凝血酶适体DNA的动态NMR研究和Diagonal-Free COSY谱的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在溶液中,结合金属离子形成四螺旋体结构的凝血酶适体DNA d(GGTTGGTGTGGTTGG)(TBA)能高亲和性地结合凝血酶从而抑制其活性,是非常有潜力的抗凝抗栓药物分子。本论文利用核磁共振(NMR)技术对凝血酶适体DNA进行了动力学研究,主要包括:一.运用NMR技术测量了凝血酶适体DNA分子中亚氨基质子交换速率,探讨了凝血酶适体DNA四螺旋体结构的解折叠机制;二.首次将凝聚态物理中的Vogel-Fulcher-Tammann(VFT)方程应用于生物分子领域并成功地解释了凝血酶适体DNA的动力学数据。此外,通过应用脉冲梯度场改进了一个脉冲序列,获得了只有交叉峰而没有对角峰的DF-COSY谱(Diagonal-Free COSY)。
     在溶液中,凝血酶适体DNA能结合不同的金属离子形成椅式构象,但其结构不尽相同。利用NMR技术测量了在金属离子K+存在时凝血酶适体DNA四螺旋体结构中8个亚氨基质子的交换速率,这些动力学数据表明,与Sr2+-TBA复合物不同的是,K+-TBA复合物的TGT loop环的稳定性与两个TT loop环的稳定性相近,碱基T4、T13和T9在稳定TBA的四螺旋体结构中起着很大的作用。这些数据进一步支持了凝血酶适体DNA由椅式构象转变为自由单链的解折叠机制。然而,因结构的不同,K+-TBA复合物中四螺旋体结构解折叠的细节有其自身的特点。
     凝聚态物理中的Vogel-Fulcher-Tammann(VFT)方程常常用来分析物质动态参数随温度的变化曲线偏离Arrhenius方程的现象。本研究首次运用VFT方程分析凝血酶适体DNA亚氨基质子的交换速率随温度的变化,这一过程的VFT方程可表示为:k ex= A exp[ ? ( E / R )/(T ? T0)],其中包含了一个温度常数T0。VFT方程能很好地拟合这些氢交换数据,而且VFT方程中的温度常数T0恰好是凝血酶适体DNA的变性温度。定量地讨论了VFT方程与Arrhenius方程的关系,并发现在合适的条件下VFT方程可以转化为Arrhenius方程。在成功分析凝血酶适体DNA氢交换数据的基础上,进一步把VFT方程应用到蛋白质分子中,在综合考虑生物分子氢交换机理后,将VFT方程和Arrhenius方程组合成新的拟合方程:l n ke x = C ? ( EV FT / R )/(T ? T0 ) ? ( Ea / R )/T,并用来拟合蛋白质的氢交换数据,结果表明新的拟合方程可以用来分析DNA、蛋白质等生物分子的氢交换。在某些特殊的条件下,新的拟合方程可以约化为VFT方程。
     常规COSY谱是最有用的、使用也最广泛的2D谱之一,它能够提供有J耦合的核的拓扑结构信息。然而,靠近对角线的交叉峰常常掩埋在交叉峰色散信号的拖尾之中,因此丢失了交叉峰提供的信息。为此,引入脉冲梯度场来改进一个脉冲序列,获得了只有交叉峰而没有对角峰的DF-COSY谱(diagonal-free COSY,DF-COSY),保留了所有的交叉峰信息。DF-COSY谱可适用于生物大分子以及一些生物样品,如尿液、血液等等。
The thrombin binding aptamer d(GGTTGGTGTGGTTGG),with the short name TBA, is a 15-mer DNA, which specifically binds to the thrombin protein and inhibits thrombin-catalyzed fibrin during clot formation. Therefore, TBA could be used as a potential anticoagulant reagent for patients with thrombosis and embolism. TBA can form an intramolecular G-quadruplex in the presence of certain metal ions, with the ion fitted into the space in the quadruplex core. In this dissertation the dynamics of TBA in the presence of K+ have been studied. The exchange rates of the eight imino protons in the G-quadruplex structure are measured and the unfolding mechanism of TBA is discussed. At the same time, the Vogel-Fulcher-Tammann (VFT) equation can better fit the dynamic data of TBA, and this is the first time for VFT equation to be applied in biological kinetics. In addition, the diagonal-free COSY (DF-COSY) pulsed sequence is modified using pulse field gradient. When the DF-COSY pulse sequence was used, COSY-like spectrum without any diagonal peaks can be obtained.
     TBA can form a chair-like conformation in the presence of various metal ions, however, their structures are different. The exchange rates of the eight imino protons of K+-TBA complex have been measured at different temperatures by NMR techniques. These dynamic data showed that the stability of the TGT loop is similar to the two TT loops in the K+-TBA complex, and that the bases T4, T13 and T9 play more important roles in keeping the hydrogen bond stable in the K+-TBA complex than in Sr2+-TBA complex. These data further support the unfolding mechanism of the transition of TBA from the G-quadruplex to random coil. However, the unfolding process of K+-TBA complex has its unique characteristics, because its structure is not exactly the same as others.
     The Vogel-Fulcher-Tammann(VFT),which is widely applied in condensed mater physics for analysis of temperature-dependent dynamical data, is for the first time applied to fit the hydrogen exchange rates of TBA as a function of temperature. The VFT equation for the hydrogen exchange should read k ex= A exp[ ? ( E / R )/(T ? T0)], which contains a constant temperature T0. The VFT equation can better interpret these dynamic data, and the constant temperature T0 of the VFT equation happens to be the melting temperature of TBA. The relationship between the VFT equation and Arrhenius equation has been quantitatively discussed. Under suitable conditions the VFT equation can be reduced to the Arrhenius eqution. After successfully analyzing the data of TBA, the VFT equation was further applied in biological molecules. Considering the mechanism of the hydrogen exchange of the biological molecules, the VFT equation and the Arrhenius equation have combined to form a new equation, which can be written as: ln ke x = C ? ( EV FT / R) /(T ? T0 ) ? ( Ea / R) /T. The new equation can better interpret the data of the hydrogen exchange of the biological molecules, such as protein, DNA, RNA, etc. Under some condition, the Arrhenius term in the new equation could be left out and the new equation could be replaced by the VFT equation.
     The general COSY spectrum is the most useful and widely applied in the studies of molecular structures, because the cross peaks of COSY spectrum can provide with the network information of the spin system which have J-coupling. However, many cross peaks, which are very close to diagonal, often overlap with the diagonal peaks which have dispersive line shape, and the information from cross peaks is lost. In order to avoid this, a pulse sequence was modified using pulse field gradint, and obtained diagonal-free COSY spectrum (DF-COSY), which is just COSY-like spectrum and has no diagonal peaks. Since the information of all cross peaks are retained. DF-COSY spectrum can be used as a quick tool for molecular studies, especially for large molecules and biological samples, such as protein, urea, blood serum, etc.
引文
1. Hvidt A. and Linderstrom-Lang K., Exchange of hydrogen atoms in sulin with deuterium atoms in aqueous solutions. Biochim. Biophys. Acta., 1954. 14: 574-575.
    2. Hvidt A. and Linderstrom-Lang K., Exchange of deuterium and 18O between water and other substances. III. Deuterium exchange of short peptides, Sanger's A-chain and insulin. C.R.Trav. Lab. Carlsberg (Chim) 1955. 29(22-23): 385-402.
    3. Hvidt A. and Linderstrom-Lang K., The pH dependence of the deuterium exchange of insulin. Biochim.Biophys. Acta., 1955. 18: 308-312.
    4. Krause I.M. and Linderstrom-Lang K., Exchange of water and I8O between water and other substances: 2. Alternative methods. C.R.Lab.Carlsberg (Chim)., 1955. 29(22-23): 367-384.
    5. Linderstrom-Lang K., Deuterium exchange between β-lactoglobulin and water. Soc. Biol. Chemists.Souvenir 1955: 191-194.
    6. Berger A. and Linderstrom-Lang K., Deuterium exchange of poly-D,L-alanine in aqueous solution. Arch. Biochem. Biophys., 1957. 69: 106-118.
    7. Benson E.E. and Linderstrom-Lang K., Deuterium exchange between myoglobinand water. Biochim.Biophys.Acta., 1959. 32: 579-581.
    8. Linderstr?m-Lang K.U. and Schellman J.A., Protein structure and enzyme activity in "The Enzymes" ed. Boyer P.D., Lardy H., et al. Vol. 1. New York: Academic Press. 1959.
    9. Englander S.W., Mayne L., et al., Hydrogen exchange: the modern legacy of Linderstrom-Lang. Protein Sci. 1997, 6:1101-1109.
    10. Englander S.W. and Kallenbach N.R., Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q.Rev.Biophys., 1983. 16(4): 521-655.
    11. Kossiakoff A.A., Protein dynamics investigated by the neutron diffraction-hydrogen exchange technique. Nature, 1982. 296(5859): 713-721.
    12. Wlodawer A. and Jsjolin L., Hydrogen exchange in ribonuclease A: neutron diffraction study. Proc. Natl. Acad. Sci. USA, 1982. 79(5): 1418-1422.
    13. Kuwajima K. and Baldwin R.L., Exchange behavior of the H-bonded amide protons in the 3 to 13 helix of ribonuclease S. J.Mol.Biol., 1983. 169(1): 299-323.
    14. Wagner G. and Wuthrich K., Amide proton exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution : studies with two-dimensional nuclear magnetic resonance. J.Mol.Biol., 1982. 160(2): 343-361.
    15. Wemmer D. and Kallenbach N.R., Structure of apamin in solution: a two-dimensional nuclear magnetic resonance study. Biochemistry, 1983. 22(8): 1901-1906.
    16. Berger A., Loewenstein A., et al., Nuclear magnetic resonance study of the protolysis and ionization of N-methylacetamide J. Am. Chem. Soc., 1959. 81(1): 62-67.
    17. Martin R.B. and Hutton W.C., Predominant nitrogen-bound hydrogen exchange via Oxygen-protonated amide J. Am. Chem. Soc., 1973. 95(14): 4752-4754. .
    18. Bai Y., Milne J.S., et al., Protein stability parameters measured by hydrogen exchange. Proteins, 1994. 20(1): 4-14.
    19. Loh S.N., Prehoda K.E., et al., Hydrogen exchange in unligated and ligated staphylococcal nuclease. Biochemistry, 1993. 32(41): 11022-11028.
    20. Perrett S., Clarke J., et al., Relationship between equilibrium amide proton exchange behavior and the folding pathway of barnase. Biochemistry, 1995. 34(29): 9288-9298.
    21. Mayo S.L. and Baldwin R.L., Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A. Science, 1993. 262(5135): 873-876.
    22. Orban J., Alexander P., et al., Hydrogen-deuterium exchange in the free and immunoglobulin G-bound protein G B-domain. Biochemistry, 1994. 33(19): 5702-5710.
    23. Bai Y., Sosnick T.R., et al., Protein folding intermediates: native-state hydrogen exchange. Science, 1995. 269(5221): 192-197.
    24. Englander S.W. and Englander J.J., Structure and energy change in hemoglobin by hydrogen exchange labeling. Methods Enzymol., 1994. 232: 26-42.
    25. Maity H., Lim W.K., et al., Protein hydrogen exchange mechanism: local fluctuations. Protein.Sci., 2003. 12(1): 153-160.
    26. Schmid F.X. and Baldwin R.L., Detection of an early intermediate in the folding of ribonuclease A by protection of amide protons against exchange. J.Mol.Biol., 1979. 135(1): 199-215.
    27. Roder H. and Wuthrich K., Protein folding kinetics by combined use of rapid mixing techniques and NMR observation of individual amide protons. Proteins, 1986. 1(1): 34-42.
    28. Miranker A., Radford S.E., et al., Demonstration by NMR of folding domains in lysozyme. Nature, 1991. 349(6310): 633-636.
    29. Roder H., Elove G.A., et al., Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature, 1988. 335(6192): 700-704.
    30. Udgaonkar J.B. and Baldwin R.L., NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature, 1988. 335(6192): 694-699.
    31. Baldwin R.L., Pulsed H/D-exchange studies of folding intermediates. Curr.Opin Struct.Biol., 1993. 3(1): 84-91.
    32. Udgaonkar J.B. and Baldwin R.L., Early folding intermediate of ribonuclease A. Proc.Natl.Acad.Sci.USA, 1990. 87(21): 8197-8201.
    33. Alexandrescu A.T., Jaravine V.A., et al., NMR hydrogen exchange of the OB-fold protein LysN as a function of denaturant: the most conserved elements of structure are the most stable to unfolding. J.Mol.Biol., 1999. 289(4): 1041-1054.
    34. Llinas M., Gillespie B., et al., The energetics of T4 lysozyme reveal a hierarchy of conformations. Nat. Struct.Biol., 1999. 6(11): 1072-1078.
    35. Chu R., Pei W., et al., Relationship between the native-state hydrogen exchange and folding pathways of a fourhelix bundle protein. Biochemistry, 2002(25). 41: 7998-8003.
    36. Chi Y.H., Kumar T.K., et al., Identification of rare partially unfolded states in equilibrium with the native conformation in an all β-barrel protein. J. Biol. Chem, 2002. 277(38): 34941-34948.
    37. Raschke T.M. and Marqusee S., The kinetic folding intermediate of ribonuclease H resembles the acid molten globule and partially unfolded molecules detected under native conditions. Nat. Struct. Biol., 1997. 4(4): 298-304.
    38. Jennings P.A. and Wright P.E., Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science, 1993. 262(5135): 892-896.
    39. Arai M. and Kuwajima K., Rapid formation of a molten globule intermediate in refolding of α-lactalbumin. Folding Des., 1996. 1(4): 275-287.
    40. Briggs M.S. and Roder H., Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc.Natl.Acad.Sci.USA, 1992. 89(6): 2017-2021.
    41. Matouschek A., Serrano L., et al., The folding of an enzyme V. 1H/2H exchange-nuclear magnetic resonance studies on the folding pathway of barnase:complementarity to and agreement with protein engineering studies. J.Mol.Biol., 1992. 224(3): 837-845.
    42. Takei J., Chu R.A., et al., Absence of stable intermediates on the folding pathway of barnase. Proc.Natl.Acad.Sci.USA, 2000. 97(20): 10796-10801.
    43. Krishna M.M.G., Lin Y., et al., Intimate view of a kinetic protein folding intermediate: residue-resolved structure, interactions, stability, folding and unfolding rates, homogeneity. J.Mol.Biol., 2003. 334(3): 501-513.
    44. Brorsson A.C., Kjellson A., et al., The “Two-State folder” MerP forms partially unfolded structures that show temperature dependent hydrogen exchange. J. Mol. Biol., 2004. 340(2): 333-344.
    45. Brorsson A.C., Lundqvist M., et al., GuHCl and NaCl-dependent hydrogen exchange in MerP reveals a well-defined core with an unusual exchange pattern. J.Mol.Biol., 2006. 357(5): 1634-1646.
    46. Kuwajima K., The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins, 1989. 6(2): 87-103.
    47. Ptitsyn O.B., Pain R.H., et al., Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett., 1990. 262(1): 20-24.
    48. Hughson.F.M., Wright.P.E., et al., Structural characterization of a partly folded apomyoglobin intermediate. Science, 1990. 249(4976): 1544-1548.
    49. Kuroda Y., Endo S., et al., Stability of α-helices in a molten globule state of cytochrome c by hydrogen-deuterium exchange and two-dimensional NMR spectroscopy. J.Mol.Biol., 1995. 247(4): 682-688.
    50. Alexandrescu A.T., Evans P.A., et al., Structure and dynamics of the acid-denatured molten globule state of α-lactalbumin: a two-dimensional NMR study. Biochemistry, 1993. 32(7): 1707-1718.
    51. Tanaka N. and Kunugi S., Effect of pressure on the deuterium exchange reaction of α-lactalbumin and β-lactoglobulin. Int.J.Biol.Macromol., 1996. 18(1-2): 33-39.
    52. Buck M., Radford S.E., et al., A partially folded state of hen egg white lysozyme in trifluoroethanol: structural characterization and implications for protein folding. Biochemistry, 1993. 32(2): 669-678.
    53. Fan P., Bracken C., et al., Structural characterization of monellin in the alcohol-denatured state by NMR: evidence for β-sheet to α-helix conversion. Biochemistry, 1993. 32(6): 1573-1582.
    54. Nash.D., Lee.Bao-Shiang., et al., Hydrogen-exchange kinetics in the cold denatured state of ribonuclease A. Biochim. Biophys. Acta. 1996. 1297(1): 40-48.
    55. Dabora J.M., Pelton J.G., et al., Structure of the acid state of Escherichia coli ribonuclease HI. Biochemistry, 1996. 35(37): 11951-11958.
    56. Pan Y. and Briggs M.S., Hydrogen exchange in native and alcohol forms of ubiquitin. Biochemistry, 1992. 31(46): 11405-11412.
    57. Schulman B.A., Redfield C., et al., Different subdomains are most protected from hydrogen exchange in the molten globule and native states of human α-lactalbumin. J.Mol.Biol., 1995. 253(5): 651-657.
    58. Nieba-Axmann S.E., Ottiger M., et al., Multiple cycles of global unfolding of GroEL-bound cyclophilin A evidenced by NMR. J.Mol.Biol., 1997. 271(5): 803-818.
    59. Gross M., Robinson C.V., et al., Significant hydrogen exchange protection inGroEL-bound DHFR is maintained during iterative rounds of substrate cycling. Protein Sci., 1996. 5(12): 2506-2513.
    60. Goldberg M.S., Zhang J., et al., Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL. Proc.Natl.Acad.Sci.USA, 1997. 94(4): 1080-1085.
    61. Paterson Y., Englander S.W., et al., An antibody binding site on cytochrome c defined by hydrogen exchange and two-dimensional NMR. Science, 1990. 249(4970): 755-759.
    62. Mayne L., Paterson Y., et al., Effect of antibody binding on protein motions studied by hydrogen-exchange labeling and two-dimensional NMR. Biochemistry, 1992. 31(44): 10678-10685.
    63. Benjamin D.C., Williams D.C.Jr., et al., Long-range changes in a protein antigen due to antigen-antibody interaction. Biochemistry, 1992. 31(40): 9539-9545.
    64. Jones D.N.M., Bycroft M., et al., Identification of the barstar binding site of barnase by NMR spectroscopy and hydrogen-deuterium exchange. FEBS Lett., 1993. 331(1-2): 165-172.
    65. Gueron M. and Leroy J.L., Studies of base pair kinetics by NMR measurement of proton exchange. Methods Enzymol., 1995. 261: 383-413.
    66. Leroy J.L., Gehring K., et al., Acid multimers of oligodeoxycytidine strands: stoichiometry, base-pair characterization, and proton exchange properties. Biochemistry, 1993. 32(23): 6019-6031.
    67. Nakahara M., W.C., Inertial and attractive potential effects on rotation of solitary water molecules in apolar and polar solvents. J. Chem. Phys., 1992. 97(6): 4413-4420
    68. Varnai P., Canalia.M., et al., Opening mechanism of GaT/U pairs in DNA and RNA duplexes: a combined study of imino proton exchange and molecular dynamics simulation. J. Am. Chem. Soc., 2004. 126(44): 14659-14667.
    69. Kochoyan M., Leroy J.L., et al., Proton exchange and base-pair lifetimes in a deoxy-duplex containing a purine-pyrimidine step and in the duplex of inverse sequence. J.Mol.Biol., 1987. 196(3): 599-609.
    70. Leroy J.L., Kochoyan M., et al., Characterization of base-pair opening in deoxynucleotide duplexes using catalyzed exchange of the imino proton. J.Mol.Biol., 1988. 200(2): 223-238.
    71. Leroy J.L., Charretier E., et al., Evidence from base-pair kinetics for two types of adenine tract structures in solution: their relation to DNA curvature. Biochemistry, 1988. 27(25): 8894-8898.
    72. Moe J.G. and Russu I.M., Proton exchange and base-pair opening kinetics in 5'-d(CGCGAATTCGCG)-3' and related dodecamers. Nucleic.Acids.Res., 1990. 18(4): 821-827.
    73. Kochoyan M., Leroy J.L., et al., Processes of base-pair opening and proton exchange in Z-DNA. Biochemistry, 1990. 29(20): 4799-4805.
    74. Leroy J.L., Bolo N., et al., Internal motions of transfer RNA: a study of exchanging protons by magnetic resonance. J. Biomol. Struct. Dyn., 1985. 2(5): 915-939.
    75. Snoussi K. and Leroy J.L., Imino proton exchange and base-pair kinetics in RNA duplexes. Biochemistry, 2001. 40(30): 8898-8904.
    76. Leroy J.L., Gao X.L., et al., Proton exchange and internal motions in two chromomycin dimer-DNA oligomer complexes. Biochemistry, 1991. 30(23): 5653-5661.
    77. Leroy J.L., Gao X.L., et al., Proton exchange in DNA-luzopeptin and DNA-echinomycin bisintercalation complexes: rates and processes of base-pair opening. Biochemistry, 1992. 31(5): 1407-1415.
    78. Liu W., Vu H.M., et al., 1H NMR studies of a 17-mer DNA duplex. Biochim. Biophys. Acta., 2002. 1574: 93-99.
    79. Nonin S., Leroy J.L., et al., Terminal base pairs of oligodeoxynucleotides: imino proton exchange and fraying. Biochemistry, 1995. 34(33): 10652-10659.
    80. Powell S.W., Jiang L., et al., Proton exchange and base pair opening in a DNA triple helix. Biochemistry, 2001. 40(37): 11065-11072.
    81. Dhavan G.M., Lapham J., et al., Decreased imino proton exchange and base-pair opening in the IHF-DNA complex measured by NMR. J.Mol.Biol., 1999. 288(4): 659-671.
    82. Abragam A., The Principle of Nuclear Magnetism. Clarendom: Oxford. 1961.
    83. Slichter S.P., Principle of Magnetic Resonance. 3rd ed. Springer: Berlin. 1990.
    84. Bloch F., Hansen W., et al., Nuclear induction. Phys. Rev., 1946. 69: 127.
    85. Purcell E, Torrey H., et al., Resonance absorption by nuclear magnetic moments insolid. Phys. Rev., 1946. 69: 37.
    86. Ernst R. R., Bodenhausen G., et al., Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Oxford. 1987.
    87. 裘祖文, 裴奉奎, 《核磁共振波谱》. 北京: 科学出版社. 1989.
    88. Chakeres D.W and Schmalbrock P., Fundamentals of Magnetic Resonance Imiging. Baltimore: Williams & Wilkins. 1992.
    89. Roberts G. C. K., NMR of Macromolecules -A Practical Approach (Second Edition). Oxford: Oxford University Press. 1995.
    90. Otting G., Experimental NMR technique for studies of protein-ligand interaction. Curr.Opin.Struct.Biol., 1993. 3(5): 760-766.
    91. Palmer A.G., 3rd. NMR probes of molecular dynamics: overview and comparison with other techniques. Annu. Rev. Biophys.Biomol.Struct., 2001. 30: 129-155.
    92. Jackman L.M. and Cotton F.A., Dynamic NMR Spectroscopy. New York: Academic. 1975.
    93. Sandstr?m J., Dynamic NMR Spectroscopy. London: Academic. 1982.
    94. Orrell K.G. and Sik V., Dynamic NMR spectroscopy in inorganic and organometallic chemistry. Ann. Rep. NMR Spectrosc, 1993. 27: 103.
    95. Forsén S. and Hoffman R.S., Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J. Chem. Phys., 1963. 39(11): 2892-2901.
    96. Led J.J. and Gesmar H. The applicability of the magnetization-transfer NMR technique to determine chemical exchange rates in extreme cases. The importance of complementary experiments. J.Magn.Reson., 1982. 49(3): 444-463.
    97. Vold R.L., Waugh J.S., et al., Measurement of spin relaxation in complex systems. J. Chem. Phys., 1968. 48(8): 3831-3832.
    98. Jeener J., Meier B.H., et al., Investigation of exchange processes by two-dimensional NMR spectroscopy. J.Chem.Phys., 1979. 71(11): 4546-4553.
    99. Macura S. and Ernst R.R., Elucidation of cross relaxation in liquids by two-dimensional NMR spectroscopy. Mol. Phys, 1980. 41(1): 95-117.
    100. Krishnan V.V. and Cosman M., Novel relaxation compensated method to measure proton exchange rates in biomolecules based on decorrelation of heteronucleartwo-spin order. Magn.Reson.Chem., 2000. 38(9): 789-794.
    101. Kay L.E., Keifer P., et al., Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity J. Am. Chem. Soc., 1992. 114(26): 10663-10665.
    102. Andrec M., Hill R.B., et al., Amide exchange rates in escherichia coli acyl carrier protein: correlation with protein structure and dynamics. Protein Sci., 1995. 4(5): 983-993.
    103. Andrec M. and Prestegard J.H., Quantitation of chemical exchange rates using pulsed-field-gradient diffusion measurements. J.Biomol.NMR., 1997. 9(2): 136-150.
    104. Bockmann A. and Guittet E., Determination of fast proton exchange rates of biomolecules by NMR using water selective diffusion experiments. FEBS Lett., 1997. 418(1-2): 127-130.
    105. Liu M.L., Toms H.C., et al., Determination of the relative NH proton lifetimes of the peptide analogue viomycin in aqueoussolution by NMR-based diffusion measurement. J.Biomol.NMR., 1999. 13(1): 25-30.
    106. Gutowsky H.S. and Holm C.H., Rate processes and nuclear magnetic resonance spectra II: hindered internal rotation of amides. J. Chem. Phys., 1956. 25(6): 1228-1234.
    107. Spera S., Ikura M., et al., Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment. J.Biomol.NMR., 1991. 1(2): 155-165.
    108. McConnell H.M., Reaction rates by nuclear magnetic resonance. J. Chem. Phys., 1958. 28(3): 430-431.
    109. Dempsey C.E., Hydrogen exchange in peptides and proteins using NMR spectroscopy. Prog.NMR.Spectrosc., 2001. 39(2): 135-170.
    110. Dempsey C.E., pH dependence of hydrogen exchange from backbone peptide amides in apamin. Biochemistry, 1986. 25(13): 3904-3911.
    111. Henry G.D. and Sykes B.D., Saturation transfer of exchangeable protons in 1H-decoupled 15N INEPT spectra in water: application to the measurement of hydrogen exchange rates in amides and proteins. J.Magn.Reson., series B 1993. 102(2): 193-200.
    112. Henry G.D. and Sykes B.D., Hydrogen exchange kinetics in a membrane proteindetermined by nitrogen-15 NMR spectroscopy: use of the INEPT experiment to follow individual amides in detergent-solubilized M13 coat protein. Biochemistry, 1990. 29(26): 6303-6313.
    113. Gemmecker G., Jahnke W., et al., Measurement of fast proton exchange rates in isotopically labeled compounds. J. Am. Chem. Soc., 1993. 115(24): 11620-11621.
    114. Mori S., Abeygunawardana C., et al., NMR study of rapidly exchange backbone amide protons in staphylococcal nuclease and the correlation with structural and dynamics properties. J. Am. Chem. Soc., 1997. 119(29): 6844-6852.
    115. Mori S., Johnson M., et al., Water exchange filter (WEX Filter) for nuclear magnetic resonance studies of macromolecules J. Am. Chem. Soc., 1994. 116(26): 11982-11984.
    116. Mori S., Abeygunawardana C., et al., Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J.Magn.Reson., series B 1995. 108(1): 94-98.
    117. Mori S., Berg J.M., et al., Separation of intramolecular NOE and exchange peaks in water exchange spectroscopy using spin-echo filters. J.Mol.Biol., 1996. 7(1): 77-82.
    118. Hwang T.L., Mori S., et al., Application of phase-modulated CLEAN chemical exchange spectroscopy (CLEANEX-PM) to detect water-protein proton exchange and intermolecular NOEs. J. Am. Chem. Soc., 1997. 119(26): 6203-6204.
    119. Hwang T.L., van Zijl P.C., et al., Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN chemical exchange (CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme. J.Biomol.NMR., 1998. 11(2): 221-226.
    120. Zangger K. and Armitage Ian.M., Sensitivity-enhanced detection of fast exchanging protons by an exchange-Edited gradient HEHAHA-HSQC experiment. J.Magn.Reson., 1998. 135(1): 70-75.
    121. Bockmann A., Penin F., et al., Rapid estimation of relative amide proton exchange rates of 15N-labelled proteins by a straightforward water selective NOESY-HSQC experiment. FEBS Letters, 1996. 383(3): 191-195.
    122. Chen J.H. and Mao X.A., Measurement of chemical exchange rate constants with solvent protons using radiation damping. J.Magn.Reson., 1998. 131(2): 358-361.
    123. Kriwacki R.W., Hill R.B., et al., New NMR methods for the characterization ofbound waters in macromolecules. J. Am. Chem. Soc., 1993. 115(20): 8907-8911.
    124. Grzesiek S. and Bax A., Measurement of amide proton exchange rates and NOEs with water in 13C/15N-enriched calcineurin B. J.Biomol.NMR., 1993. 3(6): 627-638.
    125. Stonehouse J., Shaw G.L., et al., Minimizing sensitivity losses in gradient-selected
    15N-1H HSQC spectra of proteins. J.Magn.Reson., Series A, 1994. 107(2): 178-184.
    126. Jahnke W. and Kessler H., Enhanced sensitivity of rapidly exchanging amide protons by improved phase cycling and the constructive use of radiation damping. J.Biomol.NMR., 1994. 4(5): 735-740.
    1. Gellert M., Lipsett M.N., et al., Helix formation by guanylic acid. Proc.Natl. Acad.Sci. USA., 1962. 48(12): 2013-2018.
    2. Henderson E., Hardin C.C., et al., Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell, 1987. 51(6): 899-908.
    3. Williamson J.R., Raghuraman M.K., et al., Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell, 1989. 59(5): 871-880.
    4. Shafer R.H. and Smirnov I., Biological aspects of DNA/RNA quadruplexes. Biopolymers, 2000. 56(3): 209-227.
    5. Simonsson T., G-quadruplex DNA structures--variations on a theme. Biol.Chem., 2001. 382(4): 621-628.
    6. Arthanari H. and Bolton P.H., Functional and dysfunctional roles of quadruplex DNA in cells. Chem.Biol., 2001. 8(3): 221-230.
    7. Siddiqui-Jain A., Grand C.L., et al., Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA, 2002. 99(18): 11593-11598.
    8. Riou J.F., Guittat L., et al., Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc. Natl. Acad. Sci. USA, 2002. 99(5): 2672-2677.
    9. Davis J.T., G-quartets 40 years later: from 5'-GMP to molecular biology and supramolecular chemistry. Angewandte Chemie (International Ed. In English), 2004. 43(6): 668-698.
    10. Keniry M.A., Quadruplex structures in nucleic acids. Biopolymers, 2000. 56(3): 123-146.
    11. Henderson E., Hardin C.C., et al., Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine·guanine base pairs. Cell, 1987. 51(6): 899-908.
    12. Macaya R.F., Schultze P., et al., Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc.Natl.Acad.Sci.USA, 1993. 90(8): 3745-3749.
    13. Wang Y. and Patel D.J., Solution structure of the oxytricha telomeric repeat d[G4(T4G4)3] G-tetraplex. J.Mol.Biol., 1995. 251(1): 76-94.
    14. Sundquist W.I. and Klug A., Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature, 1989. 342(6251): 825-829.
    15. Keniry M.A., Strahan G.D., et al., Solution structure of the Na+ form of the dimeric guanine quadruplex [d(G3T4G3)]2. Eur. J. Biochem, 1995. 233(2): 631 - 643.
    16. Sen D. and Gilbert W., Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature, 1988. 334(6180): 364 - 366.
    17. Laughlan G., Murchie A.I., et al., The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science, 1994. 265(5171): 520 - 524.
    18. Hardin C.C., Henderson E., et al., Monovalent cation induced structural transitions in telomeric DNAs: G-DNA folding intermediates. Biochemistry, 1991. 30(18): 4460- 4472.
    19. Balagurumoorthy P., Brahmachari S.K., et al., Hairpin and parallel quartet structures for telomeric sequences. Nucleic. Acids. Res., 1992. 20(15): 4061 - 4067
    20. Jin R., Gaffney B.L., et al., Thermodynamics and structure of a DNA tetraplex: a spectroscopic and calorimetric study of the tetramolecular complexes of d(TG3T) and d(TG3T2G3T). Proc. Natl. Acad. Sci., 1992. 89(18): 8832 - 8836.
    21. Shiber M.C., Braswell E.H., et al., Duplex-tetraplex equilibrium between a hairpin and two interacting hairpins of d(A-G)10 at neutral pH. Nucleic. Acids. Res., 1996. 24(24): 5004 - 5012.
    22. Wang Y. and Patel D.J., Guanine residues in d(T2AG3) and d(T2G4) form parallel-stranded potassium cation stabilized G-quadruplexes with anti glycosidic torsion angles in solution. Biochemistry, 1992. 31(35): 8112 - 8119.
    23. Smith F.W. and Feigon J., Quadruplex structure of oxytricha telomeric DNA oligonucleotides. Nature, 1992. 356(6365): 164 - 168.
    24. Gu J., Leszczynski J., et al., A new insight into the structure and stability of hoogsteen hydrogen-bonded G-tetrad: an ab initio SCF study. Chem. Phys. Lett. , 1999. 311(3-4): 209-214.
    25. Guschlbauer W., Chantot J.F., et al., Fourstranded nucleic acid structures 25 years later: from guanosine gels to telomere DNA. J. Biomol. Struct. Dyn., 1990. 8(3): 491 - 511.
    26. Hardin C.C., Perry A.G., et al., Thermodynamic and kinetic characterization of the dissociation and assembly of quadruplex nucleic acids. Biopolymers, 2000. 56(3): 147-194.
    27. Smirnov I. and Shafer R.H., Lead is unusually effective in sequence-specific folding of DNA. J.Mol.Biol., 2000. 296(1): 1-5.
    28. Nagesh N., Bhargava P., et al., Terbium(III)-induced fluorescence of four-stranded G4-DNA. . Biopolymers, 1992. 32(10): 1421 - 1424.
    29. Hud N.V., Smith F.W., et al., The selectivity for K+ versus Na+ in DNA quadruplexesIs dominated by relative free energies of hydration: A hermodynamic analysis by 1H NMR. Biochemistry, 1996. 35(48): 15383-15390.
    30. Gu J. and Leszczynski J., Origin of Na+/K+ selectivity of the guanine tetraplexes in water: the theoretical rationale J. Phys. Chem. A, 2002. 106(3): 529-532.
    31. Mergny J.L., Phan A.T., et al., Following G-quartet formation by UV-spectroscopy. FEBS Lett., 1998. 435(1): 74-78.
    32. Miura T., Thomas G.J., et al., Structure and dynamics of interstrand guanine association in quadruplex telomeric DNA. Biochemistry, 1995. 34(29): 9645-9654.
    33. Wyatt J.R., Davis P.W., et al., Kinetics of G-quartet-mediated tetramer formation. Biochemistry, 1996. 35(24)): 8002-8008.
    34. Kan Zhong-Yuan., Yao Yuan., et al., Molecular crowding induces telomere G-quadruplex formation under salt-deficient conditions and enhances its competition with duplex formation. Angewandte Chemie (International Ed. In English), 2006. 45(10): 1629-1632.
    35. Kypr J., Chladkova J., et al., Aqueous trifluoroethanol solutions simulate the environment of DNA in the crystalline state. Nucleic. Acids. Res., 1999. 27(17): 3466-3473.
    36. Fang G. and Cech T.R., The β subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell, 1993. 74(5): 875-885.
    37. Giraldo R., Suzuki M., et al., Promotion of parallel DNA quadruplexes by a yeast telomere binding protein: a circular dichroism study. Proc. Natl. Acad. Sci. USA., 1994. 91(16): 7658-7662.
    38. Paeschke K., Simonsson T., et al., Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nature Struct. Mol. Biol., 2005. 12(10): 847-854.
    39. Haider S., Parkinson G.N., et al., Crystal structure of the potassium form of an Oxytricha nova G-quadruplex. J.Mol.Biol., 2002. 320(2): 189-200.
    40. Horvath M.P. and Schultz S.C., DNA G-quartets in a 1.86 A resolution structure of an Oxytricha nova telomeric protein-DNA complex. J.Mol.Biol., 2001. 310(2): 367-377.
    41. Phillips K., Dauter Z., et al., The crystal structure of a parallel-stranded guanine tetraplex at 0.95A resolution. J.Mol.Biol., 1997. 273(1): 171-182.
    42. Sun D., Thompson B., et al., Inhibition of human telomerase by a G2quadruplex2interactive compound. J.Med. Chem., 1997. 40(14): 2113-2116.
    43. Han H., Hurley L.H., et al., A DNA polymerase stop assay for G-quadruplex-interactive compounds. Nucleic Acids Res., 1999. 27(2): 537-542.
    44. Sun H., Bennett R.J., et al., The saccharomyces cerevisiae sgs1 helicase efficiently unwinds G-G paired DNAs. Nucleic Acids Res., 1999. 27(9): 1978-1984.
    45. Wheelhouse R.T., Sun D., et al., Cationic porphyrins as telomerase inhibitors: the interaction of tetra-(N-methyl-4-pyridyl)porphine with quadruplex DNA. J. Am. Chem. Soc, 1998. 120(13): 3261-3262.
    46. Fedoroff O.Y., Salazar M., et al., NMR-based model of a telomerase-inhibiting compound bound to G-quadruplex DNA. Biochemistry, 1998. 37(36): 12367-12374.
    47. Shin-ya K., Wierzba K., et al., Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J. Am. Chem. Soc., 2001. 123(6): 1262-1263.
    48. Kim M.Y., Vankayalapati H., et al., Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular g-quadruplex. J. Am. Chem. Soc., 2002. 124(10): 2098-2099.
    49. Jing N., Rando R.F., et al., Ion selective folding of loop domains in a potent anti-HIV oligonucleotide. Biochemistry, 1997. 36(41): 12498-12505.
    50. Mazumder A., Neamati N., et al., Inhibition of the human immunodeficiency virus type 1 integrase by guanosine quartet structures. Biochemistry, 1996. 35(43): 13762-13771.
    51. Lin Y., Padmapriya A., et al., Peptide conjugation to an in vitro-selected DNA ligand improves enzyme inhibition. Proc.Natl.Acad.Sci.USA, 1995. 92(24): 11044-11048.
    52. Lin Y. and Jayasena S.D., Inhibition of multiple thermostable DNA polymerases by a heterodimeric aptamer. J.Mol.Biol., 1997. 271(1): 100-111.
    53. Wen J.D., Gray C.W., et al., SELEX selection of high-affinity oligonucleotides for bacteriophage Ff gene 5 protein. Biochemistry, 2001. 40(31): 9300-9310.
    54. Andreola M.L., Pileur F., et al., DNA aptamers selected against the HIV-1 rNase H display in vitro antiviral activity. Biochemistry, 2001. 40(34): 10087-10094.
    1. Mann K.G., Jenny R.J., et al., Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Annu. Rev. Biochem., 1988. 57: 915-956.
    2. Kane W.H. and Davie E.W., Blood coagulation factors V and VIII: structural and functional similarities and their relationship to hemorrhagic and thrombotic disorders. Blood, 1988. 71(3): 539-555.
    3. Gailani D., Broze G.J., et al., Factor XI activation in a revised model of blood coagulation. Science, 1991. 253(5022): 909-912.
    4. Bock L.C., Griffin L.C., et al., Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 1992. 355(6360): 564-566.
    5. Paborsky L.R., McCurdy S.N., et al., The single-stranded DNA aptamer-binding site of human thrombin. J. Biol. Chem., 1993. 268(28): 20808-20811.
    6. Wu Q., Tsiang M., et al., Localization of the single-stranded DNA binding site in the thrombin anion-binding exosite. J. Biol. Chem., 1992. 267(34): 24408-24412.
    7. Griffin L.C., Tidmarsh G.F., et al., In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood, 1993. 81(12): 3271-3276.
    8. Li W.X., Kaplan A.V., et al., A novel nucleotide-based thrombin inhibitor inhibits clot-bound thrombin and reduces arterial platelet thrombus formation. Blood, 1994. 83(3): 677-682.
    9. DeAndaA Jr., Coutre S.E., et al., Pilot study of the efficacy of a thrombin inhibitor for use during cardiopulmonary bypass. Ann.Thoral.Surg., 1994. 58(2): 344-350.
    10. Neidle S. and Read M.A., G-quadruplexes as therapeutic targets. Biopolymers, 2000. 56(3): 195-208.
    11. Raffler N.A., Schneider-Mergener J., et al., A novel class of small functional peptides that bind and inhibit human α-thrombin isolated by mRNA display. Chem.Biol., 2003. 10(1): 69-79.
    12. Wang K.Y., McCurdy S., et al., A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. Biochemistry, 1993. 32(8): 1899-1904.
    13. Macaya R.F., Schultze P., et al., Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc.Natl.Acad.Sci.USA, 1993. 90(8): 3745-3749.
    14. Schultze P., Macaya R.F., et al., Three-dimensional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). J.Mol.Biol., 1994. 235(5): 1532-1547.
    15. Marathias V.M. and Bolton P.H., Structures of the potassium-saturated, 2:1, and intermediate, 1:1, forms of a quadruplex DNA. Nucleic. Acids. Res., 2000. 28(9):1969-1977.
    16. Padmanabhan K., Padmanabhan K.P., et al., The structure of α-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J. Biol. Chem., 1993. 268(24): 17651-17654.
    17. Marathias V.M. and Bolton P.H., Determinants of DNA quadruplex structural type: sequence and potassium binding. Biochemistry, 1999. 38(14): 4355-4364.
    18. Mao X., Marky L.A., et al., NMR structure of the thrombin-binding DNA aptamer stabilized by Sr2+. J. Biomol. Struct. Dyn., 2004. 22(1): 25-33.
    19. Kelly J.A., Feigon J., et al., Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(GGTTGGTGTGGTTGG). J.Mol.Biol., 1996. 256(3): 417-422.
    20. Hoang-Anh H. and Leclerc M., Optical sensors based on hybrid aptamer/conjugated polymer complexes. J. Am. Chem. Soc., 2004. 126(5): 1384-1387.
    21. Baldrich E., Restrepo A., et al., Aptasensor development: elucidation of critical parameters for optimal aptamer performance. Anal.Chem., 2004. 76(23): 7053-7063.
    22. Baldrich E. and O'Sullivan C.K., Ability of thrombin to act as molecular chaperone, inducing formation of quadruplex structure of thrombin-binding aptamer. Anal.Biochem., 2005. 341(1): 194-197.
    23. Radi A-E., Acero S., et al., Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J. Am. Chem. Soc., 2006. 128(1): 117-124.
    24. Padmanabhan K. and Tulinsky A., An ambiguous structure of a DNA 15-mer thrombin complex. Acta. Crystallogr., 1996. 52(Part 2): 272-282.
    25. Kankia B.I. and Marky L.A., Folding of the thrombin aptamer into a G-quadruplex with Sr(2+): stability, heat, and hydration. J. Am. Chem. Soc., 2001. 123(44): 10799-10804.
    26. Smirnov I. and Shafer R.H., Lead is unusually effective in sequence-specific folding of DNA. J.Mol.Biol., 2000. 296(1): 1-5.
    27. Smirnov I.V., Kotch F.W., et al., Pb EXAFS studies on DNA quadruplexes: identification of metal ion binding site. Biochemistry, 2002. 41(40): 12133-12139.
    28. Marathias V.M., Wang K.Y., et al., Determination of the number and location of the manganese binding sites of DNA quadruplexes in solution by EPR and NMR in the presence and absence of thrombin. J.Mol.Biol., 1996. 260(3): 378-394.
    29. Smirnov I. and Shafer R.H., Effect of loop sequence and size on DNA aptamer stability. Biochemistry, 2000. 39(6): 1462-1468.
    30. Nagatoishi S., Tanaka Y., et al., Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions. Biochem. Biophys. Res. Commun., 2007. 352(3): 812-817.
    31. Kumar N. and Maiti S., Quadruplex to Watson-Crick duplex transition of the thrombin binding aptamer: a fluorescence resonance energy transfer study. Biochem. Biophys. Res. Commun. , 2004. 319(3): 759-767.
    32. Mao X. and Gmeiner W.H., NMR study of the folding-unfolding mechanism for the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). Biophys. Chem., 2005. 113(2): 155-160.
    33. Liu M.L., Mao X.A., et al., Improved WATERGATE pulse sequences for solvent NMR resonance suppression. J. Magn. Reson., series A, 1998. 132: 125-129.
    34. Gueron M. and Leroy J.L., Studies of base pair kinetics by NMR measurement of proton exchange. Methods Enzymol., 1995. 261: 383-413.
    35. McConnell H.M., Reaction rates by nuclear magnetic resonance. J. Chem. Phys., 1958. 28(3): 430-431.
    36. Englander S.W. and Kallenbach N.R., Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q.Rev.Biophys., 1983. 16(4): 521-655.
    37. Hilton B.D. and Woodward C.K., On the mechanism of isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biochemistry, 1979. 18(26): 5834-5841.
    38. Wuethrich K. and Wagner G., Nuclear magnetic resonance of labile protons in the basic pancreatic trypsin inhibitor. J.Mol.Biol., 1979. 130(1): 1-18.
    39. Richarz R., Sehr P., et al., Kinetics of the exchange of individual amide protons in the basic pancreatic trypsin inhibitor. J. Mol. Biol., 1979. 130(1): 19-22.
    40. Woodward C.K. and Hilton B.D., Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biophys. J., 1980. 32: 561-572.
    41. Wedin R.E., Delepierre M., et al., Mechanisms of hydrogen exchange in proteins from nuclear magnetic resonance studies of individual tryptophan indole NH hydrogens in lysozyme. Biochemistry, 1982. 21(5): 1098-1103.
    1. Englander S.W. and Kallenbach N.R., Hydrogen exchange and structural dynamics of proteins ann nucleic acids. Q.Rev.Biophys., 1983. 16(4): 521-655.
    2. Woodward C.K. and Hilton B.D., Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biophys. J., 1980. 32: 561-572.
    3. Wuethrich K. and Wagner G., Nuclear magnetic resonance of labile protons in the basic pancreatic trypsin inhibitor. J. Mol. Biol., 1979. 130(1): 1-18.
    4. Richarz R., Sehr P., et al., Kinetics of the exchange of individual amide protons inthe basic pancreatic trypsin inhibitor. J. Mol. Biol., 1979. 130(1): 19-22.
    5. Wedin R.E., Delepierre M., et al., Mechanisms of hydrogen exchange in proteins from nuclear magnetic resonance studies of individual tryptophan indole NH hydrogens in lysozyme. Biochemistry, 1982. 21(5): 1098-1103.
    6. Nakanishi M., Tsuboi M., et al., Fluctuation of the lysozyme structure. II. Effects of temperature and binding of inhibitors. J. Mol. Biol., 1973. 75(4): 673-682.
    7. Kim K-S. and Woodward C. Protein internal flexibility and global stability: effect of urea on hydrogen exchange rates of bovine pancreatic trypsin inhibitor. Biochemistry, 1993. 32(37): 9609-9613.
    8. Mao X. and Gmeiner W.H., NMR study of the folding-unfolding mechanism for the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). Biophys.Chem., 2005. 113(2): 155-160.
    9. Liu H.L., Jiang B., et al., 凝血酶适体 DNA 四螺旋体构象去折叠机制的 NMR 研究. 波谱学杂志 Chinese J. Magn. Res., 2006. 23(2): 161-168.
    10. Vogel H., Das Temperatur-abhaensigkeitsgesetz der Viskositaet von Fluessigkeiten. Phys. Z., 1921. 22: 645-646.
    11. Fulcher G.S., Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc., 1925. 8: 339-355.
    12. Tammann G. and Hesse G., Die Abhaensigkeit der Viskositaet von der Temperatur by unterkuehlten Fluessigkeiten. Z. Anorg. Allg. Chem., 1926. 156: 245-257.
    13. Garcia-Coln L.S., del Castillo L.F., et al., Theoretical basis for the Vodle-Fulcher-Tammann equation. Phys. Rev. B, 1989. 40(10): 7040-7044.
    14. Johari G.P., Configuational and vibrational entropies and molecular relaxation in supercooled water. J. Chem. Phys., 2000. 112(24): 10957-10965.
    15. Majumdar S.N., Das D., et al., Landau-like theory of glassy dynamics. Phys.Rev. E, Statistical, Nonlinear, and Soft Matter Physics, 2004. 70(6, Part 1): 060501-060501.
    16. Vila J., Gines P., et al., Temperature dependence of the electrical conductivity in EMIM-based ionic liquids: Evidence of Vogel-Tamman-Fulcher behavior. Fluid Phase Equilib., 2006. 242(2): 141-146.
    17. Kobayashi H., Takahashi H., et al., Temperature dependence of the viscosity through the glass transition in metaphosphate glasses and polystyrene. Mater.Sci. Eng., A,2006. 442(1-2): 263-267.
    18. Rault J., Origin of the Vogel-Fulcher-Tammann law in glass-forming materials: the α-β bifurcation. J.Non-Cryst.Solids, 2000. 271(3): 177-217.
    19. Chintapalli S. and Frech R., Effect of plasticizers on high molecular weight PEO-LiCF3SO3 complexes. Solid State Ionics, 1996. 86-88(Part 1): 341-346.
    20. Albinsson I., Mellander B. E., et al., Ionic conductivity in poly(propylene glycol) complexed with lithium and sodium triflate. J.Chem.Phys., 1992. 96(1): 681-690.
    21. Adam G. and Gibbs J.H., On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J.Chem.Phys., 1965. 43(1): 139-146.
    22. Garcia-Coln L.S., del Castillo L.F., et al., Theoretical basis for the Vogel-Fulcher-Tammann equation. Phys. Rev. B, 1989. 40(10): 7040-7044.
    23. Kankia B.I. and Marky L.A., Folding of the thrombin aptamer into a G-quadruplex with Sr(2+): stability, heat, and hydration. J.Am.Chem.Soc., 2001. 123(44): 10799-10804.
    24. Wang K.Y., McCurdy S., et al., A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. Biochemistry, 1993. 32(8): 1899-1904.
    25. Macaya R.F., Schultze P., et al., Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc.Natl.Acad.Sci.USA, 1993. 90(8): 3745-3749.
    26. Mao X.A., Marky L.A., et al., NMR structure of the thrombin-binding DNA aptamer stabilized by Sr2+. J.Biomol.Struct.Dyn., 2004. 22(1): 25-33.
    27. Stickel F., Fischer E.W., et al., Dynamics of glass-forming liquids. I. Temperature-derivative analysis of dielectric relaxation data. J.Chem.Phys., 1995. 102(15): 6251-6257
    28. Hilton B.D. and Woodward C.K., Nuclear magnetic resonance measurements of hydrogen exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biochemistry, 1978. 17(16): 3325-3332.
    29. Hilton B.D. and Woodward C.K., On the mechanism of isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biochemistry, 1979. 18(26): 5834-5841.
    30. Richarz R., Sehr P., et al., Kinetics of the exchange of individual amide protons in the bovine pancreatic trypsin inhibitor. J.Mol.Biol., 1979. 130(1): 19-30.
    31. Woodward C.K. and Hilton B.D., Hydrogen isotope exchange kinetics of singel protons in bovine pancreatic trypsin inhibitor. Biophys.J, 1980. 32: 561-572.
    32. Kassell B., Bovine trypsin-kallikrein inhibitor (kunits inhibitor, basic pancreatic trypsin inhibitor, polyvalent inhibitor from bovine organs), in Meth.Enzymol. Academic Press. 1970, p. 844-852.
    33. Wagner G., A novel application of nuclear overhauser enhancement in proteins: analysis of correlated events in the exchange of internal labile protons. Biochem. Biophys. Res. Commun., 1980. 97(2): 614-620.
    34. Roder H., Wagner G., et al., Individual amide proton exchange rates in thermally unfolded basic pancreatic trypsin inhibitor. Biochemistry, 1985. 24(25): 7407-7411.
    35. Roder H., Wagner G., et al., Amide proton exchange in proteins by EX1 kinetics: Studies of the basic pancreatic trypsin inhibitor at various p2H and temperature. Biochemistry, 1985. 24(25): 7396-7407.
    36. Englander S.W. and Kallenbach N.R., Hydrogen exchange and structural dynamics of proteins ann nucleic acids. Q.Rev.Biophys., 1983. 16(4): 521-655.
    1. Aue W.P., Bartholdi E., et al., Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J.Chem.Phys., 1976. 64(5): 2229-2246
    2. Bax A. and Freeman R., Investigation of complex networks of spin-spin coupling by two-dimensional NMR. J.Magn.Reson., 1981. 44(3): 542-561.
    3. Piantini U., Sorensen O.W., et al., Multiple quantum filters for elucidating NMR coupling networks. J. Am. Chem. Soc., 1981. 104(24): 6800-6801.
    4. Rance M., Sorensen O.W., et al., Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem.Biophys.Res.Commun., 1983. 117(2): 479-485.
    5. Mueller N., Ernst R.R., et al., Multiple-quantum-filtered two-dimensional correlated NMR spectroscopy of proteins J. Am. Chem. Soc., 1986. 108(21): 6482-6492.
    6. Talluri S. and Scheraga H. A., COSY with in-phase cross peaks. J.Magn.Reson., 1990. 86(1): 1-10.
    7. Sorensen O.W., Rance M., et al., z filters for purging phase- or multiplet-distorted spectra. J.Magn.Reson., 1984. 56(3): 527-534.
    8. Wagner G. and Zuiderweg E.R., Two-dimensional double quantum 1H NMR spectroscopy of proteins. Biochem.Biophys.Res.Commun., 1983. 113(3): 854-860.
    9. Rance M., Sorensen O.W., et al., Uniform excitation of multiple-quantum coherence: application to two-dimensional double-quantum spectroscopy. J.Magn.Reson., 1985. 61(1): 67-80.
    10. Friedrichs M.S., Metzler W.J., et al., Removal of diagonal peaks in two-dimensional NMR spectra by means of digital filtering. J.Magn.Reson., 1991. 95(1): 178-183.
    11. Marion D., Ikura M., et al., Improved solvent suppression in one- and two-dimensional NMR spectra by convolution of time-domain data. J.Magn.Reson., 1989. 84(2): 425-430.
    12. Glaser S. and Kalbitzer H.R., Improvement of two-dimensional NMR spectra by weighted mean t1-ridge subtraction and antidiagonal reduction. J.Magn.Reson., 1986. 68(2): 350-354.
    13. Tsang P., Wright P.E., et al., Signal suppression in the frequency domain to remove undesirable resonances with dispersive lineshapes. J.Magn.Reson., 1990. 88(1): 210-215.
    14. Pelczer I., Correlation spectroscopy at a bargain: SIMPLE-COSY. J. Am. Chem. Soc, 1991. 113(8): 3211-3212.
    15. Zhu G., Choy W.Y., et al., Suppression of diagonal peaks with singular value decomposition. J.Magn.Reson., 1998. 132(1): 176-178.
    16. Pelczer I., Correlation spectroscopy at a bargain: SIMPLE-COSY. J.Am.Chem.Soc., 1991. 113(8): 3211-3212.
    17. Santos H., Turner D.L., et al., A difference method for the reduction of "auto" peaks in autocorrelation spectra. J.Magn.Reson., 1983. 55(3): 463-467.
    18. Nagayama K., Kobayashi Y., et al., Difference techniques to pick up cross-peaks and suppress auto-peaks in two-dimensional shift-correlated and two-dimensional exchange NMR spectroscopies. J.Magn.Reson., 1983. 51(1): 84-94.
    19. Mitschang L., Cieslar C., et al., Application of the Karhunen-Loeve transformation to the suppression of undesired resonances in three-dimensional NMR. J.Magn.Reson., 1991. 92(1): 208-217.
    20. Aue W. P., Karhan J., et al., Homonuclear broad band decoupling and two-dimensional J-resolved NMR spectroscopy. J.Chem.Phys., 1976. 64(10): 4226-4227.
    21. Nagayama K., Wuthrich K., et al., Two-dimensional spin echo correlatedspectroscopy (SECSY) for 1H NMR studies of biological macromolecules. Biochem. Biophys. Res. Commun., 1979. 90(1): 305-11.
    22. Nagayama K., Kumar A., et al., Experiment techniques of two-dimensional correlated spectroscopy. J.Magn.Reson., 1980. 40(2): 321-334.
    23. Bodenhausen G., Kogler H., et al., Selection of coherence-transfer pathways in NMR pulse experiments. J.Magn.Reson., 1984. 58(3): 370-388.
    24. Bolton P. H. and Bodenhausen G., Resolution enhancement in heteronuclear two-dimensional spectroscopy by realignment of coherence transfer echoes. J.Magn.Reson., 1982. 46(2): 306-318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700