polyhaploid plant of the tetraploid race of Sisymbrium irio. J Hered,1957, 31:239-242
    [166]Kitamura S, Akutsu M and Okazaki K. Mechanism of action of nitrous oxide gas applied as a polyploidizing agent during meiosis in lilies. Sex. Plant Reprod,2009,22:9-14
    [167]Kleiber D, Prigge V, Melchinger AE, et al. Haploid fertility in temperate and tropical maize germplasm. Crop Sci,2012,52:623-630
    [168]Klima M, Vyvadilova, and Kucera V. Chromosome doubling effects of selected antimitotic agents in Brassica napus microspore culture. Czech J Genet Plant Breed,2008,44:30-36
    [169]Lalanne E, Michaelidis C, Moore JM, et al. Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis. Genetics,2004, 167:1975-1986
    [170]Lander ES and Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199
    [171]Lapitan VC, Redona ED, Abe T, et al. Molecular characterization and agronomic performance of DH lines from the F1 of indica and japonica cultivars of rice (Oryza sativa L.). Fiel Crops Research,2009,112:222-228
    [172]Larkins BA, Dilkes BP, Dante RA, et al. Investigating the hows and whys of DNA endoreduplication. JExp Bot,2001,52:183-192
    [173]Lashermes P, Beckert M. Genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theor Appl Genet,1988,76:405-410
    [174]Laura M, Safaverdi G, and Allavena A. Androgenetic plants of Anemone coronaria derived through anther culture. Plant Breed,2006,125:629-634
    [175]Laurie DA, Bennett MD. The effect of the crossability loci Krl and Kr2 on fertilization frequency in hexaploid wheat×maize crosses. Theor Appl Genet,1987,73:403-409
    [176]Lavery P, James SH. Complex hybridity in Isotoma petraea VI. Distorted segregation gametic lethal systems and population divergence. Heredity,1987,58:401-408
    [177]Lespinasse Y. Godicheau M, and Duron M. Potential value and method of producing haploid in the apple tree, Malus pumila (Mill.). Acta Horde,1983,131:223-230
    [178]Levan A. A haploid sugar beet after colchicine treatment. Hereditas,1945,31:399-410
    [179]Li L, Xu X, Jin W, et al. Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize. Planta,2009,230:367-376
    [180]Li JS. Production, breeding and process of maize in China. In Handbook of maize:Its biology, Springer,2009, pp 563-576
    [181]Li Q, Farre G, Nagvi S, et al. Cloning and functional characterization of the maize carotenoid isomerase and Bata-carotene bydroxylase gene and their regulation during endosperm maturation. Transgenic Res,2010,19:1053-1068
    [182]Lim W, and Earle ED. Effect of in vitro and in vivo colchicine treatments on pollen production and fruit set of melon plants obtained by pollination with irradiated pollen. Plant Cell Tissue Organ Cult,2008,95:115-124
    [183]Lim W, and Earle ED. Enhanced recovery of doubled haploid lines from parthenogenetic plants of melon (Cucumis melo L.). Plant Cell Tissue Organ Cult,2009,98:351-356
    [184]Limin A, and Fowler D. The influence of cell-size and chromosome dosage on cold-hardiness expression in the Triciceae. Genome,1989,32:667-671
    [185]Lin BY. Megagametogenetic alterations associated with the indeterminate gametophyte (ig) mutant in maize. Rev Bras Biol,1981,43:557-563
    [186]Lin SY, Ikehashi H, Yanagihara, S, et al. Segregation distortion via male gametes in hybrids between Indica and Japonica or wide-compatibility varieties in rice (Oryza sativa L.). Theor Appl Genet,1992,84:812-818
    [187]Lincoln S, Daly M, Lander ES. Construction genetic maps with MAPMAKER/EXP3.0. In: Whitehead Institute Technical Report,2nd ed. Whitehead Institute, Cambridge.1992, pp 49-97
    [188]Lindstrom EW. A haploid mutant in the tomato. JHered,1929,20:23-30
    [189]Lindstrom EW. Genetic stability of haploid, diploid, and tetraploid genotypes in the tomato. Genetics,1941,26:387-397
    [190]Lindstrom EW and Koos K. Cyto-genetic investigations of a haploid tomato and its diploid and tetraploid progeny. Am J Bot,1931,18:398-410
    [191]Liu YS, Zhu LH, Sun JS, et al. Mapping QTLs for defective female gametophyte development in an inter-subspecific cross in Oryza sativa L. Theor Appl Genet,2001,102(8):1243-1251
    [192]Longin CFH, Utz HF, Reif JC, et al. Hybrid maize breeding with doubled haploids:I. Onestage versus two-stage selection for testcross performance. Theor Appl Genet,2006,112:903-912
    [193]Longin CFH, Utz HF, Melchinger AE, et al. Hybrid maize breeding with doubled haploids:II. Optimum type and number of testers in two-stage selection for general combining ability. Theor Appl Genet,2007a,114:393-402
    [194]Longin CFH, Utz HF, Reif JC, et al. Hybrid maize breeding with doubled haploids:Ⅲ. Efficiency of early testing prior to doubled haploid production in two-stage selection for testcross performance. Theor Appl Genet,2007b,115:519-527
    [195]Lu BR. Dihaploids of Elymus from the interspecific crosses E. dolichatherus x E. tibeticus and E. brevipes x E. panormitanus. Theor Appl Genet,1992,83:997-1002
    [196]Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet,2002,105:622-628
    [197]Lubberstedt T, Frei UK. Application of doubled haploids for target gene fixation in backcross programs. Plant Breeding,2012,131:449-452
    [198]Lux H, Herrmann L, Wetzel C. Production of haploid sugar beet(Beta vulgaris L.) by culturing unpollinated ovules. Plant Breed,1990,104:177-183
    [199]Lyttle TW. Segregation distorters. Annual Review of Genetics,1991,25:511-557
    [200]Ma J, Skibbe DS, Fernandes J, et al. Male reproductive development:gene expression profiling of maize anther and pollen ontogeny. Genome Biol,2008,9:R181
    [201]Magoon ML, Shambulingappa KG., and Ramanna MS. A polyhaploid plant of Sorghum halepense L. Pers Curr Sci,1961,30:347-348
    [202]Maheshwari SC. Induction of haploidy from pollen grains in angiosperms-The current status. Theor Appl Genet,1980,58:193-206
    [203]Maluszynska J. Cytogenetic tests for ploidy level analyses-chromosome counting. In:Doubled Haploid Production in Crop Plants:A Manual, Maluszynski M, Kasha KJ, Forster BP and Szarejko I,2003, Kluwer Academic Publishers, Dordrecht, pp 391-395
    [204]Mangelsdorf PC, Jones DF. The expression of Mendelian factors in the gametophyte of maize. Genetics,1926,11:423-455
    [205]Martin M, Miedaner T, Dhillon BS, et al. Colocalization of QTL for Gibberella ear rot resistance and low mycotoxin contamination in early European maize. Crop Sci,2011,51:1935-1945
    [206]McCouch SR, Cho YG, Yano M, et al. Report on QTL nomenclature. Rice Genet Newsllett 1997, 14:11-13
    [207]McCoy TT, Philips RL, Rines HW. Cytogenetic analysis of plants regenerated from oat (Avena sativa) tissue culture:high frequency of partial chromosome loss. Can J Genet Cytol,1982, 24:37-50
    [208]Melchinger AE, Longin CF, Utz HF, et al. Hybrid maize breeding with doubled haploid lines: quantitative genetic and selection theory for optimum allocation of resource. Illinois Corn Breeders' School, Urbana,2005, pp 8-21
    [209]Melchinger AE, Schipprack W, Wurschum T, et al. Rapid and accurate identification of in v/vo-induced haploid seeds based on oil content in maize. Sci Rep,2013,3:21-29
    [210]Meyer K. Uber die entwicklung des pollens bei Leontodon autumnalis L. Ber Deut Bot Ges,1925, 43:108-114
    [211]Miyoshi K, Asakura N. Callus induction, regeneration of haploid plants and chromosome doubling in ovule cultures of pot gerbera (Gerbera jamesonii). Plant Cell Rep,1996,16:1-5
    [212]Mittwoch U. Parthenogenesis. JMed Genet,1978,15:165-81
    [213]Mochida K, Tsujimoto H, and Sasakuma T. Confocal analysis of chromosome behavior in wheat x maize zygotes. Genome,2004,47:199-205
    [214]Moradi P, Haghnazari A, Bozorgipour R, and Sharma B. Development of yellow rust resistant doubled haploid lines of wheat through wheat x maize crosses. Int J Plant Prod,2009,3:77-88
    [215]Morgan DT. Monoploids in Zea mays L. following crosses with untreated and X-rayed pollen. Genetica,1976,46:133-138
    [216]Morgan DT, and Rappleye RD. Polyembryony in maize and lily following X-irradiation of the pollen. JHered,1951,42:91-93
    [217]Morrison RA, Evans DA. Gametoclonal variation. Plant Breed Rev,1987,5:359-391
    [218]Murray BE. Analyses of meiotic metaphase in haploids and hybrids of haploid x diploid flax (Linum usitatissimum). Can J Genet Cytol,1980,22:597-606
    [219]Murignewx A, Barloy D, Leroy P, et al. Molecular and morphological evaluation of doubled haploid lines in maize.1. Homogeneity within DH lines. Theor Appl Genet,1993,86:837-842
    [220]Murovec J, and Bohanec B. Haploid and Doubled Haploids in Plant Breeding. Plant Breeding, Dr. Ibrokhim Abdurakhmonov (Ed.), In Tech, pp 88-106
    [221]Nagl W. DNA endoreduplication and polyteny understood as evolutionary strategies. Nature,1976, 261:614-615
    [222]Nanda DK, Chase SS. An embryo marker for detecting monoploids of maize (Zea mays L.). Crop Sci,1966,6:213-215
    [223]Nei M. The efficiency of haploid methods of plant breeding. Heredity,1963,18:95-100
    [224]Ninamango-Cardenas FE, Guimaraes CT, Martins PR, et al. Mapping QTLs for aluminum tolerance in maize. Euphytica,2003,130:223-232
    [225]Neuffer MG, Sheridan WF. Defective kernel mutants of maize. I. Genetic and lethality studies. Genetics,1980,95:929-944.
    [226]Newcomer H. A colchicine-induced homozygous tomato obtained through doubling clonal haploids. Proc Am Soc Hort Sci,1941,38:610-612
    [227]Nezhevenko GI, and Shumnyi VK. Twin method of haploid plants production. Genetika,1970, 6:173-180
    [228]Nowack MK, Grini PE, Jakoby MJ, et al. A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nature Genetics,2006,38:63-67
    [229]Nowack MK, Grini PE, Jakoby MJ, et al. A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet,2006,38:63-67
    [230]Oiyama I and Kobayashi S. Haploid obtained from diploid x triploid crosses of Citrus. J Jpn Soc Hort Sci,1993,62:89-93
    [231]Okura E. A haploid plant in Portulacea grandiflora Hook. Jap J Genet,1933,8:251-260
    [232]Palomino G, Hernandez LT, de la Cruz Torres E. Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp. nuttaliae. Euphytica,2008,164:221-230
    [233]Palopoli MF, Wu CI. Rapid evolution of a coadapted gene complex:evidence from the Segregation Distorter (SD) system of meiotic drive in Drosophila melanogaster. Genetics,1996, 143:1675-1688
    [234]Paques F, Haber JE. Multiple pathways of recombination induced by double-Strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev,1999,63(2):349
    [235]Paterson A, Lander E, Hewitt JD, et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature,1988, 335:721-726
    [236]Pereira MG, Lee M, Bramel-Cox P, et al. Construction of an RFLP map in sorghum and comparative mapping in maize. Genome,1994,37:236-243
    [237]Petronis A. Human morbid genetics revisited:relevance of epigenetics. Trends in Genetics,2001, 17(3):142-146
    [238]Pintos B, Manzanera JA, Bueno MA. Antimitotic agents increase the production of doubled-haploid embryos from cork oak anther culture. JPlant Physiol,2007,164:1595-1604
    [239]Pixley KV, and Banziger M. Open-pollinated maize varieties:A backward step or valuable option for farmers? P.22-29. In:Friesen DK, Palmer AEF (eds.) Integrated approaches to higher maize productivity in the new millennium. Proc. Of the 7th Eastern and Southern Africa Regional Maize Conf, Nairobi, Kenya.5-11 Feb.2004
    [240]Pollak LM. The history and success of the public-private project on germplasm enhancement of maize (GEM). Advances in Agronomy,78:45-87
    [241]Prasanna BM, Chaikam V, Mahuku G. Doubled Haploid. Technology in maize breeding:theory and practice.2012
    [242]Presterl T, Ouzunova M, Schmidt W, et al. Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor Appl Genet,2007,114:1059-1070
    [243]Prigge V. Implementation and Optimization of the Doubled Haploid Technology for Tropical Maize (Zea mays L.) Breeding Programs Dissertation. University of Hohenheim, Grauer Verlag, Stuttgart,2012
    [244]Prigge V, Melchinger AE. Production of haploids and doubled haploids in maize. In:Plant Cell Culture Protocols, Humana Press, Totowa,2012, pp 161-172
    [245]Prigge V, Xu X, Li L, et al. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics,2012,190:781-793
    [246]Pollacsek M. Management of the ig gene for haploid induction in maize. Agronomie,1992, 12:247-251
    [247]Puchta H, Hohn B. From centiMorgans to base pairs:homologous recombination in plants. Trends in plant science,1996,1:340-348
    [248]Randolph LF. Some effects of high temperature on polyploidy and other variations in maize. Proc Natl Acad Sci,1932,18:222-229
    [249]Rao PS, Suprasanna P. Methods to double haploid chromosome numbers, in Jain SM, Sopory SK, Veilleux RE (eds):In vitro Haploid Production in Higher Plants,1996, Vol 1, pp 317-339
    [250]Raquin C, Amssa M, Henry Y, et al. Origine des plantes polyploides obtenues par culture d'antheres. Analyse cytophotometrique in situ et in vitro des microspores de Petunia et de ble tendre. Z Pflanzenzucht,1982,89:265-277
    [251]Ravi M and Chan S, Haploid plants produced by centromere-mediated genome elimination. Nature, 2010,25:615-619
    [252]Rejasekaran K. Influence of genotype and sex-expression on formation of plantlets by cultured anthers of grapevines. Agronomie,1983,3:233-238
    [253]Rick CM. Differential zygotic lethality in a tomato species hybrid. Genetics,1963,48:1497-1507
    [254]Rick CM. Abortion of male and female gametes in the tomato determined by allelic interaction. Genetics,1966,53(1):85-96
    [255]Rober FK, Gordillo GA, Geiger HH. In vivo haploid induction in maize-performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica,2005,50:275-283
    [256]Rosegrant MW, Cai X, Cline SA. World Water and Food to 2025. International Food Policy Research Institute, Washington, D.C.,2002, available at http://www.ifpri.org/site/default/files/pubs/pubs/books/water2025/water2025.pdf
    [257]Rotarenco VA, Kirtoca IH, Jacota AG. Possibility to identify kernels with haploid embryo by oil content. Maize Genet Coop Newslett,2007,81:11
    [258]Rotman N, Rozier F, Boavida L, Dumas C, et al. Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Biol,2003,13:432-436
    [259]Saghai-Maroof MA, Soliman KM, Jorgenson RA. Ribosomal DNA spacer length polymorphism in barley:Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci,1984,81:8014-8018
    [260]San Noeum LH, Ahmadi N. Variability of doubled haploid from in vivo androgenesis and gynogenesis in Hordeum vulgare L. Collogue NSP, CNRS,1979,51:517
    [261]Sanders ME, and Franzke CJ. Reduction of tetraploid sorghum to the diploid from after colchicine treatment. Nature,1962,196:696-698
    [262]Sano Y. The genie nature of gamete eliminator in rice. Genetics,1990,125:183-191
    [263]Sarkar K, Coe E. A genetic analysis of the origin of maternal haploids in maize. Genetics,1966, 54:453-464
    [264]Sarkar KR, Pandey A, Gayen P, et al. Stablization of high haploid inducer lines. Maize Genet Coop Newslett,1994,68:64-65
    [265]SAS Institute.2011. SAS version 9.3. SAS Institute, Cary, NC
    [266]Scanlon MJ, Stinard PS, James MG, et al. Genetic analysis of 63 mutations affecting maize kernel development isolated from mutator stocks. Genetics,1994,136:281-294.
    [267]Scanlon MJ, Schneeberger RG, Myers AM, et al. The empty pericarp-2 gene is required for leaf development during maize embryogenesis. The Plant Journal,1997,12:901-909
    [268]Schmidt W. Hybridmaizuchtung bei der KWS SAAT AG p.1-6. In:Berchtuber die Arbeitstagung der Vereinigung der Pflanzenzuchter und Saatgutkaufleute Osterreichs, Gumpenstein, Osterreich, 25-27. November,2003
    [269]Schmidt W. Hybrid maize breeding at KWS SAAT AG.Proceedings of the Annual Meeting of the Austrian Seed Association, Gumpenstein, Austria, November 25-27,2004, pp 1-6
    [270]Segui-Simarro JM, Nuez F. Pathways to double haploidy:chromosome doubling during androgenesis. Cytogenet Genome Res,2008,120:358-369
    [271]Segui-Simarro JM, Testllano PS, Risueno MC. MAP kinases are developmentally regulated during stress-induced microspore embryogenesis in Brassica napus L. Histochem Cell Biol,2005, 123:541-551
    [272]Seitz G. Interview published in Farmjournal,2004, link provided at: http://wwwgreatlakeshybrids.com/performance/research-infromatiori/doubled-haploid-breeding-te chnology/
    [273]Seitz G. The use of doubled haploids in corn breeding. Proceedings of the 41st Annual Illinois Corn Breeders'School 2005, Univ. of Illinois, Urbana-Champaign, IL,2005, pp1-7
    [274]Shatskaya OA, Zabirova ER, Shcherbak VS, et al. Mass induction of maternal haploids in corn. Maize Genet. Newsl,1994,68:51
    [275]Sheridan WF, Nueffer MG. Defective kernel mutants of maize Ⅱ. Morphological and embryo culture studies. Genetics,1980,95:945-960
    [276]Shim YS, Kasha KJ, Simion E, et al. The relationship between induction of embryogenesis and chromosome doubling in microspore cultures. Protoplasma,2006,228:79-86
    [277]Shumskaya M, Wurtzel ET. The carotenoid biosynthetic pathway; thinking in all dimensions. Plant Sci,2013,208:58-63
    [278]Sidhu PK, Howes NK, Aung T, et al. Factors affecting oat haploid production following oat x maize hybridization. Plant Breed,2006,125:243-247
    [279]Simantel GM and Ross JG. Colchicine-induced somatic chromosome reduction in sorghum. IV. An induced haploid mutant. JHered,1964,55:3-5
    [280]Singh S, and Sethi GS. Stomatal size, frequency and distribution in Triticum-aestivum, Secale-cereale and their amphiploids. Cereal Res Commun,1995,23:103-108
    [281]Singsit C. Haploid induction in Mexican polyploidy species and colchicine-doubled derivatives. Am J Potato Res,1991,68:551-556
    [282]Smith JSC, Hussain T, Jones ES, et al. Use of doubled haploid in maize breeding:implications for intellectual property protection and genetic diversity in hybrid crops. Mol Breed,2008,22:51-59
    [283]Sood SR, Dhawan K, Singh K, et al. Development of novel chromosome doubling strategies for wheat x maize system of wheat haploid production. Plant Breeding,2003,122:493-496
    [284]Stadler J,Phillips R, Leonard M. Mitotic blocking agents for suspension cultures of maize Black Mexican Sweet cell lines. Genome,1989,32:475-478
    [285]Subrahmanyam NC, Kasha KJ. Selective chromosomal elimination during haploid formation in barley following interspecific hybridization. Chromosoma,1973,42:111-125
    [286]Suenaga K. Doubled haploid system using the intergeneric crosses between wheat (Triticum aestivum) and maize (Zea mays). Bull Natl Inst Agrobiol Resour,1994,9:83-139
    [287]Sugihara N, Higashigawa T, Aramoto D, et al. Haploid plants carrying a sodium azide-induced mutation (fdrl) produce fertile pollen grains due to first division restitution (FDR) in maize (Zea mays L.). Theor Appl Genet,2013,126:2931-2941
    [288]Sugimoto K, Arai T. Stability of characters of a doubled haploid rice variety Shirayukihime.Breed Sci,2002,52:15-21
    [289]Sugimoto-Shirasu K, Robers K.'Big it up':endoreduplication and cell-size control in plants. Curr Opin Plant Biol,2003,6:544-553
    [290]Sunderland N, Evans LJ. Multicellular pollen formation in cultured barley anthers.Ⅱ. The A-pathway, B-pathway and C-pathway. J Exp Bot,1980,31:501-514
    [291]Sunderland N, Collins GB, Dunwell JM. Role of nuclear fusion in pollen embryogenesis of Datura innoxia Mill. Planta,1974,117:227-241
    [292]Szarejko L, Forster BP. Doubled haploidy and induced mutation. Euphytica,2007,158:359-370
    [293]Tan XL, Vanavichit A, Amornsilpa S, et al. Genetic analysis of rice CMS-WA fertility restoration based on QTL mapping. Theor Appl Genet,1998,96:994-999
    [294]Tanksley SD, Zamir D, Rick CM. Evidence for extensive overlap of sporophytic and gametophytic gene expression in Lycopersicon esculentum. Science,1981,213:453-455
    [295]Taylor DR, Ingvarsson PK. Common features of segregation distortion in plants and animals. Genetica,2003,117:27-35
    [296]Testillano P, Georgiev S, Mogensen HL, et al. Matthys-Rochon E (2004) Spontaneous chromosome doubling results from nuclear fusion during in vitro maize induced microspore embryogenesis. Chromosoma,2004,112:342-349
    [297]Thompson KF. Oil-seed rape. In:Reports of the Plant Breeding Institute. Cambridge University Press, Cambridge, pp 94-96
    [298]Toole MG, and Bamford R. The formation of diploid plants from haploid peppers. J Hered,1947, 36:67-70
    [299]Toyama TK. Haploidy in peach. HortScienc,1974,9:187-188
    [300]Trass J, Hulskamp M, Gendreau E, et al. Endoreduplication and development:rule without dividing? Curr Opin Plant Biol,1998,1:498-503
    [301]Tu Y, Sun J, Ge X, et al. Chromosome elimination addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica. Ann Bot,2009,103:1039-1048
    [302]Turcotte EL, Feaster CV. Semigamy in pima cotton. Journal of Heredity,1967,58 (2):55-57
    [303]Uchino A. A spontaneous haploid plant of Trillium smallii. Jap J Genet,1973,48:65-67
    [304]UN Population Division World Population Prospects:The 2010 Revision. http://esa.un.org/unpd/wpp/Other-Information/Press Release WPP2010.pdf
    [305]Utz HF, Melchinger AE. PLABQTL:a program for composite interval mapping of QTL. J Agric Genomics,1996,2:1-5
    [306]Vallabhaneni R, Gallagher CE, Licciardello N, et al. Metabolite sorting of a germplasm collection reveals the hydroxylase3 locus as a new target for maize provitamin A biofortification. Plant Physiol,2009,151 (3):1635-1645
    [307]Walbot V, Evans MMS. Unique features of the plant life cycle and their consequences. Nature Reviews Genetics,2003,4:369-379
    [308]Wan Y, Duncan DR, Rayburn AL, et al. The use of antimicrotubule herbicides for the production of doubled haploid plants from anther-derived maize callus. Theor Appl Genet,1991,81:205-211
    [309]Wan Y., Petolino JF, Widholm JM. Efficient production of doubled haploid plants through colchicine treatment of anther-derived maize callus. Theor Appl Genet,1989,77:889-892
    [310]Wedzony M, Foster BP, Zur I, Golemiec E, et al. Progress in doubled haploid technology in higher plants. In:Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer Heidelberg, pp 1-34
    [311]Wendel JF, Edwards MD, Stuber CW. Evidence for multilocus genetic control of preferential fertilization in maize. Heredity,1987,58:297-302
    [312]West MA, Harada JJ. Embryogenesis in higher plants:an overview. Plant Cell,1995,5:361-1369
    [313]Whitkus R. Genetics of adaptive radiation in Hawaiian and Cook Islands species of Tetramolopium (Asteraceae). Ⅱ. Genetic linkage map and its implicatons for interspecific breeding barriers. Genetics,1998,150:1209-1216
    [314]Wijnker E, Vogelaar A, Dirks R, et al. Reverse breeding:reproduction of F1 hybrids by RNAi-induced asynaptic meiosis. Chromosome Research,2007,15:87-88
    [315]Wilde K, Burger H, Prigge V, et al. Testccross performance of doubled-haploid lines developed from European flint maize landraces. Plant Breed,2010,129:181-185
    [316]Wu PH, Li HC, Ren JJ, et al. Mapping of maternal QTLs for in vivo haploid induction rate in maize (Zea mays L.). Euphytica,2014,196 (3):413-421
    [317]Xu S. Quantitative trait locus mapping can benefit from segregation distortion. Genetics,2008, 180:2201-2208
    [318]Xu X, Li L, Dong X, et al. Gametophyte and zygotic selection leads to segregation distortion through in vivo induction of maternal haploid in maize. J Exp Bot,2013,64 (4):1083-1096.
    [319]Xu Y, Zhu L, Xiao J, et al. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Molecular Genetics and Genomics,1997,253:535-545
    [320]Yahata M, Kurogi H, Kunitake H, et al. Evaluation of reproductive functions in a haploid pummelo by crossing with several diploid citrus cultivars. J Jap Soc Hort Sci,2005,74:281-288
    [321]Yu JM, Holland JB, McMullen MD, et al. Genetic design and statistical power of nested association mapping in maize. Genetics,2008,178:539-551
    [322]Yang Q, Yin G, Guo Y, et al. A major QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet,2010,121:673-687
    [323]Zabirova ER, Shatskaya OA, Shcherbak VS. Line 613/2 as a source of a high frequency of spontaneous diploidization in corn. Maize Genet Coop Newslett,1993,67:67
    [324]Zamir D, Tadmore Y. Unequal segregation of nuclear genes in plants. Bot Gaz,1986,147:355-358
    [325]Zeng ZB. Precision mapping of quantitative trait loci. Genetics,1994,136:1457-1468
    [326]Zhao X, Xu X, Xie HX. Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiology,2013,163:721-731
    [327]Zheng P, Allen WB, Roesler K, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet,2008,40:367-372.
    [328]Zhou WJ, Hagberg P, Tang GX. Increasing embryogenesis and doubling efficiency by immediate colchicine treatment of isolated microspores in spring Brassica napus. Euphytica,2002,128:27-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700