大白菜紫色性状的分子标记与QTL定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大白菜(Brassica campestris L.ssp.Pekinensis(Lour.)Olsson)起源于中国,是具有中国传统特色又有较大影响的一种蔬菜作物,是我国蔬菜栽培中分布最广、种植面积最大的蔬菜作物之一。我国大白菜种质资源丰富,叶球颜色从白色到深绿色表现出很大的变异。近年来,不同球色育种已经成为新、奇、特大白菜品种选育的新方向。经初步研究,大白菜叶球紫色性状表现出数量性状的遗传特点。借助分子标记和QTL定位研究,可实现其分子标记辅助选择,极大地提高育种效率。
     本研究通过田间观察、统计紫色等性状,对大白菜紫色性状的遗传规律进行初步研究;利用改进的限制性位点扩增多态性(RSAP)标记技术,结合SRAP、SSR和RAPD等标记技术,以高代自交系紫菜薹和大白菜杂交产生的F_2代125个单株为材料,构建了一张大白菜分子连锁图谱。基于所构建的图谱与田间调查的紫色等9个性状的表型值,采用多重区间定位法,进行了紫色等性状的QTL定位研究。试验获得以下研究结果:
     1.对RSAP标记技术的引物进行了重新设计,以大白菜、紫菜薹自交系及其F_1、F_2的DNA为模板,对反应体系进行了优化,对其重复性进行了检验。技术要点为:通过在限制性位点序列的3’端增加3个选择性碱基,5’端设计为10~12个碱基的随机序列,设计了14条长度为19bp的(RSAP)新引物。PCR扩增的前5个循环退火温度为35℃,后35个循环为52℃。优化后的在25μL的反应体系中,最佳DNA用量为2.0μL(20.0ng·μL~(-1))、Mg~(2+)3.0μL(25mmol·L~(-1))、Taq酶1.5U、dNTPs 2.0μL(2.5mmol·L~(-1))、引物各0.6μL(10μmol·L~(-1))。在此基础上,用小麦和荞麦自交系对其适用性进行了检验,结果良好。
     2.通过6个F_2和3个BC_1群体田间观察、统计及卡方(x~2)适合性检验,研究了大白菜紫色性状的遗传规律。结果表明,叶柄色在4个F_2群体的符合3:1分离规律,2个BC_1群体符合1:1分离规律。说明叶柄紫色性状是由一对主基因控制的部分显性遗传,紫色深浅呈现剂量效应。1个分离异常的F_2群体的EST-SSR分析表明,5对共显性引物的带型均符合1:2:1分离比例,其中标记BC_(21)与控制果荚色的一个主效QTL连锁,表明果荚色也符合一对主效基因控制的理论。表型与基因型不完全相符,表明环境条件对紫色性状的表达影响很大,同时可能还有微效基因在发挥作用。
     3.采用BSA法,从640个RAPD引物中筛选出2个引物S_(79)和S_(123),分别能扩增出与叶柄紫色性状连锁的条带S_(79)-934和S_(123)-750。连锁分析发现,标记S_(79)-934和S_(123)-750与紫色基因间的遗传距离分别为13.73cM和18.65cM,并且位于紫色基因的两边。回收S_(79)-934特异带,克隆并测序,比较分析表明,其与大白菜1号染色体上已知克隆KBrH077A05的全序列(113253bp)有99%的相似性,初步推断控制叶柄紫色性状的主基因位于大白菜1号染色体上。
     4.基于231个多态性标记,利用JoinMap 3.0软件,得到包含163个标记、11个连锁群和4个连锁片段的遗传图谱,其中包括117个RSAP标记、38个SRAP标记、5个SSR标记和3个RAPD标记。图谱覆盖总长度为821.3 cM,标记间平均图距为5.04 cM。并推断LG4与大白菜1号染色体对应。
     5.采用MIM法,结合性状田间调查数据,对大白菜紫色等9个农艺性状进行QTL定位及遗传效应研究,共检测出44个QTL,其中控制叶柄色的QTLs10个,控制花蕾颜色的QTLs3个,控制花薹颜色的QTLs6个,控制果荚颜色的QTLs4个,控制抽薹期的QTLs4个,控制初花期的QTLs5个,控制叶翅数目的QTLs5个,控制一级侧枝数目的QTLs3个,控制果喙长度的QTLs4个。各个性状都检测到了效应较大的QTL。针对叶柄紫色性状,只要对LG1上QTL cp1.2和LG4上的cp4.2进行标记辅助选择,就能达到较好的效果。
Chinese cabbage(Brassica campestris L.ssp.Pekinensis(Lour.)Olsson)originated fromChina,is one of important vegetables with Chinese characteristic and significant effect,andits distribution and area of cultivation are wide.Its germplasm is abundance in China and thecolor of leaf head varies from white to deep green.Recently,the leaf heads with differentcolor has become to new breeding direction.Through pilot study,the result showed that thepurple trait is quantitative character.Based on quantitative trait loci(QTL)analysis,markerassisted selection for purple trait can be an efficient way to this aim.
     First,by observed and recorded carefully in the field,the heredity law of purple trait wasstudied in this paper.Then,based on ameliorated RSAP(restriction site amplifiedpolymorphism)technique,joined with SRAP,SSR and RAPD,a genetic map was constructedbased on 125 F2 plants from two elite inbred lines.Based on the linkage map and phenotypevalues of 9 agronomic traits,the QTLs of purple trait et al were analyzed using multipleinterval mapping method.The main results of this study were as follows:
     1.The primers of RSAP marker technique were redesigned and its reaction system wasoptimized,using DNA from inbreed lines' young leaves of Chinese cabbage,Purple-caitai(Brassica compestris L.var.purpurea Bailey)and their F_1,F_2 as trial materials.Then,thereproducibility and applicability of new primers were tested.The sequence of restriction site(4-6 bases)located in the middle,three selective nucleotides were added to its 3'end and 10 to12 bases long of random sequence lied in its 5'end.Fourteen new primers of RSAP wereredesigned 19 nucleotides long.PCR amplification of new primers was run for the first 5cycles with an annealing temperature of 35℃,followed by 35 cycles with an annealingtemperature of 52℃;the optimum PCR reaction system of 25μL included 2.0μL DNAtemplates(20.0ng/μL),3.0μL of Mg~(2+)(25mmol/L),1.5 U of Taq DNA polymerase,2.0μL ofdNTPs(2.5mmol/L)and 0.6μL of each primers(10μmol/L).New primers could amplifymore strips and polymorphism was better than former primers.In the varieties of buckwheatand wheat,new primer could amplify vivid strips too,which showed the applicability andreproducibility of new primers were very good,its application would be broad.
     2.Six F_2 populations and three BC_1were used to research the heredity law of Chinesecabbage purple trait,by observed,recorded and fitness tested,the color of petiole in 4 F_2 and 2 BC_1 generations accorded with 3:1 and 1:1 separate proportion respectively.The resultshowed that the genes controlled petiole purple character were one pair main genes,partiallydominant,and took on dose effect.Then,one F_2 generation with exceptional proportion wasanalyzed by EST-SSR technique,the statistical effects of strip types amplified with every of 5EST-SSR primers fitted the proportion 1:2:1,in which the marker BC_(21)linked to a main QTLof fruit color.This showed that the heredity of fruit color accorded with the above theory.Thephenotype didn't match to genotype completely,which showed that the expression of purplecharacter may be impacted by tiny genes and surroundings together.
     3.Using bulked segregant analysis(BSA),640 random primers were analyzed withRAPD technique.S_(79)and S_(123)could generate differential profiles linking to petiole purplecharacter among F_1 and its parents.Primer S_(79)could generate characteristic band S_(79)-934 andS_(123)could generate S_(123)-750.The linkage analysis showed that the distances to purple gene are13.73cM(band S_(79)-934)and 18.65cM(band S_(123)-750)respectively,which are located inboth sides of purple gene.Furthermore,characteristic bands S_(79)-934 was reclaimed,clonedand sequenced,its sequence had 99% identity with whole sequence(113253bp)of the cloneKBrH077A05 from 1~(st)chromosome of Chinese cabbage by BLAST analysis.Therefore,aspeculation was that main gene controlled purple character was located in 1~(st)chromosome ofChinese cabbage.
     4.Based on 231 polymorphic markers,a Chinese cabbage linkage map was constructedwith JoinMap 3.0 software.The map composed of 11 linkage groups and 4 segments with 163markers,included 117 RSAPs,38 SRAPs,5 SSRs and 3 RAPDs,which covered genome821.3 cM.The average distance between markers was 5.04 cM.Based on the linked markers,a conclusion was that 4~(th)linkage group(LG4)corresponded to 1~(st)chromosome of Chinesecabbage.
     5.Using multiple interval mapping method,united with phenotype values of 9agronomic traits,a total of 44 QTLs was detected in Chinese cabbage,in which 10 for petiolecolor,3 for bud color,6 for color of flowering stem,4 for fruit color,4 for days to bolting,5for days to flowering,5 for leaf wing,3 for number of first branches and 4 for fruit beak.Main QTLs for per trait were identified.If aimed at deep purple petiole trait,only under thecondition of QTLs of cp1.2 and cp4.2 which located on LG1 and LG4 were selected bylinked markers,the aim would come true.
引文
[1]刘旭.遗传标记和遗传图谱构建[J].作物品种资源,1997,3:29-32.
    [2]刘勋甲,郑用琏,尹艳.遗传标记的发展及分子标记在农作物遗传育种中的应用11分子标记在农作物遗传育种中的应用及原理[J].湖北农业科学,1998,3:27-32.
    [3]周延清.DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005
    [4]Botstein D,White RL,Skolnick M,et al.Construction of a genetic map in man using restriction fragment length polymorphisms [J].Am.J.Hum.Genet,1980,32(3):314-331:
    [5]Jefferys A J,Victoria W.et al.Hypervariable‘minisatellite ’regions in human DNA[J].Nature,1987,235:1616-1622.
    [6]Nakamura Y,Leppert M.Variable number of tandem repeat (VNTP)marker for human gene mapping[J].Science.1987,235:1616-1622.
    [7]Wiliams J C K,Kubellik A R,Livak K J,et al.DNA polymorphism amplified by arbitrary primes are useful as genetic markers [J].Nucleic Acide Research.1990,18 (22):6531-6535.
    [8]Wesh,J.and MoClel,M.Fingerprinting genomes using PCR which arbitrary primers [J].Nucleic Acide Research.1990,18(24):7213-7218.
    [9]Zabeau M and Vos P.Selective restriction fragment amplication:a general method for DNA finger printing [P].Europeau Patent Application.No.05344858A 1,1993.
    [10]Caetano-Anolles G,Bassam B J,Gresshoff P M.DNA amplification fingerprinting using very short arbitrary oligo nucleotide primers[J].Biotechnology,1991,9:553-556.
    [11]Orita M,Iwahana H,Kanazawa H,et al.Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms [J].Proc Natl Acad Sci USA,1989,86:2766-2770.
    [12]Paran I and Michelmore R W.Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce [J].Theor.Appl.Genet.,1993,85:985-993.
    [13]王晓武.甘蓝显性雄性不育基因的分子标记及延长随机引物扩增DNA标记的建立[D].北京:中国农科院蔬菜花卉研究所,1998,23-25.
    [14]Rafalshy J A,Tingey S V.Genetic diagnostics in plane breeding,RAPDs,microsatellites and machines [J].Trends Genet,1993,9:275-279.
    [15]Zietkiewicz E,Rafalski A,Labuda D.genome fingerprinting by simple sequence repeats (SSR)anchored PCR amplification [J].Genomics,1994,20:176-183.
    [16]Olson M,Hood L,Cantor C,et al.A common language for physical mapping of human genome [J].Science,1989,254:1434-1435.
    [17]Adams M D,Kelley JM,Jeannine D,et al.Complementary DNA sequencing expressed sequence tags and human genome project [J].Science,2001,252,1651-1656.
    [18]Liang P,Pardee A B.Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction [J].Science,1992,257:967-971.
    [19]Velculescu V E,Zhang L,Vogelstein B,et al.Serial analysis of gene expression [J].Science,1995,270:484-487.
    [20]Lander E S.The new genomics:global views of biology[J].Science,1996,274(5287):536-539.
    [21]Chee M,Yang R,Hubbel E,et al.Accessing genetics information with big-density DNA arrays [J].Science,1996,274:610.
    [22]Li G,Quiros C F.Sequence-related amplified polymorphism (SRAP),a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica [J].Theor Appl Genet,2001,103:455-461.
    [23]林忠旭,张献龙,聂以春等.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):1676-1679.
    [24]潘俊松,王刚,李效尊.黄瓜SRAP遗传图谱的构建及始花节位的基因定位[J].自然科学进展,2005,15(2):167-172.
    [25]Hu J G,Vick B A.Target region amplification polymorphism:a novel marker technique for plant genotyping [J].Plant Molecular Biology Reporter,2003,21:289-294.
    [26]柳李旺,龚义勤,黄浩,等.新型分子标记——SRAP与TRAP及其应用[J].遗传,2004,26(5):777-781.
    [27]杜晓华,王得元,巩振辉.一种新型分子标记技术(RSAP)的建立与优化[J].西北农林科技大学学报,2006,34(9):45-49.
    [28]杜晓华.新型DNA标记技术RSAP的创建及其在辣椒遗传育种中的应用[D].西北农林科技大学,2006
    [29]Waugh R,Mclean K,Flavell A J,et al.Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplified polymorphism(SSAP)[J].Mol Gen Genet,1997,253:687-694.
    [30]王子成,李忠爱,邓秀新.植物反转录转座子及其分子标记[J].植物学通报,2003,20(3):287-294.
    [31]Tam S M,Mhiri C,Vogelaar A,et al.Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP,AFLP and SSR [J].Theor Appl Genet,2005,110:819-831.
    [32]高燕会,祝水金,李润植.基于逆转座子的植物分子标记技术及其应用[J].生物技术通报,2003,3:5-11.
    [33]Kalendar R,Grob T,Regina M,et al.IRAP and REMAP:two new retrotransposon-based DNA fingerprinting techniques [J].Theor Appl Genet,1999,98:704-711.
    [34]Van WurffA W G,Chan Y L,Van Straalen N M,et al.TE-AFLP:combining rapidity and robustness in DNA fingerprinting [J].Nucleic Acids Res,2000,28(24):105-109.
    [35]Zhang J,Lu Y,Yu S.Cleaved AFLP (cAFLP):a modified amplified fragment length polymorphism analysis for cotton [J].Theor Appl Genet,2005,111:1385-1395.
    [36]刘树兵,王洪刚,孔令让,等.高等植物的遗传作图[J].山东农业大学学报(自然科学版),1999,30(1):73-78.
    [37]Staub J K,serquen F C,Gupta M.Genetic markers map construction and their application in plant breeding [J].Hort science,1996,31(5):729-740.
    [38]Stuber C W,Sisco P H.Marker-facilitated transfer of QTL alleles between elite inbred lines and responses in hybrid[C].Proc 46~(th)Annual Corn and Sorghum Industry Research Conf,American Seed Trade Assoc,1991,41:70-73.
    [39]Lander E S,Green P,Abrahamson J.MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural population [J].Genomics,1987,1:174-181.
    [40]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001
    [41]李捷,宋志文,吴慎杰.QTL定位在作物遗传育种上的应用.青岛建筑工程学院学报,2003,24(1):33-36.
    [42]徐云碧.分子标记在数量基因定位中的应用[J].遗传,1992,14(2):45-48.
    [43]席章营,朱芬菊,台国琴.作物QTL分析的原理与方法[J].中国农学通报,2005,21(1):88-92,99.
    [44]Wu W R,Li W M.A new approach for mapping quantitative trait loci using complete genetic marker linkage maps[J].TheorAppl Genet,1994,89:535-539.
    [45]Wu W R,Li W M.Model fitting and model testing in the method of joint mapping of quantitative trait loci[J].TheorApplGenet,1996,92:477-482.
    [46]Lander E S,Botstein D.Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J].Genetics,1989,121:185-199.
    [47]Zeng Z B.Precision mapping ofquantative trait loci [J].Genetics,1994,136:1457-1468.
    [48]Jiang C and Zeng Z B.Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines[J].Genetica,1997,101:47-58.
    [49]朱军.数量性状遗传分析的新方法及其在育种中的应用[J].浙江大学学报(农业与生命科学版),2000,26(1):1-6.
    [50]Wright,S.Genic and organismic selection[J].Evolution,1980,34:825-843.
    [51]Kao C H,Zeng Z B,Teasdale R D.Multiple interval mapping for quantitative trait loci [J].Genetics,1999,152:1203-1216.
    [52]Zeng Z B,Liu J,Stam L F,et al.Genetic architecture of a morphological shape difference between two Drosophilaspecies[J].Genetics,2000,54:299-310.
    [53]方荣,陈学军,缪南生,等.辣椒QTL定位研究进展[J].江西农业学报,2005,17(3):68-73.
    [54]Kearsey M J,Farquhar A G L.QTL analysis in plants:Where are we now [J].Heredity,1998,80:137-142.
    [55]Vander Schaar W,Alonso-B lanco C,Leonkloosterziel K M,et al.QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping[J].Heredity,1997,79:190-200.
    [56]高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179.
    [57]邢永忠,徐才国,华金平.水稻株高和抽穗期基因定位和分离[J].植物学报,2001,43(7):721-726.
    [58]Robertson D S A.A possible technique for isolating genetic DNA for quantative trait in plants[J].TheorBiO,1985,117:1-10.
    [59]Beavis W D.The power and deceit of QTL experiments:Lessons from comparative QTL Studies.In DB Wilkinson(ed)[C].Proc 49~(th)Annual Corn and Sorghum Res.Conf[C].Washington:American Seed Trade Assoc,1994.250-266.
    [60]吴为人,李维明,卢浩然,等.数量性状基因座的动态定位策略[J].生物数学学报,1997,12(5):490-495
    [61]Yan J Q,Zhu J,He C X.et al.Molecular dissection of developmental behavior of plant height in rice (OryzasativaL.)[J].Genetics,1998,150:1257-1265.
    [62]Yano M,Harushima Y,Nagarma Y,et al.Identification of quantitative trait loci controlling heading date in rice using high-density linkage map[J].Theor Appl Genet,1997,95:1025-1032.
    [63]Eshed Y,Zamir D.An introgression line population ofLycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL [J].Genetics,1995,141:1147-1162.
    [64]Howell P M,Marshall D F,Lydiate D J.Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection[J].Genome,1996,39:348-358.
    [65]Ramsay L D,Jennings D E,Bohuon E J R,et al.The Construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci[J].G.enome,1996,39:558-567.
    [66]Song K M,Suzuki J Y,Slocum M K,et al.A linkage map of Brassica rapa (syn.campestris)based on restriction fragment length polymorphism loci[J].Theor.Appl.Genet.,1991,82(3):296-304.
    [67]Chyi Y S,Hoenecke M E,Sernyk J L.A genetic map of restriction fragment length polymorism loci for Brassica rapa (syn.campestris)[J].Genome,1992,25(5):746-757.
    [68]Teutonico R.A,Osborn T C.Mapping of RFLP and quantitative trait loci in Brassica rapa and comparison to the linkage maps of B.napus,B.oleracea,and Arabidopsis thaliana[J].Theor.Appl.Genet.,1994,89(7-8):885-894.
    [69]Song K.,Slocum M K,Osborn T C.Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn.campestris)[J].Theor.Appl.Genet.,1995,90(1):1-10.
    [70]Ajisaka H,Kuginuki Y,Hida K,et al.A linkage map of DNA markers in Brassica campestris[J].Breed.Sci.,1995,45(5):195-197.
    [71]Tanhuanp(?)P K,Vilkke J P,Vilki H J.Mapping of a QTL for oleic acid concentration in spring turnip rape(Brassica rapa ssp.oleifera)[J].Theor.Appl.Genet.,1996,92 (8):952-956.
    [72]Novakova B,Salava J,Lydiate D.Construction of a genetic linkage map for Brassica campestris L.(syn.Brassica rapa L.)[J].Genetika Slechteni,1996,32:249-256.
    [73]Kole C,Teutonico R,Mengistu A,et al.Molecular mapping of a locus controlling resistance to Albugo candida in Brassica rapa[J].Phytopath.,1996,86:367-369.
    [74]Nozaki T,Kumazaki A,Koba T,et al.Linkage analysis among loci for RAPDs,isozymes and some agronomic traits in Brassica campestris L.[J].Euphytica,1997,95(1):115-123.
    [75]Kole C,Kole P,Vogelzang R,et al.Genetic linkage map of a Brassica rapa recombinant inbred population [J].Heredity,1997,88(6):553-557.
    [76]Matsumoto E,Yasui C,Ohi M,et al.Linkage analysis of RFLP marks for clubfoot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp.pekinensis)[J].Euphytica,1998,104(2):79-86.
    [74]张鲁刚.中国白菜分子标记遗传图谱的构建及QTL定位研究[D].博士学位论文,西北农业大学,1999.
    [78]张鲁刚,王鸣,陈杭,等.中国白菜RAPD分子遗传图谱的构建[J].植物学报,2000,42(5).485-489.
    [79]卢钢,曹家树,陈杭,等.白菜几个重要园艺性状的QTLs分析[J].中国农业科学,2002,35(8):969-974.
    [80]于拴仓,王永健,郑晓鹰,.大白菜分子遗传图谱的构建与分析[J].中国农业科学,2003,36(2):190-195.
    [81]王美,张风兰,孟祥栋,等.中国白菜AFLP分子遗传图谱的构建[J].华北农学报,2004, 19(1):28-33.
    [82]张立阳.大白菜连锁图谱的构建和重要农艺性状的QTL定位[D].扬州大学,2005.
    [83]张立阳,张风兰,王美,等.大白菜永久高密度分子遗传图谱的构建,园艺学报,2005,32(2):249~255
    [84]张晓芬,王晓武,娄平,等.利用大白菜DH群体构建AFLP遗传连锁图谱[J].园艺学报,2005,32(3):443-448.
    [85]孙秀峰,陈振德,李德全.利用大白菜抗感干烧心病F_2群体构建AFLP遗传连锁图[J].分子植物育种,2006,4(1):65-70.
    [86]Xu Yang,Yang-Jun Yu,Feng-Lan Zhang,et al.Linkage Map Construction and Quantitative Trait Loci Analysis for Bolting Based on a Double Haploid Population of Brassica rapa[J].Journal of Integrative Plant Biology 2007,49(5):664-671.
    [87]Choi,Su Ryun Teakle,Graham R.Plaha,et al.THE reference genetic linkage map for the multinational Brassica rapa genome sequencing project [J].Theoretical and applied genetics,2007,115(6):777-792.
    [88]Soengas,P.,Hand,P.,Vicente,J.G.,et al.Identification of quantitative trait loci for resistance to Xanthomonas canpestris pv.campestris in Brassica rapa[J].Theoretical and Applied Genetics,2007,114(4):637-645.
    [89]F.L.Zhang,M.Wang,X.C.Liu,et al.Quantitative trait loci analysis for resistance against Turnip mosaic virus based on a doubled-haploid population in Chinese cabbage[J].Plant Breeding,2008,127(1):2-86.
    [90]张俊华,屈淑平,崔崇士.大白菜抗芜菁花叶病毒的QTL分析[J].植物病理学报,2008,38(2):178-184.
    [91]郑晓鹰,王永建,宋顺华,等.大白菜耐热性分子标记的研究[J].中国农业科学,2002,35(3):309-313.
    [92]余旭红,彭洁松,冯献忠,等.大白菜包叶特异基因的克隆及其结构特征和表达方式[J].中国科学(C辑),2000,30(5):475-482.
    [93]Lamboy W F.Relationships among Chinese vegetable Brassica using RAPD markers [J].Cruciferae Newsletter,1994,16:44-45.
    [94]漆小泉,朱德蔚,沈镝,等.大白菜和紫菜薹自交系染色体组DNA的RAPD分析[J].园艺学报,1995,22(3):256-262.
    [95]陈云鹏,曹家树,缪颖,等.芸薹类蔬菜基因DNA遗传多样性的RAPD标记[J].浙江大学学报(农业与生命科学版),2000,26(3):131-136.
    [96]曹家树,曹寿椿,缪颖,等.中国白菜各类群的分支分析和演化关系研究[J].园艺学报,1997,24(1):35-42.
    [97]宋顺华,郑晓鹰.利用RAPD技术鉴定大白菜主栽品种及品种间遗传多样性分析[J].华北农学报,2000,15(3):1-5.
    [98]孙德岭,赵前程,宋文芹,等.白菜类蔬菜亲缘关系的AFLP分析[J].园艺学报,2001,28(4):331-335.
    [99]郭晶心,周乃元,马荣才,等.白菜类蔬菜遗传多样性的AFLP分子标记研究[J].农业生物技术学报,2002,10(2):138-143.
    [100]曲士松,黄宝勇,石琰,等.RAPD法分析鉴定大白菜的亲缘关系[J].莱阳农学院学报,2002,19(2):108-111 19(2):108-111.
    [101]邓波.白菜类蔬菜亲缘关系的AFLP分析[J].南京农业大学硕士学位论文,2004.
    [102]孟淑春,刘玉梅,郑晓鹰,等.大白菜亲缘关系研究[J].中国农学通报,2008,24(7):307-313.
    [103]陈启林,陈毓荃,陈净.同工酶PAGE凝胶电泳在大白菜品种鉴定中的应用[J].西北农业学报,1998,7(2):94-97.
    [104]宋顺华,郑晓鹰.利用RAPD标记鉴定大白菜杂交种纯度的研究[J].华北农学报,2000,15(4):35-39.
    [105]田雷,曹鸣庆,王辉,等.AFLP标记技术在大白菜种子真实性及品种纯度鉴定应用[J].中国蔬菜,2001,4:29-30.
    [106]Zheng X,Song S,Liu H,et al.Identification of Chinese cabbage (Brassica campestris L.ssp.Pekinensis)cultivars with isozyme,RAPD and AFLP markers [J].Acta Horticulturae,2001,546:543-549.
    [107]王绮,张鲁刚,张战凤,等.大白菜杂交种“冠春”杂交率的RAPD分析.西北植物学报,2006,26(4):677-682.
    [108]杨广东,朱贞,李茹娥,等.大白菜转修饰豇豆胰蛋白酶抑制剂基因获得抗虫植株[J].园艺学报,2002,29(3):224-228.
    [109]朱常香,宋云枝,张松,等.抗芜菁花叶病毒转基因大白菜的培育[J].植物病理学报,2001,31(3):257-264.
    [110]王关林,方宏筠,王火旭,等.抗菌肽基因转化大白菜获得抗病转基因植株及稳定遗传[J].植物学报,2002,44(8):
    [111]Sub S K,Jin Y M,Cho Y G,et al.Identification of AFLP markers linked to TuMV resistance gene by bulked segregant analysis in Chinese cabbage (Brassica pekinensis)[C]//Proceeding of the 8~(th)SABRO General Congress and Annual Meeting of the Korea Breeding Society,Seoul,Korea:Republic,1997:199-200.
    [112]Piao Z Y,Park Y J,Choi S R,et al.Conversion of an AFLP marker linked to clubroot resistance gene in Chinese cabbage into a SCAR marker.Journal of the Korean Society for Horticultural [J].Science,2002,43 (6):653-659.
    [113]韩和平,孙日飞,张淑江,等.大白菜中与芜菁花叶病毒(TuMV)感病基因连锁的AFLP标记[J].中国农业科学2004,37(4):539-544.
    [114]冷月强,侯喜林,史公军.白菜抗霜霉病基因的RAPD标记[J].园艺学报,2007,34(3):763-766.
    [115]张俊华,潘春清,张耀伟,等.大白菜抗芜菁花叶病毒基因EST-PCR-RFLP分子标记的研究[J].植物病理学报,2006,36(6):523-527.
    [116]Ignatov A N,Y Kuginuki,T P Suprunova,et al.RAPD markers linked to locus controlling resistance for race 4 of the black rot causative agent[J].Gentika-Moskva,2000,36 (3):357-360.
    [117]刘公社,C.Robaglia.利用大白菜小袍子胚状体获得抗除草剂转基因植株[J].华北农学报,1998,13(4):93-98.
    [118]余沛涛,王炜,何玉科,等.大白菜(Brassica chinensis)的雄性不育基因转化[J].上海农业学报.2000,16(1):17-19.
    [119]曹家树,叶纨芝,张明,等.白菜核雄性不育两用系花蕾的mRNA差别显示及其cDNA差异片段分析[J].浙江大学学报(农业与生命科学版)2001,27(6):596-600.
    [120]Ying Miao,Dreyer F,Cai Da Guang,et al.Molecular markers for genic male sterility in Chinese cabbage [J].Euphytica,2003,132 (2):227-234.
    [121]王永勤,曹家树,符庆功,等.利用cDNA-AFLP技术分析白菜核雄性不育两用系的表达差异[J].中国农业科学,2003,36(5):557-560.
    [122]黄鹂,曹家树.十字花科植物授粉过程中花粉表达基因的研究[J].自然科学进展,2005,15(11):1287-1296.
    [123]Liu L C,Cao J S,Yu X L,et al.Expression of an antisense BcMF3 affect s mierosporogenesis and pollentubegrowthinArabdopsis[J].AgriculturalScieneesinChina,2006,5:339-345.
    [124]刘乐承,向珣,曹家树.白菜雄性不育相关基因BcMF4基因功能的RNAi验证[J].遗传,2006,28(11):1428-1434.
    [125]王华新,王永勤,曹家树,等.白菜雄性不育相关新基因BcMF1的分离及特征分析[J].中国农业科学2008,41(4):1119-1127.
    [125]张淑江,李菲,韩和平,等.大白菜细胞核显性雄性不育基因连锁标记的筛选[J].中国农业科学,2008,41(8):2379-2385.
    [126]王永飞,马三梅,张鲁刚,等.大白菜细胞质雄性不育系和其保持系的RAPD分析[J].西北植物学报,2003,23(4):554-560.
    [127]Li G,Gao M,Yang B,Quiros C F.Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping [J].TheorAppl Genet,2003,107:168-180.
    [128]赵利民,陈夫贵,巩振辉,等.大白菜雄性不育系RC7育性相关基因克隆与特性分析[J].西北植物学报,2008,28(1):7-11.
    [129]刘秀村,张凤兰,张德双,等.与大白菜桔红心基因连锁的RAPD标记[J].华北农学报,2003,18(4):51-54.
    [130]王国臣,张凤兰,余阳俊,等.与大白菜橘红心基因紧密连锁的SCAR标记[J].园艺学报,2007,34(1):217-220.
    [131]程斐,李式军,奥岩松,等.大白菜抽薹性状的遗传规律研究[J].南京农业大学学报,22(1):26-28
    [132]Teutonico R A,Osbom T C.Mapping loci controlling vernalization requirement in Brassica rapa [J].TheorAppl Genet,1995,91 (8):1279-1283.
    [133]Nozaki T,Anji T,Takahashi,et al.Analysis of isozyme loci and their Linkages in Brassica campestris L [J].Breed Sci,1995,45:57-64.
    [134]Ajisaka H,Kuginuki Y,Yui S,et al.Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa L.ssp.pekinensis syn.campestris L.)using bulked segregant analysis [J].Euphytica,2001,118:75-78.
    [135]于拴仓,王永健,郑晓鹰.大白菜叶球相关性状的QTL定位与分析[J].中国农业科学,2004,37(1):106-111.
    [136]于拴仓,王永健,郑晓鹰.大白菜耐热性QTL定位与分析[J].园艺学报,2003,30(4):417-420.
    [137]于拴仓.大白菜分子遗传图谱的构建及重要农艺性状的QTL定位[D].北京,中国农业科学研究院,2003.
    [138]王美.大白菜遗传图谱构建及抗TuMV的QTL分析[D].山东农业大学,2003.
    [139]赵建军.白菜类作物重要农艺性状的遗传分析[D].中国农业科学院,,2005.
    [140]徐东辉,孙日飞,张延国,等.大白菜叶色相关性状的QTL定位与分析[J].园艺学报,2007,34(1):99-104.
    [141]宋晓飞,申书兴,张晓伟,等.大白菜叶片刺毛性状AFLP标记的筛选[J].中国蔬菜,2006,12:6-8.
    [142]杨旭.白菜(Brassica campestris L.)耐抽薹性及其它农艺性状QTL定位的研究[D].西北农林科技大学,2006.
    [143]孙秀峰,陈振德,李德全.大白菜干烧心病性状的QTL定位和分析[J].分子植物育种,2008,6(4):702-708.
    [144]朱明超,罗伯祥,赵苏海,等.黄心大白菜新品种淮04-14的选育[J].中国蔬菜,2007,10:31-32
    [145]徐家炳.北京桔红心(9728)大白菜新品系[J].中国蔬菜,1998,4:31.
    [146]苏学军,徐茂俊.彩色大白菜新品种红抗1、2号的选育[J].中国瓜菜,2005,4:25-27.
    [147]张鲁刚,惠麦侠,张明科.彩色大白菜新品种“金冠1号”的选育[J].北方园艺,2005,4:67-68.
    [148]鹿英杰,史庆馨.彩色大白菜“龙园红1号”的选育[J].北方园艺,2005,6:31.
    [149]余阳俊,陈广,徐家炳,等.早中熟桔红心大白菜新品种‘北京桔红2号’[J].园艺学报,2005,32(2):372.
    [150]王翠花,何启伟,牟晋华,等.特色大白菜天正橘红58[J].长江蔬菜,2005,5:7.
    [151]张鲁刚,惠麦侠,张明科.彩色大白菜新品种“金冠2号”的选育[J].西北农业学报,2007,16(1):204-206.
    [152]孙明远,杜建中,靳宪刚,等.红心大白菜新品种红宝二号[J].长江蔬菜,2006,8:6.
    [153]孙日飞,张淑江,章时蕃,等.紫红色大白菜种质的创新研究[J].园艺学报,2006,33(5):1032.
    [154]张德双,张凤兰,余阳俊,等.紫色大白菜育种材料的创造[J].长江蔬菜,2007,1 1:52-53.
    [155]李永明,赵玉琪.实用分子生物学方法手册[M].北京:科学出版社,2001:173-178.
    [156]孟祥栋,马红,盖树鹏.快速提取用于PCR分析的几种蔬菜DNA的方法[J].应用与环境生物学报,1998,4(3):251-254.
    [157]张新宇,高燕宁.PCR引物设计及软件使用技巧[J].生物信息学,2004,2(4):15-18.
    [158]李严,张春庆.新型分子标记—SRAP技术体系优化及应用前景分析[J].中国农学通报,2005,21(5):108-112.
    [159]葛佳,谢华,崔崇士,洪剑明,马荣才.2005.大白菜表达序列标签SSR标记分析[J].农业生物技术学报,13(4):423-428.
    [160]石磊,李丽,郑晓鹰.大白菜SSR检测体系的优化[J].分子植物育种,2007,5(1):110-116.
    [161]盖钧镒.植物数量性状遗传体系的分离分析方法研究[J].遗传,2005,27(1):130-136.
    [162]沈向群,杨文骏.大白菜核基因显性雄性不育性育性恢复基因的RAPD标记[J].园艺学报,2004,31(6):731
    [163]Tadanori Nozaki,Akira Kumazaki,Takato Koba,et al.Linkage analysis among loci for RAPDs,isozymes and some agronomic traits in Brassica campestris L.[J].Euphytica,1997,95:115-123.
    [164]Knapp S.J.Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes [J].CropSci.,1998,38..1164-1174.
    [165]方宣钧,吴为人.分子选择[J].分子植物育种,2003,1(1):1-5
    [166]Ajisaka H,Kuginuki Y,Shiratori M,et al.Mapping of loci affecting the cultural efficiency of microspore culture of Brassica rapa L syn campestris L using DNA polymorphism [J].Breed Sci,1999,49:187-192.
    [167]Beaumont V H,Rocheford Y R,Widholm J M.Mapping the anther culture response genes in maize (Zeamays L.)[J].Genome,1995,38:968~975.
    [168]Zhang F L,Aoki S,Takahata Y.RAPD markers linked to microspore embryogenic ability in rassica crops[J].Euphytica,2003,131:207~213.
    [169]Lincoln S E,DalyM J,Lander E S.Constructing genetics map s with MAPMAKER/EXP 3.0 b.A Whitehead Institute Technical Report,2nd ed.1993,1~100.
    [170]汤华,严建兵,黄益勤,等.玉米5个农艺性状的QTL定位[J].遗传学报,2005,32(2):203-209.
    [171]阮成江,何祯祥,钦佩.我国农作物QTL定位研究的现状和进展[J].植物学通报,2003,20(1):10-22.
    [172]Tanksley S D.Mapping polygene [J].Annu Rev Genet,1993,27:205-233.
    [173]谭震波,沈利爽,袁柞廉,等.水稻再生能力和头季稻产量性状的定位及其遗传效应分析[J].作物学报,1997,23(3):289-295.
    [174]曾长英,徐芳森,孟金陵,等.从QTL到QTG的路还有多远[J].遗传,2006 28(9):1191-1198.
    [175]Nadeau J H,Frankel W N.The roads from phenotypic variation to gene discovery:mutagenesis versus QTLs [J].Nat genet,2000,25(4):381-384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700