来源于嗜盐古生菌的RM07 DNA片段在三域模式生物中的启动子功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用大肠杆菌启动子探针载体pKK232-8,从极端嗜盐古生菌的基因组DNA中分离得到一个在大肠杆菌中具有启动子活性的RM07 DNA片段,DNA序列分析表明它既含有典型的真细菌启动子-35区和-10区保守序列,又具有嗜盐古生菌启动子特征序列DPE(distal promoter element)。
     在嗜盐古生菌、大肠杆菌和酿酒酵母中分别以β-半乳糖苷酶基因(bgaH)、二氢叶酸还原酶基因(dhfr)、氯霉素抗性基因(cat)、G418抗性基因(neo)为报告基因,通过构建各种RM07片段和报告基因相融合的重组质粒、酶活测定、抗性水平检测以及逆转录PCR(RT-PCR)检测报告基因转录等方法,研究了RM07 DNA片段的启动子功能,结果证明RM07片段在三域模式生物——古生菌(嗜盐古生菌)、真细菌(大肠杆菌)和真核生物(酵母菌)中均具有启动子活性,能够驱动不同报告基因的转录和表达。
     在嗜盐古生菌、大肠杆菌和酵母菌中分别对RM07片段进行了启动子缺失突变分析,构建了一系列RM07不同缺失片段插入报告基因上游的重组质粒,检测了RM07不同缺失片段的启动子活性大小,在三域模式生物中分别浓缩定位了RM07片段中对于启动子活性有影响的重要功能区。结果表明:含有-35区和-10区特征序列的40bp区段是RM07片段在大肠杆菌中具有基础启动子活性的重要功能区;嗜盐古生菌启动子特征序列DPE对于RM07片段在嗜盐古生菌和酵母菌中的启动子活性都是必需的功能元件;RM07片段中的-35区、-10区特征序列和嗜盐古生菌启动子特征序列DPE在启动子功能上具有一定的相关性。
     在大肠杆菌中对RM07片段进行了定点诱变分析,结果表明不同碱基突变对RM07片段的启动子活性产生不同的影响,从而进一步精确定位了
    
    R材07片段中对在大肠杆菌中的启动子功能有重要作用的关键碱基,初步鉴
    定了可能的转录起始位点,并且通过改造RM07片段的碱基组成成份大幅
    提高了其在大肠杆菌中的启动子活性。
     本研究还成功地将热化学研究的重要方法—微量量热技术应用于启动
    子的结构与功能研究,进一步证实了RM07片段在大肠杆菌中的启动子功
    能,获得了不同的碱基突变影响RM07片段在大肠杆菌中的启动子活性的
    精确数据,热化学研究结果与生物学的研究结果基本一致。本研究也为启
    动子功能的研究提供了一种新的更加灵敏便捷的化学与生物学相结合的方
    法。
Using the Escherichia coli promoter probe vector pKK232-8, a 492 bp DNA fragment, designated RM07, was isolated from the chromosomal DNA of the halophilic Archaea, Halobacterium halobium, and was shown to confer promoter activity in Escherichia coli. Sequence analysis revealed that RM07 fragment contained the typical -35 and -10 box consensus sequences of bacterial promoter as well as the characteristic sequence of archaeal promoter-DPE(distal promoter element).
    Using the bgaH, dhfr, cat and neo gene as the reporter genes, various RM07-reporter gene fusion plasmids were constructed and transformed into Haloferax volcanii, Escherichia coli and Saccharomyces cerevisiae respectively. Through determining the enzymatic activity, detecting the antibiotic resistance level and RT-PCR analysis, it was confirmed that RM07 conferred promoter activity in all three domains of life: Archaea (Haloferax volcanii), Bacteria (Escherichia coli) and Eukarya (Saccharomyces cerevisiae).
    Deletion analysis of RM07 was performed in Haloferax volcanii, Escherichia coli and Saccharomyces cerevisiae. The recombinant plasmids with different deletion fragments of RM07 inserted upstream of reporter gene were constructed. Through detecting the promoter activity of various deletion fragments of RM07, the important functional regions within RM07 which could influence the promoter activity were identified. The results revealed that the 40bp region containing the typical -35 and -10 box sequences of bacterial promoters was the important functional region responsible for the basal promoter activity of RM07 in Escherichia coli. The characteristic sequence of archaeal promoter-DPE(distal promoter element) was the functional element necessary for the
    
    
    promoter activity of RM07 in both Archaea (Haloferax volcanif) and Eukarya
    (Saccharomyces cerevisiae). The promoter functional elements (-35 , -10 box and
    archaeal DPE) were related.
    Site-directed mutagenesis of RM07 was performed in Escherichia coll.
    Different nucleotide mutations had different effect on the promoter activity of RM07. The critical nucleotide responsible for the promoter function of RM07 in Escherichia colt was determined precisely. The possible transcription initial nucleotide site was also identified. The promoter activity of RM07 in Escherichia coli was improved greatly by modifying the nucleotide component in RM07.
    In this study, the important thermochemistry research method microcalorimetry was successfully applied in studying the structure and function of promoter in Escherichia coli. The research results of microcalorimetry further confirmed that RM07 could confer promoter activity in Escherichia coli. The different effects of various nucleotide mutations on the promoter activity of RM07 were detected by means of microcalorimetric method. The results were consistent with the results gotten by the traditional biological method. Our work also provided a more sensitive and easily-performed novel method combining the chemical and biological technique for studying the promoter function.
引文
沈萍 微生物学 北京:高等教育出版社,2000。
    胡福泉 微生物基因组学 北京:人民军医出版社,2002。
    童克中 基因及表达(第二版) 北京:科学出版社,2001。
    刘义 微生物生命活动微量热分析,博士后工作报告,武汉大学,1999。
    谢昌礼,汤厚宽,屈松生 微量热法测定细菌生长热谱 物理化学学报,1986,2(5):4810-483。
    谢志雄,刘义,陈向东,沈萍,屈松生 大肠杆菌HB101感受态的热化学研究化学学报,2000,58(2):153-156。
    黄玉屏,刘义,沈萍,屈松生 盐生盐杆菌生长过程热动力学研究 高等学校化学学报,2002。
    黄玉屏,来自极端嗜盐古生菌的启动子DNA片段的序列分析及其功能研究武汉大学博士学位论文,2001。
    段珍红 盐生盐杆菌启动子DNA片段及其特征序列分析 武汉大学硕士学位论文,2000。
    陈向东,谢志雄,沈萍等 枯草芽孢杆菌在琼脂平板上进行的自然遗传转化.微生物学报,2000,40(1):95-99。
    欧剑虹,谢志雄,陈向东,倪丽娜,沈萍 水平基因转移 遗传,2003(in press)。
    Aravind L, Koonin EV. DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res 1999, 27:4658-4670.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. Current Protocols in Molecular Biology, vol. 1. Greene Publishing Associates and
    
    Wiley-Interscience. New York, 1988.
    Baliga NS, Goo YA, Ng WV, Hood L, Daniels CJ, DasSarma S. Is gene expression in Halobacterium NRC-1 regulated by multiple TBP and TFB transcription factors? Mol Microbiol 2000, 36:1184-1185.
    Belfort M, Weiner A. Another bridge between kingdoms: tRNA splicing in Archaea and Eukaryotes, Cell. 1997, 89:1003-1006.
    Bell SD, Magill CP and Jackson SP. Basal and regulated transcription in Archaea. Biochemical Society Transactions. 2001, 29:392-395.
    Bell SD, Jaxel C, Nadal M, Kosa PF, Jackson SP. Temperature, template topology, and factor requirements of archaeal transcription. Proc Natl Acad Sci USA 1998, 95:15218-15222.
    Bell SD, Jackson SP. The role of transcription factor B in transcription initiation and promoter clearance in the archaeon Sulfolobus acidocaldarius. J Biol Chem 2000, 275:12934-12940.
    Bell SD, Kosa PL, Sigler PB, Jackson SP. Orientation of the transcription preinitiation complex in archaea. Proc Natl Acad Sci USA. 1999, 96:13662-13667.
    Brinkman AB, Bell SD, Lebbink RJ, Willem M. de Vos and John van der Oost. The Sulfolobus solfataricus Lrp-like Protein LysM Regulates Lysine Biosynthesis in Response to Lysine Availability. J. Biol. Chem. 2002, 277: 29537-29549.
    Bini E, Dikshit V, Dirksen K, Drozda M, Blum P. Stability of mRNA in the hyperthermophilic archaeon Sulfolobus solfataricus. RNA. 2002, 8 (9): 1129-36.
    Bohlke K, Francesca M, Pisani, Rossi M, Antranikian G. Archaeal DNA replication: spotlight on a rapidly moving field. Extremophiles. 2002, 6:1-14.
    
    
    Braithwaite DK, Ito J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 1993, 21:787-802.
    Brosius J. Plasmid vectors for the selection of promoters. Gene. 1984,27:151-160.
    Bult CJ et al. Complete genome sequence of the methanogenic Archaeon, Methanococcus jannaschii. Science. 1996,273:1058-1073.
    Cann IKO, Ishino Y. Archaeal DNA replication: Identifying the pieces to solve a puzzle. Genetics. 1999, 152:1249-1267.
    Carpentieri F, Felice MD, Falco MD, Rossi M and Pisani FM. Physical and Functional Interaction between the Mini-chromosome Maintenance-like DNA Helicase and the Single-stranded DNA Binding Protein from the Crenarchaeon Sulfolobus solfataricus. J. Biol. Chem. 2002, 277:12118-12127.
    Chien Y, Helmarm JD, Zinder SH. Interactions between the promoter regions of nitrogenase struchural genes (nifHDK2) and DNA-binding proteins from N_2-and ammonium-grown cells of the Archaeon Methanosarcina barkeri 227. J Bacteriol 1998, 180: 2723-2728.
    Chong JPJ, Hayashi MK, Simon MN, Xu RM, Stillman B. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc Natl Acad Sci USA. 2000,97:1530-1535.
    Cline SW, Lam WL, Charlebois RL, Schalkwyk LC, Doolittle WF. Transformation methods for halophilic archaebacteria, Can. J. Microbiol. 1989,35: 148-152.
    Cohen-Kupiec R, Blank C, Leigh JA. Transcriptional regulation in Archaea: In vivo demonstration of a repressor binding site in a methanogen. Proc Natl Acad Sci USA 1997, 94:1316-1320.
    
    
    Dabrowski S, Olszewski M, Piatek R, Brillowska-Dabrowska A, Konopa G, Kur J. Identification and characterization of single-stranded-DNA-binding proteins from Thermus therrnophilus and Thermus aquaticus-new arrangement of binding domains. Microbiology. 2002, 148:3307-15.
    Danner S, Soppa J. Characterization of the distal promoter element of halobacteria in vivo using saturation mutagenesis and selection. Mol. Microbiol. 1996,19:1265-1276.
    Dennis PP. Ancient ciphers: translation in archaea. Cell. 1997, 89:1007-1010.
    Desogus G, Onesti S, Brick P, Rossi M, Pisani FM. Identification and characterization of a DNA primase from the hyperthermophilic archaeon Methanococcus jannaschii. Nucleic Acids Res. 1999,27:4444-4450.
    Dontsova M, Frolova L, Vassilieva J, Piendl W, Kisselev L and Gather M. Translation termination factor aRF1 from the archaeon Methanococcus jannaschii is active with eukaryotic ribosomes. FEBS Letters. 2000, 472(2-3):213-216.
    Edgell DR, Doolittle WF. Archaea and the origin(s) of DNA replication proteins. Cell 1997,89:995-998.
    Edgell DR, Malik SB, Doolittle WF. Evidence of independent gene duplications during the evolution of archaeal and eukaryotic family B DNA polymerases. Mol Biol Evol. 1998,15:1207-1217.
    Eloranta JJ, Kato A, Teng MS, Weinzierl ROJ. In vitro assembly of an archaeal D-L-N RNA polymerase subunit complex reveals a eukaryote-like structural arrangement. Nucleic Acids Res 1998, 26:5562-5567.
    Enoru-Eta J, Gigot D, Thia-Toong TL, Glansdorff N, Charlier, D. Purification and characterization of Sa-lrp, a DNA-binding protein from the extreme thermoacidophilic archaeon Sulfolobus acidocaldarius homologous to the
    
    bacterial global transcriptional regulator Lrp. J Bacteriol 2000, 182:3661-3672.
    Gray MW. The third form of life. Nature. 1997, 383: 299-300.
    Grayling, RA, Sandman, K and Reeve, JN. Histories and chromatin structure in hyperthermophilic Archaea. FEMS Microbiol Rev. 1996,18: 203-213.
    Hanzelka BL, Darcy TJ and Reeve JN. TFE, an Archaeal Transcription Factor in Methanobacterium thermoautotrophicum Related to Eucaryal Transcription Factor TFIIE. J Bacteriol. 2001, 183(5): 1813-1818.
    Hain J, Reiter WD, Hudepohl U, Zillig W. Elements of an archaeal promoter defined by mutational analysis. Nucleic Acids Res 1992, 20:5423-5428.
    Hausner W, Frey G, Thomm M. Control regions of an archaeal gene-a TATA box and an initiator element promote cell-free transcription of the tRNA(Val)-gene of Methanococcus vannielii. J Mol Biol 199I, 222:495-508.
    Helmann, JD. Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic. Acids. Res. 1995,23:2351-2360.
    Hethke C, Bergerat A, Hausner W, Forterre P, Thomm M. Cell-free transcription at 95 degrees: therrnostability of transcriptional components and DNA topology requirements of Pyrococcus transcription. Genetics. 1999, 152:1325-1333.
    Hethke C, Geerling ACM, Hausner W, deVos WM, Thomm M. A cell-free transcription system for the hyperthermophilic Archaeon Pyrococcus furiosus. Nucleic Acids Res 1996, 24:2369-2376.
    Higashibata H, Hisasi Kikuchi, Yutaka Kawarabayasi, and Ikuo Matsui. Helicase and endonuclease activities of hyperthermophile Pyrococcus horikoshii Dna2
    
    inhibited by substrates with RNA segments at 5'-end. J. Biol. Chem. 2002.
    Hochheimer A, Hedderich R, Thauer RK. The DNA binding protein Tfx from Methanobacterium thermoautotrophicum: structure, DNA binding properties and transcriptional regulation. Mol Microbiol. 1999, 31:641-650.
    Holmes ML, Scopes RK, Moritz RL, Simpon R J, Englert C, Pfeifer F, Dyall-Smith ML. Purification and analysis of an extremely halophilic β-galactosidase from Haloferax alicante, Biochim Biophys Acta. 1997, (1337): 276-286.
    Javis GN, Strompl C, Burgess DM, Skillman LC, Moore ER, Jobllin KN. Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol. 2000,40: 327-332.
    Karen EN, Rebecca AC, Steven RG, et al. Evidence for lateral gen transfer between Archaea and Bacteria from genome sequence of Thermotoga maritime. Nature 1999, 399:323-329.
    Kelly TJ, Simancek P, Brush GS. Identification and characterization of a singlestranded DNA-binding protein from the archaeon Methanococcus jannaschii. Proc Natl Acad Sci USA. 1998, 95:14634-14639.
    Kim JM and Dassarma S. Isolation and chromosomal distribution of natural ZDNA-forming sequences in Halobacterium halobium. J Biol Chem. 1996, 271: 19724-19731.
    Kosa PF, Ghosh G, DeDecker BS, Sigler PB. The 2.1-angstrom crystal structure of an archaeal preinitiation complex: TATA-box-binding protein/transcription actor (Ⅱ)B core/TATA-box. Proc Natl Acad Sci USA 1997, 94:6042-6047.
    Kruger K, Hermann T, Armbruster V, Pfeifer F. The transcriptional activator GvpE for the halobacterial gas vesicle genes resembles a basic region leucinezipper regulatory protein. J Mol Biol 1998, 279:761-771.
    
    
    Kyrpides NC, Ouzounis CA. Transcription in Archaea. Proc Natl Acad Sci USA. 1999, 96:8545-8550.
    Kyrpides, NC, Woese, CR. Universally conserved translation initiation factors. Proc. Natl. Acad. Sci. USA. 1998(a),95:224-228.
    Kyrpides NC, Woese CR. Archaeal translation initiation revisited: The initiation factor 2B α-β-δ subunit families. Proc. Natl. Acad. Sci. USA 1998(b), 95:3726-3730.
    Langer D, Hain J, Thuriaux P, Zillig W. Transcription in archaea-similarity to that in eucarya. Proc Natl Acad Sci USA 1995, 92:5768-5772.
    Lee SJ, Engelmann A, Horlacher R, Qu Q, Vierke G, Hebbeln C, Thomm M and Boos W. TrmB, a Sugar-specific Transcriptional Regulator of the Trehalose/Maltose ABC Transporter from the Hyperthermophilic Archaeon Thermococcus litoralis. J. Biol. Chem. 2003, 278: 983-990.
    Leigh JA. Transcription regulation in Archaea, Curr Opin Microbiol 1999, 2:131-134.
    Littlefield O, Korkhin Y, Sigler PB. The structural basis for the oriented assembly of a TBP/TFB/promoter complex. Proc Natl Acad Sci USA 1999, 96:13668-13673.
    Liu Y, Li X, Qu SS, Shen P. Microcalorimetric investigation of the toxic action of Cd~(2+) on Rhizopus nigricans growth. J Biochem Biophys Methods. 2000,45: 231-239.
    Lorenz MG, et al. Bacterial gene transfer by natural genetic transformation in the environment. Rev. Microbiol. 1994, 58:564~583.
    
    
    Matsui E, Kawasaki S, Ishida N, Ishikawa K, Kosugi Y, Kikuchi H, Kawarabayasi Y, Matsui I. Thermostable flap endonuclease from the archaeon, Pyrococcus horikoshii, cleaves the replication fork-like structure endoexonucleolytically. J Biol Chem. 1999, 274:18297-18309.
    Makaroval KS, Aravind L, Grishin NV, Rogozin IB and Koonin EV. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Research. 2002, 30(2): 482-496.
    Myllykallio H, Lopez P, Heilig R, Saurin W, Zivanovic Y, Philippe H, Forterre P. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science. 2000, 288:2212-2215.
    Napoli A, van der Oost J, Sensen CW, Charlebois RL, Rossi M, Ciaramella M. An Lrp-like protein of the hyperthermophilic archaeon Sulfolobus solfataricus which binds to its own promoter. J Bacteriol. 1999, 181:1474-1480.
    Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, et al. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Therrnotoga maritima. Nature 1999,399:323-329.
    Nikolov DB, Chen H, Halay ED, Usheva AA, Hisatake K, Lee DK, Roeder RG, Burley SK. Crystal structure of a TFⅡB-TBP-TATA-element ternary complex. Nature 1995, 377:119-128.
    Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J et al. Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. USA. 2000, 97: 12176-12181.
    Ochman H. Lateral and oblique gene transfer. Current Opinion in Genetics & Development. 2001, 11:616~619.
    
    
    Olsen GJ, Woese CR. Archaeal genomics: an overview. Cell. 1997,89:991-994.
    Palmer JR, Daniels CJ. In vivo definition of an archaeal promoter. J Bacteriol 1995, 177:1844-1849.
    Prescott LM. Microbiology. WCB McGraw-Hill Press. 2002, 5th Ed.
    Qureshi SA, Bell SD, Jackson SP. Factor requirements for transcription in the Archaeon Sulfolobus shibatae. EMBO J 1997,16:2927-2936.
    Qureshi SA, Jackson SP. Sequence-specific DNA binding by the S. shibatae TFⅡB homolog, TFB, and its effect on promoter strength. Molecular Cell 1998, 1:389-400.
    Rao HGV, Rosenfeld A, Wetmur JG .Methanococcus jannaschii Flap endonuclease: expression, purification, and substrate requirements. J Bacteriol. 1998, 180:5406-5412.
    Reiter WD, Hudepohl U, Zillig W. Mutational analysis of an archaebacterial promoter-essential role of a TATA Box for transcription efficiency and start-site selection in vitro. Proc Natl Acad Sci USA 1990, 87:9509-9513.
    Rivera M, Jain R, Moore J, Lake J. Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci USA 1998, 95:6239-6244.
    Rosas-Sandoval G, Alexandre Ambrogelly, Jesse Rinehart, David Wei, L. Rogelio Cruz-Vera, David E. Graham, Karl O. Stetter, Gabriel Guameros, and Dieter Sll. Orthologs of a novel archaeal and of the bacterial peptidyl-tRNA hydrolase are nonessential in yeast. Proc. Natl. Acad. Sci. USA. 2002, 99(26): 16707-16712.
    Ruan L, Liu Y., Gao, Z., Shen, P., Qu, S.S. Microcalorimetric studies on expression of foreign genes in Bacillus thuringiensis. J. Therm. Anal. Cal. 2002,
    
    70:521-525.
    Sambrook J, Fritsch EF and Maniatis T. Molecular cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1989.
    Soppa J. Transcription initiation in Archaea: facts, factors and future aspects. Molecular Microbiology, 1999, 31 (5): 1295-1305.
    Sowers KR and Schreler HJ. Gene transfer systems for the Archaea. Trends in Microbilogy. 1999, 7(5): 212-219.
    Srinivasan G, James CM and Krzycki JA. Pyrrolysine Encoded by UAG in Archaea: Charging of a UAG-Decoding Specialized tRNA. Science. 2002, 296: 1459-1462.
    Sriskanda V, Kelman Z, Hurwitz J, Shuman S. Characterization of an ATP-dependent DNA ligase from the thermophilic archaeon Methanobacterium thermoautotrophicum. Nucleic Acids Res. 2000, 28: 2221-2228.
    Takayanagi, S., Morimura, S., Kusaoke, H., Yokoyama, Y., Kano, K., and Shioda, M. Chromosomal structure of the halophilic archaebacterium Halobacterium salinarium. J Bacteriol 1992,174:7207-7216.
    Thompson DK, Daniels CJ: Heat shock inducibility of an archaeal TATA-like promoter is controlled by adjacent sequence elements. Mol Microbiol 1998, 27:541-551.
    Thompson DK, Palmer JR, Daniels CJ. Expression and heat responsive regulation of a TFⅡB homologue from the archaeon Haloferax volcanii. Mol Microbiol 1999, 33:1081-1092.
    
    
    Turner PC, Mclennan AG, Bates AD and White MRH Instant notes in molecular biology, BIOS Scientific Publishers Limited, 1997.
    Uemori T, Sato Y, Kato I, Doi H, Ishino Y. A novel DNA poly-merase in the hyperthermophilic archaeon, Pyrococcus furiosus: gene cloning, expression, and characterization. Genes Cells. 1997, 2:499-512.
    Vierke G, Engelmann A, Hebbeln C and Thomm M . A Novel Archaeal Transcriptional Regulator of Heat Shock Response. J. Biol. Chem. 2003, 278:18-26.
    Waga S, Stillman B. The DNA replication fork in eukaryotic cells. Annu Rev Biochem. 1998, 67:721-751.
    Watanabe Y, Shin-ichi Yokobori, Toshiro Inaba, Akihiko Yarnagishi, Tairo Oshima, Yutaka Kawarabayasi, Hisasi Kikuchi and Kiyoshi Kita. Introns in protein-coding genes in Archaea. FEBS Letters. 2001,510(1-2): 27-30.
    Werner F, Eloranta J, Weinzierl ROJ. Archaeal RNA polymerase subunits F and P are bona fide homologues of eukaryotic RPB4 and RPB12. Nucleic Acids Res 2000, 28: 4299-4305.
    Wettach J, Gohl HP, Tschochner H and Thomm M. Functional interaction of yeast and human TATA-binding proteins with an archaeal RNA polymerase and promoter. Proc Natl Acad Sci USA. 1995, 92: 472-476.
    Whitford MF, Teather RM and Forster RJ. Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiology. 2001, 1: 5-8.
    Woese CR and Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA. 1977, 74: 5988-5090.
    
    
    Woese CR, Kandler O and Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA. 1990, 87(12):4576-4579.
    Woese CR. Interpeting the universal phylogenetic tree. Proc Natl Acad Sci USA. 2000, 97(15): 8392-8396.
    Worning P, Jensen LJ, Nelson KE, Brunak S and Ussery DW. Structural analysis of DNA sequence: evidence for lateral gene transfer in Thermotoga maritime. Nucleic Acids Research. 2000, 28(3):706-709.
    Xie CL, Tang, H.K., Song, Z.H., Qu, S.S. Microcalorimetric study of bacterial growth. Thermochim. Acta. 1988,123:33-41.
    Yang, CF, Kim, JM, Molinari, E, and Dassarma, S. Genetic and toplogical analyses of the bop promoter of Halobacterium halobium: Stimulation by DNA supercoiling and non-B-DNA structure. J Bacteriol 1996, 178: 840-845.
    Ye XC, Ou JH, Ni LN, Shi WL, Shen P. Characterization of a novel plasmid from extremely halophilic Archaea: nucleotide sequence and function analysis. FEMS Microbiology Letters. 2003, 221:53-57.
    Zhang R, Zhang C. Single replication origin of the archaeon Methanosarcina mazei revealed by the Z curve method. Biochem Biophys Res Commun. 2002, 297:396.
    Zhao RM, Liu Y, Xie ZX, Shen P, Qu SS. A microcalorimetric method for studying the biological effects of La~(3+) on Escherichia coli. J. Biochem. Biophys. Methods. 2000, 46: 1-9.
    Zhu WL, Zeng QD, Colangelo CM, Lewis LM, Summers MF, Scott RA. The N- terminal domain of TFⅡB from Pyrococcus furiosus forms a zinc ribbon. Nat Struct Biol 1996, 3:122-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700