甘蓝型油菜隐性核不育基因Bnms1的精细定位和克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂种优势利用是提高油菜产量、品质和抗性的有效途径。雄性不育是油菜杂种优势利用主要的途径,但是对于雄性不育机理的研究却远远滞后。甘蓝型油菜细胞核雄性不育(GMS)败育彻底,不育性表现稳定,细胞质来源丰富,恢复源广泛,在国内已成为油菜杂种优势利用的重要途径之一。S45AB来源于四川大学,由潘涛等(1988)在Oro中发现的自然突变体衍生而来,经过多代的兄妹交(25代以上)保存,通过杂交试验证明S45A的不育性受两对重叠隐性基因控制(潘涛等,1988)。在近等基因系S45AB中,一个不育位点处于杂合状态,另外一个不育位点处于隐性纯合状态。本研究以S45AB作为基础材料,对处于杂合状态的隐性核不育基因进行了遗传定位和克隆的研究,主要结果如下:
     1.3年的育性调查结果表明:兄妹交后代的育性分离比稳定在1:1,可育株自交后代的育性比例符合3:1。这一结果进一步证实了在两型系S45AB中控制育性的两个位点中只有一个处于分离状态,我们将这个位点的不育基因命名为Bnms1;另外一个位点处于隐性纯合状态,不育基因命名为Bnms2。
     2.半薄切片观察发现可育花药和不育花药在减数分裂前没有明显差异。四分体时期四分体没有明显差异,不育花药的绒毡层比可育花药的稍厚。在单核花粉期小孢子差异明显,不育小孢子没有花粉外壁的合成,发育长时间停留在单核花粉期并最终解体;不育花药的绒毡层表现为径向扩大,液泡化明显。S45A败育发生的关键时期在四分体至单核花粉期,绒毡层异常、花粉外壁的缺失是导致败育的主要原因。
     3.应用AFLP与BSA结合的方法分析近等基因系S45AB,共筛选了2560对AFLP引物组合,获得7个与目的基因(Bnms1)连锁的AFLP标记AF1-AF7。用包含310个单株的近等基因系群体将Bnms1基因定位在标记AF3和AF7之间,标记与基因间的遗传距离分别为1.6cM和0.3cM,标记AF1和AF2与基因共分离。
     4.回收、克隆了以上7个AFLP特异片段,测序结果表明AF1-AF7的精确长度分别为203bp、241bp、211bp、186bp、187bp、284bp和362bp。通过PCR-walking分离AFLP标记的侧翼序列,将AF1、AF3、AF6和AF7分别延长至7,499bp、997bp、1,203bp和656bp,并转化为4个SCAR标记SC1、SC3和SC6和SC7。用1,974个单株的S45AB近等基因系将Bnms1基因定位在标记SC1和SC7之间,标记与Bnms1基因间的遗传距离分别为0.1cM和0.3cM。
     5.利用DH群体(Zhongyou821×Bao604)为作图群体,构建了一张包含237个标记的遗传图谱,图谱总长1,625.6cM,包括2个RFLP标记,65个RAPD标记,86个SSR标记,84个SRAP标记。利用两个DH群体(Tapidor×Ningyou7、Zhongyou821×Ba0604)的遗传图谱将不育基因Bnms1定位于N7连锁群,并在N7连锁群上找到一个与Bnms1基因连锁的共显性标记Na12A02,Na12A02与基因的距离为2.6cM。
     6.以分子标记SC7、SC1和SC6的特异片段为探针筛选Tapidor BAC文库,得到41个阳性克隆。利用标记SC1和SC7将Bnms1基因定位在BAC克隆BAC1上,对克隆BAC1进行shotgun测序。基于BAC序列开发了6个新标记SCS-SC13,在4132个单株群体中Bnms1基因被定位在标记SC8和SC11之间,标记与Bnms1基因间的遗传距离分别为0.05cM和0.15cM,SC8和SC11在BAC克隆BAC1上的物理距离为21.2-kb。
     7.用21.2-kb的序列检索GenBank的EST数据库和拟南芥数据库(AGIGenes),结果表明该区域存在四个候选基因,四个候选基因在甘蓝型油菜上的排列顺序与拟南芥基因的排列顺序一致。第一个和第四个候选基因是功能未知的基因,第二个候选基因属于NAP类型基因,第三个候选基因是CYP450基因家族成员,分析认为第二和第三个候选基因可能与花粉发育相关,以下用G14、G15表示。
     8.Northern blot分析表明G14和G15的表达量在S45A和S45B之间没有明显差异。在小于1mm、1mm~2mm、2mm~3mm和3mm~4mm四种大小的花蕾之间G14的表达量没有变化,表达水平很低;G15在1mm~2mm、2mm~3mm大小的的花蕾中特异表达。
     9.比较测序发现,G14在S45A和S45B之间存在2个错义突变,导致第79位的缬氨酸突变为丙氨酸;第226位的丙氨酸突变为丝氨酸。G15在S45A和S45B之间也有2个错义突变,导致第179位的甘氨酸突变为精氨酸;第297位的缬氨酸突变为丙氨酸。
     10.构建了转基因载体pBnG15、pAtG15RNAi-1和pAtG15RNAi-2,获得了5株甘蓝型油菜的阳性转化植株和2株表现为雄性不育的拟南芥植株。
Utilization of heterosis in rapeseed is an efficient path to enhance yield,improve quality,and to strengthen resistance.The genie male sterile(GMS) system has been applied to this crop as an effective and economical pollination control system in China for its stable and complete sterility,rich sources of cytoplasm and widely spread of restorers.S45AB,a recessive GMS two-type line in Brassica napus,was derived from male sterile mutant of the Brassica napus canola variety Oro,genetic analysis indicated that two duplicate recessive genes controlled the male sterility in S45 populations(Pan et al.1988).In this study,S45AB was used to fine map and clone the recessive GMS gene,Bnms1.Main results are as follows:
     1.The NIL population displayed a ratio of ms to mf plants that did not differ significantly from 1:1.The segregation of fertile to sterile plants in the selfing generation from the male fertile plant of NIL did not differ significantly from 3:1. This result indicated that the recessive allele at the first locus(designed as Bnms1) was heterozygous,while the recessive allele at the second locus(designed as Bnms2) was homozygous.
     2.The observation on anther microscopical structure showed that it was no difference between S45A and S45B before the stage of meiosis.The tapetum of S45A was a little thicker than that of S45B at the stage of tetrad,but the tetrad in S45A was normal.Soon after the microspore released from tetrad,there was distinct difference between the microspore of S45A and S45B,the surface of microspore was smooth in S45A without the exine formation,the mierospore stopped developping and disaggregated;The tapetum of male sterile anther enlarged radial with a number of large vacuoles.The key stage taking place male sterility was from microsporocyte to mierospores.Extine development defective caused male sterlity.
     3.AFLP technology combined with bulked segregant analysis(BSA) was used to identify the genetic markers for Bnms1 gene in the NIL population.2560 pairs of AFLP primers were screened,and seven genetic markers AF1-AF7 linked to the Bnms1 gene were obtained.An NIL population including 310 individuals was used to map the Bnms1 gene,two nearest markers AF3 and AF7 bracketed Bnms1 at distances of 1.6cM and 0.3cM,respectively,AF1 and AF2 were co-segregated with Bnms1 gene.
     4.The fragments were cloned and sequenced,which indicated that AF1-AF7 were 203bp,241bp,211bp,186bp,187bp,284bp and 362bp in length,respectively. The four AFLP markers(AF1,AF3,AF6 and AF7) were successfully extended by PCR-walking.The four extended sequences were 7,499bp,997bp,1,203bp and 656bp, respectively,and they were converted into SCAR markers(designated as SC1,SC3, SC6 and SC7).Another population in the same NIL including 1,974 individuals was used for fine mapping of the Bnms1 gene.As a result,the Bnms1 gene was flanked by two SCAR markers,SC1 and SC7,with genetic distance of 0.1cM and 0.3cM, respectively.
     5.Using a DH population derived from the cross Zhongyou821×Bao604,a genetic linkage map spanning 1,625.6cM was constructed,which including 2 RFLP markers,65 RAPD markers,86 SSR markers and 84 SRAP markers.Based on two linakge map constructed using DH populations(Tapidor×Ningyou7 and Zhongyou821×Bao604),the Bnms1 gene was mapped on linkage group N7.One co-dominant SSR marker located on linkage group N7,Na12A02,was confirmed to link to the Bnms1 gene.The distance between the marker and Bnms1 gene was 2.6cM.
     6.Three probes(SC7,SC1 and SC6) screened the Tapidor BAC library,and 41 positive BAC clone were identified.One BAC clone BAC1 which might contain the Bnms1 gene was identified by two blacketing SCAR markers,SC1 and SC7.The BAC clone was sequenced using the shotgun sequencing strategy.Two and six recombinants with the Bnms1 gene were detected by two SCAR markers(SC8 and SC11) based on the sequence of BAC1,respectively.The physical distance between SC8 and SC11 was 21.2-kb.That meaned the Bnms1 gene was narrowed into a 21.2-kb DNA fragment.
     7.Searches for putative candidate gene were performed using TBLASTN searches in the plant EST database at http://www.ncbi.nlm.nih.gov/and AGI Genes database at http://www.arabidopsis.org/using 21.2-kb sequence as the query sequence. The result indicated that the 21.2-kb region included four candidate genes,and the gene order was the same between Brassica napus and Arabidopsis,it indicated that the Bnms1 gene located in a collinearity region of Brassica napus and Arabidopsis. The functions of the first and the fourth candidate were unknow,the second candidate gene was a NAP like type,the third candidated gene was a member of CPY450 family, and both the second and the third candidate gene were related with pollen development,which were designed as G14 and G15,respectively.
     8.Northern blot analysis showed that the expressions of G14 and G15 were neither distinctly different between S45A and S45B.The expression of G14 was not different among four stages tested and expression was low in bud,while G15 specially expressed from the microsporocyte stage to microsorpe stage.
     9.Comparative sequence analysis identified 2 missense mutations between S45A and S45B at both candidate genes,and those caused two amino acid conversion,V to A and A to S in G14,G to R and V to A in G15,respectively.
     10.Plant expression vectors pBnGA15 and RNA interference expression vectors, pAtG15RNAi-1 and pAtG15RNAi-2,were constructed.Five transgenic Brassica napus plants and two male sterile Arabidopsis plants were obtained,respectively.
引文
1.陈风祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.见:全国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京农业大学学报(增刊),1993,2:20-25
    2.陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究 Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24(4):431-438
    3.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新,李成,陈维生.甘蓝型油菜隐性上位互作核不育双低杂交种皖油14号的选育.中国油料作物学报,2003,25(1):63-65
    4.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新.甘蓝型油菜隐性上位互作核不育双低杂交种“皖油18”的选育.安徽农业科学,2002,30(4):535-537
    5.陈苇,李劲峰,董云松,李根泽,寸守铣,王敬乔.甘蓝型油菜Fad2基因的RNA干扰及无筛选标记高油酸含量转基因油菜新种质的获得.植物生理与分子生物学学报,2006,32(6):665-671
    6.崔德欣,邓锡兴.甘蓝型杂交油菜的研究利用.中国油料,1979,2:15-20
    7.樊云芳,胡胜武,董彩华,郭学兰,刘胜毅.一种甘蓝型油菜双隐性细胞核雄件不育的细胞学观察.中国油料作物学报,2006,4:403-407
    8.傅廷栋,涂金星.油菜杂种优势利用的现状与展望.见:刘后利主编,作物育种学论丛.北京:中国农业大学出版社,2002
    9.傅廷栋.加人WTO对我国农业的影响和发展优质油菜生产问题.安徽农学通报,2001.7:8-12
    10.傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版社,1995
    11.洪登峰.甘蓝型油菜显性细胞核雄性不育基因Ms/Mf的定位.[博士学位论文].武汉:华中农业大学图书馆,2006
    12.侯国佐.甘蓝型油菜隐性核不育系可育、不育型初花前后特性的观察.种子,1991,5:29-31
    13.胡胜武.甘蓝型油菜(Brassica napus)新型核不育材料Shaan-GMS的遗传及核不育的分子机制研究.[博士学位论文].杨凌:西北农林科技大学图书馆,2003.
    14.黄邦全,罗鹏,吴书惠.甘蓝型油菜雄性不育材料S90-8-7的获得及细胞学研究.湖北大学学报(自然科学版),2000,22(2):182-184
    15.蒋梁材,蒲晓斌,王瑞,张启行,蔡平钟.甘蓝型油菜核不育基因的PCR标记初报.西南农业大学学报,2000b,22(3):199-202
    16.蒋梁材,蒲晓斌,王瑞,张启行,蔡平钟.甘蓝型油菜核不育基因的RAPD标记.中国油料作物学报,2000a,22(2):1-4
    17.康俊根,王晓武,张国裕,张延国,娄平,方智远.利用cDNA-AFLP检测甘蓝雄性不育相关基因的时序性表达.园艺学报,2006,33(3):544-548
    18.康俊根,张国裕,张延国,娄平,王晓武,方智远.四种甘蓝雄性不育类型差异基因表达分析.农业生物技术学报,2006,14(4):551-554
    19.李德谋,侯磊,罗小英,裴炎,杨光伟.甘蓝型油菜隐性核不育两用系S45AB中与MS2Bnap基因同源片段的克隆及序列分析.作物学报,2002,28(1):1-5
    20.李殿荣.甘蓝型油菜三系选育初报.陕西农业科学,1980,1:26-29
    21.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1(2):1-12
    22.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传验证.上海农业学报,1986,2(2):1-8
    23.李树林,钱玉秀,周熙荣.显性核不育油菜的遗传性.上海农业学报,1987,3(2):1-8
    24.李树林,周熙荣,周志疆,钱玉秀.显性核不育油菜的遗传与利用.作物研究,1990,4(3):27-32
    25.刘春林,官春云,李栒,阮颖,寥晓兰,熊兴华,周小云,王国槐,陈社员.油菜分子标记图谱构建及抗菌核病性状的QTLs定位.遗传学报,2000,27:918-924
    26.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25(3):317-321.
    27.龙欢,姚家玲,涂金星.3种甘蓝型油菜雄性不育系花药发育的细胞学研究.华中农业大学学报,2005,6:570-575
    28.陆光远,杨光圣,傅廷栋.甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位.遗传学报,2004b,31(11):1309-1315
    29.陆光远,杨光圣,傅廷栋.甘蓝型油菜显性细胞核雄性不育基因的AFLP标记.作物学报,2004a,30(2):104-107
    30.陆光远,杨光圣,傅廷栋.一个简便的适合于分析油菜中SSR位点的检测体系.中国油料作物学报,2003,25:79-81
    31.陆光远.甘蓝型油菜显性细胞核雄性不育基因和上位抑制基因的分子标记及其应用.[博士学位论文].武汉:华中农业大学图书馆,2003
    32.潘家驹主编.作物遗传育种总论.北京:中国农业出版社,1995,82-87
    33.潘涛,曾凡亚,吴书慧,赵云.甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究.中国油料,1988,(3):5-8
    34.沈金雄,陆光远,傅廷栋,杨光圣.甘蓝型油菜遗传多样性及其与杂种表现的关系.作物学报,2002,28(5):622-627
    35.宋来强.甘蓝型油菜显性细胞核雄性不育的遗传与应用模式.[博士学位论文].武汉:华中农业大学图书馆,2005
    36.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型双低隐性核不育杂交种沪油杂1号的选育.中国油料作物学报,2004,26(1):63-65
    37.涂金星,傅廷栋,郑用琏.甘蓝型油菜核不育材料育性基因的RAPD标记.华 中农业大学学报,1997,16(2):112-117
    38.王道杰,郭蔼光,李殿荣,田建华.油菜单显性核雄性不育基因的分子标记.植物生理与分了牛物学学报,2006,32(5):513-51
    39.王俊霞,杨光圣,傅廷栋,孟金陵.甘蓝型油菜Pol CMS育性恢复基因的RAPD 标记.作物学报,2000,26(5):575-578
    40.王丽侠,赵建伟,徐芳森,刘仁虎,孟金.与甘蓝型油菜重要经济性状有关的DNA克隆在拟南芥遗传图谱中的整合.遗传学报,2002,29(8):741-746
    41.吴建勇.甘蓝型油菜显性细胞核雄性不育差异表达基因及雄配子发育研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    42.杨光圣,瞿波,傅廷栋.甘蓝型油菜显性细胞核雄性不育系宜3A花药发育的解剖学研究.华中农业大学学报,1999a,18(5):405-408
    43.杨光圣,瞿波,傅廷栋.三个甘蓝型油菜隐性细胞核雄性不育系小孢子发生的细胞学研究.华中农业大学学报,1999b,18(6):520-523
    44.杨光圣.甘蓝型油菜细胞质雄性不育研究.遗传,1988,10(5):8-11
    45.余凤群,傅廷栋.甘蓝型油菜几个雄性不育系花药的细胞形态学观察.武汉植物研究,1990,8:209-216
    46.姚雪琴.芸薹属A、C基因组及拟南芥BnMs候选基因区共线性比较.[硕士学位论文].武汉:华中农业大学图书馆,2007
    47.张书芳,周帮福,武兴丽,张瑞君,那红梅,靖发顺.大白菜双位点复等位雄性不育遗传模型.辽宁农业科学,2003,(3):1-4
    48.Aarts M G,Hodge R,Kalantidis K,Florack D,Wilson Z A,Mulligan B J,Stiekema W J,Scott R,Pereira A.The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes.Plant J.,1997,12:615-623
    49.Albrecht C,Russinova E,Hecht V,Baaijens E,de Vries S.The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis.Plant Cell,2005,17(12):3337-3349
    50.Arabidopsis genome initiative.Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.Nature,2000,408:796-815
    51.Ariizumi T,Hatakeyama K,Hinata K,Inatsugi R,Nishida I,Sato S,Kato T,Tabata S,Toriyama K.Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen,resulting in male sterility in Arabidopsis thaliana.Plant J,2004,39:170-181
    52.Ariizumi T,Hatakeyama K,Hinata K,Sato S,Kato T,Tabata S,Toriyama K.A novel male-sterile mutant of Arabidopsis thaliana,faceless pollen-l,produces pollen with a smooth surface and an acetolysis-sensitive exine.Plant Mol.Biol.2003,53:107-116
    53.Arumuganathan K,Earle E D.Nuclear DNA content of some important plant species.PlantMolBiolRep,1991,9:208-218
    54.Ayele M,Haas B J,Kumar N,Wu H,Xiao Y,Van Aken S,Utterback T R,Wortman J R, White O R, Town C D. Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis. Genome Res. 2005, 15(4):487-95.
    
    55. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros C F, Sadowski J. Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana: complexity of the comparative map. Mol Genet Genomics, 2003, 268: 656-665
    
    56. Badani A, Rod S, Roland B, Luhs W, Horn R, Friedt W. QTL mapping for yellow seed colour in oilseed rape (Brassica napus). Abstract, 2003, 11th international rapeseed congress. Copenhagen, Denmark, Plant breeding-molecular markers, 85-87
    
    57. Bannerot H, Boudidard L, Chupeau Y. Unexpected difficulties met with the radish cytoplasm in Brassica oleracea. Eucarpia Cruciferae Newsletter, 1977, (2): 16
    
    58. Bennett M D, Smith J B. Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci, 1976, 274: 227-274
    
    59. Blackmore S, Wortley AH, Skvarla JJ, Rowley JR. Pollen wall development in flowering plants. New Phytol. 2007;174(3):483-98.
    
    60. Bonhomme S, Budar F. A 2.5 kb Nco I fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male sterility in Brassica cybrids. Curr Genet, 1991, 19: 121-127
    
    61. Bonhomme S and Budar F. Sequence and transcript analysis of the Nco-2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrid. Mol Gen Genet, 1992,235: 340-348
    
    62. Bonnet A. Breeding in France of a radish F_1 hybrid obtained by use of cytoplasmic male sterility. Eucarpia Cruciferae Newsl, 1977,2: 5
    
    63. Brown G G, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung W Y, Landry B S.The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J, 2003, 35: 262-272
    
    64. Butruille D V, Guries R P, Osborn T C. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines in Brassica napus L. Genetics 1999,153:949-964
    
    65. Canales C, Bhatt A M, Scott R, Dickinson H. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr. Biol., 2002, 12:1718-1727
    
    66. Cavell A C, Lydiate D J, Parkin I A, Dean C, Trick M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome, 1998, 41: 62-69
    
    67. Chen M, SanMiguel P, de Oliveira AC, Woo S S, Zhang H, Wing R A, Bennetzen J L. Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc Natl Acad Sci U S A, 1997, 94: 3431-3435
    
    68. Chen W, Zhang Y, Liu X, Chen B, Tu J, Tingdong F. Detection of QTL for six yield-related traits in oilseed rape(Brassica napus) using DH and immortalized F(2)populations.Theor Appl Genet.2007,115(6):849-858
    69.Choi S R,Teakle G R,Plaha P,Kim J H,Allender C J,Beynon E,Piao Z Y,Soengas P,Han T H,King G J,Barker G C,Hand P,Lydiate D J,Barley J,Edwards D,Koo D H,Bang J W,Park B S,Lim Y P.The reference genetic linkage map for the multinational Brassica rapa genome sequencing project.Theor Appl Genet,2007,115(6):777-792
    70.Colcombet J,Boisson-Demier A,Ros-Palau R,Vera C E,Schroeder J I.Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation.Plant Cell,2005,17:3350-3361
    71.Delourme R,Eber F.Linkage between an isozyme marker and a restorer gene in radish cytoplasmic male sterility of rapeseed(Brassica napus L.).Theor Appl Genet,1992,97:129-134
    72.Delourme R,Horvais R,Renard M.Double low restored F_1 can be produced with the Ogu-INRA CMS in rapeseed.Proc 10~(th) Int Rapeseed Cong,1999.
    73.Devic M,Albert S,Delseny M,Roscoe T J.Efficient PCR walking on plant genomic DNA.Plant Physiol Biochem,1997,35:331-339.
    74.DeYoung B J,Bickle K L,Schrage K J,Muskett P,Patel K,Clark S E.The CLAVATAI-related BAM1,BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis.Plant J,2006,45(1):1-16
    75.Doyle J J,Doyle J L.Isolation of plant DNA from fresh tissue.Focus,1990,12:13-15
    76.Drew G N.In situ hybridization.Methods Mol Biol,1998,82:353-371
    77.Drews G N,Bowman J L,Meyerowitz E M.Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product.Cell,1991,65:991-1002
    78.Ecke W,Uzunova M,Weibleder K.Mapping the genome of rapeseed(Brassica napus) Ⅱ:localization of genes controlling erucic acid synthesis and seed oil content.Theor Appl Genet,1995,91:972-977
    79.Edner C,Li J,Albrecht T,Mahlow S,Hejazi M,Hussain H,Kaplan F,Guy C,Smith S M,Steup M,Ritte G.Glucan,water dikinase activity stimulates breakdown of starch granules by plastidial beta-amylases.Plant Physiol,2007,145(1):17-28
    80.Fan Z,Stefansson B R,Sernyk J L.Maintainers and restorers for three male sterility inducing cytoplasm in rape(Brassica napus L.).Can JPlant Sci,1986,66:229-234
    81.Fang G H,McVetty P B E.Inheritance of male fertility restoration for the Polima CMS system in Brassica napus L.Proc 7~(th) Int Rapeseed Cong,1987,Poznan,Poland.1:73-78
    82.Faure J E,Aldon D,Rougier M,Dumas C.Emerging data on pollen tube growth and fertilization in flowering plants,1990-1995.Protoplasma,1996,193:132-143
    83.Fei H M,Sawhney V K.MS32-regulated timing of callose degradation during microsporogenesis in Arabidopsis is associated with the accumulation of stacked rough ER in tapetal cells.Sex.Plant Reprot,1999,12:188-193
    84.Ferreira M E,Rimmer S R,Williams P H,Osborn T C.Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopath, 1995a, 90: 213-217
    85. Ferreira M E, Satagopan J, Yandell B S, Williams P H, Osborn T C. Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet, 1995b, 90: 727-732
    86. Ferreira M E, Williams P H and Osbom T C. RFLP mapping of Brassica using doubled haploid lines. Theor Appl Genet, 1994, 89: 615-621
    87. Foisset N, Delourme R, Barret P, Hubert N, Landry B S and Renard M. Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on double haploid progeny. Theor Appl Genet, 1996, 93: 1017-1025
    88. Fu T D. Production and research of rapeseed in the People's Republic of China. Eucarpia Cruciferae Newsl, 1981, (6): 6-7
    89. Gale M D, Devos K M. Plant comparative genetics after 10 years. Science, 1998, 23: 656-659
    90. Gao M, Li G, Yang B, McCombie W R, Quiros C F. Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. Genome, 2004, 47: 666-679
    91. Girke A, Heiko C B, Gabriele M E. Resynthesized rapeseed as a new gene pool for hybrid breeding. Proc 10th Int Rapeseed Cong (Canberra, Australia), 1999. 90
    92. Goldberg R B, Beals T P, Sanders P M. Anther development: basic principles and practical applications. 1993, Plant Cell, 5: 1217-1229
    93. Gomez-Mena C, de Folter S, Costa M M, Angenent G C, Sablowski R. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development, 2005,132(3):429-438
    94. Grant M R, McDowell J M, Sharpe A G, de Torres Zabala M, Lydiate D J, Dangl J L. Independent deletions of a pathogen resistance gene in Brassica and Arabidopsis. Proc Natl Acad Sci USA, 1998, 95: 15843-15848
    95. Hall A E, Fiebig A, Preuss D. Beyond the Arabidopsis genome: opportunities for comparative genomics. Plant Physiol, 2002, 129: 1439-1447
    96. Higginson T, Li S F, Parish R W. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J., 2003, 35:177-92
    97. Hoenecke M, Chyi Y S. Comparison of Brassica napus and B. rapa genomes based on the restriction fragment length polymorphism mapping. Rapeseed in a Changing World: Proc. 8th International Rapeseed Cong. (Saskatchewan, Canada), 1991, pp 1102-1107
    98. Hong D F, Wan L L, Liu P W, Yang G S, He Q B. AFLP and SCAR markers linked to the suppressor gene (Rf) of a dominant genetic male sterility in rapeseed (Brassica napus L.). Euphytica, 2006, 151:401-409
    99. Hord C L, Chen C, Deyoung B J, Clark S E, Ma H. The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell, 2006, 18(7): 1667-1680
    100.Howell P M, Sharpe A G, Lydiate D J. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome, 2003,46: 454-460
    101.Hsieh K, Huang AH. Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell, 2007, 19(2):582-596
    102.Hu S W, Fan Y F, Zhao H X, Guo X L, Yu C Y, Sun G L, Dong C H, Liu S Y, Wang H Z. Analysis of MS2Bnap genomic DNA homologous to MS2 gene from Arabidopsis thaliana in two dominant digenic male sterile accessions of oilseed rape {Brassica napus L.). Theor Appl Genet, 2006,113: 397-406
    103 .Huang Z, Chen Y, Yi B, Xiao L, Ma C, Tu J, Fu T. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet. 2007 Jun;115(1):113-8.
    104.Hughes S L, Hunter P J, Sharpe A G, Kearsey M J, Lydiate D J, Walsh J A. Genetic mapping of the novel Turnip mosaic virus resistance gene TuRB03 in Brassica napus. Theor Appl Genet, 2003,107:1169-1173
    105.Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann J L, Meyerowitz E M. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature, 2004,430:356-360
    106.Jackson S A, Cheng Z K, Wang M L, Goodman H M, Jiang J M. Comparative Fluorescence in Situ Hybridization Mapping of a 431-kb Arabidopsis thaliana Bacterial Artificial Chromosome Contig Reveals the Role of Chromosomal Duplications in the Expansion of the Brassica rapa Genome. Genetics, 2000, 156: 833-838
    107.James C. Global review of commercialized transgenic crops: 2002. ISAAA briefs, 2002, No. 27
    108.Janeja H S, Banga S K, Bhaskar P B, Banga S S. Alloplasmic male sterile Brassica napus with Enarthrocarpus lyratus cytoplasm: introgression and molecular mapping of an E. lyratus chromosome segment carrying a fertility restoring gene. Genome,2003b, 46: 792-797
    109.Janeja H S, Banga S S, Lakshmikumaran M. Identification of AFLP markers linked to fertility restorer genes for tournefortii cytoplasmic male-sterility system in Brassica napus. Theor Appl Genet, 2003a, 107: 148-154
    
    110. Jean M, Brown G G, Landry B S. Genetic mapping of nuclear fertility restorer genes for the 'Polima' cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers, Theor Appl Genet, 1997, 95: 321-328
    
    111. Jean M, Brown G G, Landry B S. Targeted mapping approaches to identify DNA markers for the 'Polima' CMS of canola (Brassica napusL.). Theor Appl Genet, 1998,97:431-438
    
    112.Ke L P, Sun Y Q , Hong D F, Liu P W, Yang G S. Identification of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus. Plant Breeding, 2005,124: 367-370
    
    113.Ke L P, Sun Y Q, Liu P W, Yang G S. Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed (Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica, 2004, 138(2): 163-168
    114.Kikuchi S, Taketa S, Ichii M, Kawasaki S. Efficient fine mapping of the naked caryopsis gene (nud) by HEGS (High Efficiency Genome Scanning)/AFLP in barley.Theor Appl Genet. 2003, 108(1):73-78
    115.Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944,12: 172-175
    116.Kowalski P, Lan T H, Feldmann K A, Paterson A H. Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics, 1994,138: 499-510
    117.Krishnasamy S, Makaroff C A. Organ-specific reduction in the abundance of a mitochondrial protein accompanies fertility restoration in cytoplasmic male sterile radish. Plant Mol Biol, 1994,26: 935-946.
    118.L'Homme Y, Brown G G.Organizational differences between cytoplasmic male sterile and male fertile Brassica mitochondrial genomes are confined to a single transposed locus. Nucl Acids Res, 1993, 21(8): 1903-1909
    119.Labana K S, Gupta M L. Importance and Origin. In: Labana K S, Banga S S, Banga S K. eds., Breeding Oilseed Brassicas. Springer-Verlag Press, 1993. 1-20
    120.Lagercrantz U, Putterill J, Coupland G, Lydiate D. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J, 1996, 9: 13-20
    121.Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics, 1998, 150: 1217-1228
    122.Lagercrantz U., Putterill J., Coupland G., and Lydiate D. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J, 1996, 9: 13-20
    123.Laibach F. Arabidopsis thaliana (L.) Heynh. als object fur genetische und entwicklungsphysiologische untersuchungen. Bot Archiv 1943, 44: 439-455
    
    124.Lan T H, Delmonte T A, Reischmann K P, Hyman J, Owalski S P, Mcferson J, Kresovich S, Paterson A H. An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res, 2000a, 10: 776-788
    125 .Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1:174-181
    126.Landry B S and Hubert N. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991,34:543-552
    127,Lei S, Yao X, Yi B, Chen W, Ma C, Tu J, Fu T. Towards map-based cloning: fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet. 2007, 115(5):643-51.
    128.Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Gene, 2003,107: 168-180
    129.Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001,103: 455-461
    130.Li Y Y, Ma C Z, Fu T D, Yang G S, Tu J X, Chen Q F, Wang T H, Zhang X G, Li C Y. Construction of a molecular functional map of rapeseed (Brassica napus L.) using differentially expressed genes between hybrid and its parents. Euphitica, 2006, 152: 25-39
    131 .Liu C L, Guan C Y, Li X, Ruan Y, Liao X L, Xiong X H, Zhou X Y, Wang G H, Chen S Y. Construction of linkage map and mapping resistance gene of Scterotinia scterotiorum in Brassica napus. Yi Chuan Xue Bao, 2000,27: 918-924
    132.Liu X P, Tu J X, Liu Z W, Chen B Y, Fu T D. Construction of a molecular marker linkage map and Its use for QTL analysis of Erucic Acid Content in Brassica napus L.Acta Agronomica Sinica, 2005, 31(3): 275-282
    133.Liu X, Wang S, Wang Y, Wei S. Genetic analysis and molecular mapping of a nuclear recessive male sterility gene, ms91(t), in rice. Genome, 2007, 50(9):796-801
    134.Liu Z, Fu T , Tu J, Chen B. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theor Appl Genet, 2005, 110: 303-310
    135.Lovel C G, Batley J, Lim G, Robinson A J, Savage D, Singh D, Spangenberg G C, Edwards D. New computational tools for Brassica genome research. Comp Funct Genom. 2004, 5: 276-280
    136.Lu G Y, Yang G S, Fu T D. Molecular mapping of a dominant genic male sterility gene Ms in rapeseed (Brassica napus). Plant breeding, 2004c, 123:262-265
    
    137.Lukens L, Zou F, Lydiate D, Parkin I, Osborn T. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 2003,164: 359-372
    
    138.Mariani C, Beckeleer M D, Truettner J, Leemans J, Goldberg R B. Induction of male sterility in plant by a chimaeric ribonuclease gene. Nature, 1990, 347:737-741
    139.Mathias R. A new dominant gene for male sterility in rapeseed (Brassica Napus L.). Z Pflanzenzuchtg, 1985, 94: 170-173
    140.Mayerhofer R, Bansal V K, Thiagarajah M R, Stringam G R, Good A G.Molecular mapping of resistance to Leptosphaeria maculans in Austrilian cultivars of Brassica napus. Genome, 1997, 40: 294-301
    141.Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal V, Good A, Parkin I. Complexities of chromosome landing in a highly duplicated genome: Towards map based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics, 2005,171,1977-1988
    142.McCormic S. Male gametophyle development. Plant cell, 1993, 5: 1265-1275
    143.Meyerowitz E M, Bowman J L, Brockman L L, Drews G N, Jack T, Sieburth L E, Weigel D. A genetic and molecular model for flower development in Arabidopsis thaliana. Dev Suppl, 1991, 1:157-167
    144.Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-Shinozaki K. Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J, 2007, 50(5):751-766
    145.Mohring S, Esch E, Wricke G. Breeding hybrid varitiles in winter rapeseed using recessivly inherited self-incompatibility. Proc 10th Int Rapeseed Cong (Canberra, Australia), 1999, 72
    146.Morant M, Jφrgensen K, Schaller H, Pinot F, Mφller B L, Werck-Reichhart D, Bak S. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell, 2007,19(5):1473-1487
    147.Muangprom A, Osborn T C. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet, 2004, 108: 1378-1384
    
    148.Muller J. Fossil pollen records of extent angiosperms. Bot. Rev. 1981, 47: 1-142.
    149.Murai H, Hashimoto Z, Sharma PN, Shimizu T, Murata S, Takumi S, Mori N, Kawasaki S, Nakamura C. Construction of a high-resolution linkage map of a rice brown planthopper (Nilaparvata lugens St 1), resistance gene bph2. Theor Appl Genet, 2001,103:526-532
    150.Murakami S, Matsui K, Komatsuda T, Furuta Y. AFLP-based STS markers closely linked to a fertility restoration locus (Rfm1) for cytoplasmic male sterility in barley. Plant Breeding, 2005,124, 133-136
    151.Nissan-Azzouz F, Graner A, Friedt W, Ordon F. Fine-mapping of the BaMMV, BaYMV-1 and BaYMV-2 resistance of barley (Hordeum vulgare) accession PI1963. Theor Appl Genet, 2005, 110(2):212-218
    152.O'Neill C N, Bancroft I. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J, 2000, 23: 233-243
    153.Ogura H. Studies on the new male sterility in Japanese Radish, with special references to the utilization of this sterility towards the practical raising of hybrid seed. Mem Fac Agric Kagoshima Univ, 1968, 6(2): 39-78
    154.Osborn T C, Kole C, Parkin I A P, Sharpe A G, Kuiper M, Lydiate D J, Trick M. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics, 1997, 146: 1123-1129
    155.Owen H A, Makaroff C A. Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Haynh. Ecotype Wassilewskija (Brassicaceae). Protoplasma, 1995,185: 7-21
    156.Parkin I A P, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome, 1995, 38: 1122-1131
    157.Parkin I A, Lydiate D J, Trick M. Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome, 2002,45:356-366
    158.Paxson-Sowders D M, Dodrill C H, Owen H A, Makaroff C A. DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol, 2001,127:1739-1749
    159.Paxson-Sowders D M, Owen H A, Makaroff C A. A comparative ultrastructural analysis of exine pattern development in wild-type Arabidopsis and a mutant defective in pattern formation. Protoplasma, 1997, 198:53-65
    160.Pelletier G, Primard C, Vedel P. Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Curr Genet, 1983, 191: 244-250
    161 .Pilet M L, Delourme R, Foisset N, Renard M. Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm) Ces et de Not., in winter rapeseed (Brassica napus L.). Theor Appl Genet, 1998,96:23-30
    162.1. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet, 2005,111:1514-1523
    163.Preston J, Wheeler J, Heazlewood J, Li S F, Parish R W. AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J, 2004,40(6):979-995
    164.Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTLs analysis of seed oil and erucic acid content. Theor Appl Genet, 2006,114(1):67-80
    165.Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. identification of genomic regions from winter germplasm. Theor Appl Genet, 2006, 113:549-561
    166.Rajcan I, Kasha K J,Kott L S,Beversdorf W D. Detection of molecular markersassociated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L.). Euphytica, 1999, 105: 173-181
    167.Rana D, van den Boogaart T, O'Neill C M, Hynes L, Bent E, Macpherson L, Park J Y, Lim Y P, Bancroft I. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J, 2004,40(5):725-733.
    168.Robbelen G. Citation at the occasion of presenting the GCIRC Superior Scientist Award to Fu Tingdong. Proc 8th Int Rapeseed Cong (Sasktoon Canada), 1991. 1:2-5
    169.Robert L S, Robson F, Sharpe A , Lydiate D, Coupland G.Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus, Plant Mol Bio, 1998, 37: 763-772
    170.Rychilk W and Rhoads R E. A computer program for choosing optimal oligo nucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucl Acids Res, 1989, 17: 8543-8551
    171.Sablowski R W, Meyerowitz E M. Temperature-sensitive splicing in the floral homeotic mutant apetala3-1.Plant Cell, 1998, 10(9):1453-1463.
    172.Sadowski J, Gaubier P, Delseny M, Quiros C F. Genetic and physical mapping in Brassica diploid species of a gene cluster defined in Arabidopsis thaliana. Mol Gen Genet, 1996,251: 298-306
    173.Sadowski J, Quiros C F. Organization of an Arabidopsis thaliana gene cluster on chromosome 4 including the RPS2 gene, in the Brassica nigra genome. Theor Appl Genet, 1998, 96: 468-474
    174.Sadowski J, Quiros C F. Organization of an Arabidopsis thaliana gene cluster on chromosome 4 including the RPS2 gene, in the Brassica nigra genome. Theor Appl Genet, 1998,41: 226-235
    175.Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 1999,96:11664-11669
    176.Schierholt A, Becker H C, Ecke W. Mapping a high oleic acid mutation in winteroilseed rape (Brassica napus L.). Theor Appl Genet, 2000, 101: 897-901
    177.Scott R, Dagless E, Hodge R, Paul W, Soufleri I, Draper J. Patterns of gene expression in developing anthers of Brassica napus. Plant Mol Biol. 1991, 17(2): 195-207.
    178.Shull G H. The composition of a field of maize. Am Breeders Assoc. Rep, 1908, 4: 296-301
    179.Siebert P D, Chenchick A, Kellogg D E, Lukyanov K A, Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucl Acids Res, 1995, 23: 1087-1088.
    180.Simons G, Van der Lee T, Diergaarde P, Van Daelen R, Groenendijk J, Frijters A, B schges R, Hollricher K, T psch S, Schulze-Lefert P, Salamini F, Zabeau M, Vos P. AFLP-based fine mapping of the Mlo gene to a 30-kb DNA segment of the barley genome. Genomics, 1997,44:61-70
    181.Singh M, Brown G G.Characterization of expression of a mitochondrial gene region associated with the Brassica 'Polima' CMS: developmental influences. Curr Genet, 1993,24:316-322
    182.Singh M, Brown G G. Suppression of cytoplasmic male sterility by nuclear genes alter expression of a novel mitochondrial gene region. Plant Cell, 1991, 3: 1349-1362
    183.Singh M, Hamel N. Nuclear genes associated with a single Brassica CMS restorer locus influence transcripts of three different mitochondrial gene regions. Genetics, 1996, 143: 505-516
    
    184.Skirycz A, Jozefczuk S, Stobiecki M, Muth D, Zanor M I, Witt I, Mueller-Roeber B. Transcription factor AtDOF4;2 affects phenylpropanoid metabolism in Arabidopsis thaliana. New Phytol. 2007;175(3):425-438
    185.Somers D J, Rakow G, Prabhu V K, Friesen K R. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome, 2001, 44: 1077-1082
    186.Song K M, Suzuki J Y, Slocum M K, Williams P H, Osborn T C. A linkage map of Brassica rapa (syn. campestris) based on restriction fragment length polymorphism loci. Theor Appl Genet, 1991, 82: 296~304Song L Q, Fu T D, Tu J X, Ma C Z, Yang G S. Molecular validation of multiple allele inheritance for dominant genic male sterility gene in Brassica napus L. Theor Appl Genet, 2006,113: 55-62
    187.Sorensen A M, Krober S, Unte U S, Huijser P, Dekker K, Saedler H. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor.Plant J., 2003, 33:413-423
    188.Tanhuanpaa P K, Vilkki J P, Vilkki H J. Association of RAPD marker with linolenic acid concentration in the seed oil of rapeseed (Brassica napus L.). Genome, 1995, 38: 414-416Tanksley S D, Bernatzky R, Lapitan N L, Prince J P. Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA, 1988, 85: 6419-6423
    189.Tanksley S D, Ganal M W, Prince J P, de Vicente M C, Bonierbale M W, Broun P, Fulton T M, Giovannoni J J, Grandillo S, Martin G B, Messeguer R, Miller J C,Miller L, Paterson A H, Pineda O, Roder M S, Wing R A, Wu W, Young N D. High density molecular linkage maps of the tomato and potato genomes. Genetics, 1992, 132: 1141-1160.
    190.Thormann C E, Romero J, Mantet J, Osborn T C. Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet, 1996, 93: 282-286
    191.Toroser D, Thormann C E and Osborn T C. RFLP mapping of quantitative trait loci controlling seed aliphatic glucosinolate content in oilseed tape (Brassica napus L.). Theor Appl Genet, 1995, 91: 802-808
    192.Tucker M R, Araujo A C, Paech N A, Hecht V, Schmidt E D, Rossell J B, De Vries S C, Koltunow A M. Sexual and apomictic reproduction in Hieracium subgenus pilosella are closely interrelated developmental pathways. Plant Cell, 2003, 15(7):1524-1537
    193.Tuinstra M R. Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci, 1996, 36: 1337-1344
    194.U N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot, 1935, 7: 389-452.
    195.Udall J A, Quijada P A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. dentification of alleles from unadapted germplasm. Theor Appl Genet, 2006, 113: 597-609
    196.Uzunova M, Ecke W, Weissleder K and Robbelen G.Mapping the genome of rapeseed (Brassica napus L.) I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet, 1995, 90: 194-204
    197.Vizcay-Barrena G, Wilson Z A. Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot, 2006, 57(11):2709-2017
    198.Wang H M. Genetic correlation of the orf224/atp6 gene region with Polima CMS in Brassica somatic hybrids. Plant Mol Biol, 1995,27: 801-807
    199.Wang Y G, Xing Q H, Deng Q Y, Liang F S, Yuan L P, Weng M L, Wang B. Fine mapping of the rice thermo-sensitive genic male-sterile gene tms5.Theor Appl Genet, 2003,107 :917-921
    200.Wen L, Tang HV, Chen W, Chang R, Pring DR, Klein PE, Childs KL, Klein RR Development and mapping of AFLP markers linked to the sorghum fertility restorergene rf4. Theor Appl Genet, 2002, 104:577-585
    201.Wijeratne A J, Zhang W, Sun Y, Liu W, Albert R, Zheng Z, Oppenheimer D G, Zhao D, Ma H. Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks. Plant J, 2007, 52(1): 14-29
    202.Wilson Z A, Morroll S M, Dawson J, Swarup R, Tighe P J. The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J., 2001, 28:27-39
    203.Witt U, Hansen S, Albaum M. Molecular analysis of the CMS-inducing 'Polima' cytoplasm in Brassica napus L. Curr Genet, 1991, 19: 323-327
    204.Wu Y Q, Huang Y, Tauer C G, Porter D R. Genetic diversity of sorghum accessions resistant to greenbugs as assessed with AFLP markers. Genome, 2006, 49(2): 143-149
    205 .Xiao S, Xu J, Li Y, Zhang L, Shi S, Shi S, Wu J, Liu K. Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome, 2007, 50(7):611-618
    206.Xu F S, Wang Y H, Meng J L. Mapping boron efficiency gene(s) in Brassica napus using RFLP and AFLP markers. Plant Breeding, 2001, 120: 319-324
    207.Xu M L, Korban S S. Saturation mapping of the apple scab resistance gene Vf using AFLP markers. Theor Appl Genet, 2000,101:844-851
    208.Yang G S, Duan Z H, Fu T D, Wu C S. A promising alternative way of utilizing pol CMS for hybrid breeding in Brassica napus L. Proc 10th Int Rapeseed Cong (Canberra, Australia), 1999, 73
    209.Yang S L, Xie L F, Mao H Z, Puah C S, Yang W C, Jiang L, Sundaresan V, Ye D. TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther. Plant Cell, 2003,15:2792-2804
    210.Yang W C, Ye D, Xu J, Sundaresan V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev, 1999, 13:2108-2117
    211.Yanofsky M F, Ma H, Bowman J L, Drews G N, Feldmann K A, Meyerowitz E M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 1990, 346:35-39
    212.Yi B,Chen Y,Lei S,Tu J,Fu T.Fine mapping of the recessive genic male-sterile gene(Bnmsl) in Brassica napus L.Theor Appl Genet,2006,113(4):643-650
    213.Yu F,Lydiate D J,Rimmer S R.Identification of two novel genes for blackleg resistance in Brassica napus.Theor Appl Genet,2005,110:969-979
    214.Zhang X Y,Wessler S R.Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea.Proc Natl Acad Sci U S A,2004,101:5589-5594
    215.Zhang Z B,Zhu J,Gao J F,Wang C,Li H,Li H,Zhang H Q,Zhang S,Wang D M,Wang Q X,Huang H,Xia H J,Yang Z N.Transcription factor AtMYB 103 is required for anther development by regulating tapetum development,callose dissolution and exine formation in Arabidopsis.Plant J,2007,52(3):528-538
    216.Zhao D Z,Wang G F,Speal B,Ma H.The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther.Genes Dev.,2002,16:2021-2031
    217.Zhao J,Becker H C,Zhang D,Yang Y,Ecke W.Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield.TheorAppl Genet,2006,113:33-38
    218.Zhao J,Meng J.Detection of loci controlling seed glueosinolate content and their association with Sclerotinia resistance in Brassica napus.Plant Breeding,2003,122:19-23
    219.Zhao J,Meng J.Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed(Brassica napus L.).Theor Appl Genet,2003b,106:759-764.
    220.Zhao J,Udall J A,Quijada P A,Grau C R,Meng J,Osborn T C.Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L.Theor Appl Genet,2006,112:509-516
    221.Zheng Z,Xia Q,Dauk M,Shen W,Selvaraj G,Zou J.Arabidopsis AtGPAT1,a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family,is essential for tapetum differentiation and male fertility.Plant Cell,2003,15:1872-1887

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700