纳米多孔金属在电催化及生物催化方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要是将脱合金化法制备的纳米多孔金及其修饰材料应用于电化学检测、燃料电池以及生物载体方面。主要内容包括纳米多孔金对水合肼的电催化氧化及检测研究、纳米多孔金作为电极材料对直接水合肼/过氧化氢燃料电池性能的研究、纳米多孔金和铂修饰纳米多孔金分别作为阳极材料对葡萄糖燃料电池性能的初步探索以及纳米多孔金作为载体固载木聚糖酶,对木聚糖的生物催化研究。本论文旨在探索纳米多孔金及金基纳米多孔金属等材料在电化学检测、燃料电池和生物催化等方面的应用研究。
     1.纳米多孔金对水合肼的电化学检测
     纳米多孔金(NPG),是通过脱合金(AuAg)法制备的一种催化剂,本章系统地研究了NPG对水合肼的电催化氧化。用循环伏安法(CV)和计时电流法,在不同扫速和pH以及不同水合肼浓度条件下,研究了水合肼的电化学氧化行为。与普通块体金相比较,NPG表现出低的过电位和高的氧化电流等优良性能,水合肼氧化的起峰电位比较低约为-400 mV,比普通块体金至少负移200 mV。峰电流与扫速的平方根成线性关系说明NPG对水合肼的电氧化是受扩散控制的。通过计时电流法实验计算出水合肼的扩散系数为1.68×10-5cm2s-1,与文献报道相一致。水合肼浓度在100 nM~10.1μM区间时,NPG对水合肼氧化的电流响应与其浓度成正比,检测限可以达到16.7 nM,说明了它具有高灵敏特性,这对低浓度水合肼的检测是非常有意义的。实验结果阐明了NPG这种催化剂可以作为优良的电化学传感材料。
     2.纳米多孔金为电极材料的N2H4/H202燃料电池性能研究
     NPG薄膜是一种对水合肼和过氧化氢都具有高催化活性的催化剂。这种新颖的高活性电极薄膜材料可应用于直接水合肼/过氧化氢燃料电池(DHHPFC)中。本文探讨了不同孔径NPG对N2H4氧化和H202还原的电催化性能,同时着重研究了在以NPG同时作为阴极和阳极催化剂时DHHPFC的电池性能。测试结果表明,在相同测试条件下,NPG作为催化剂比相同载量商业Pt/C的功率密度高出至少一个数量级。这些实验结果表明NPG是一种拥有高催化性能的的非铂催化剂,在相关燃料电池领域具有潜在的应用价值。
     3.纳米多孔金属为电极材料的葡萄糖燃料电池(DGFC)性能研究
     (1)NPG为电极材料的DGFC性能研究
     采用电腐蚀法制得12 nm左右小孔径NPG样品,将其用于DGFC性能测试。首先对比了NPG在中性与碱性条件下对葡萄糖的电氧化性能,实验结果表明碱性条件下NPG对葡萄糖的催化性能远大于中性条件的。讨论了碱浓度对催化性能的影响;其次,研究了NPG为催化剂的DGFC性能。探讨了温度对DGFC性能的影响,实验结果表明随着温度升高,电池性能得以提高。
     (2)NPG-Pt为电极材料的DGFC性能研究
     通过在NPG上化学镀一薄层Pt制备而成的NPG-Pt薄膜,是一种多孔Au-Pt双金属纳米材料,用这种材料研究了葡萄糖的电氧化和燃料电池性能测试。NPG-Pt的结构通过SEM、TEM和XRD等手段来表征。将NPG-Pt作为阳极催化剂(Au和Pt载量分别为0.3 mg cm-2和60μg cm-2),将商业Pt/C作为阴极催化剂,燃料电池性能测试结果显示DGFC在碱性体系比中性环境性能要好得多。NPG-Pt材料有望作为一种有前景的低贵金属载量的催化剂应用于碱性葡萄糖燃料电池。4.纳米多孔金为载体固定木聚糖酶的催化性能研究
     NPG这种高表面积金属海绵,具有孔径可调和生物兼容性良好等特点,被证明是一种优良的木聚糖酶载体材料。结构分析表明木聚糖酶是通过Au-S键固定到NPG上,是一种单层吸附过程。对固载酶的活性和稳定性不同实验条件下进行了研究。结果显示,固载酶的活性可以保持达到自由酶活的80%。更重要的是,这种新颖的生物催化剂表现出良好的稳定性。即使经过十个连续循环反应,固载酶的活性仍然能够保持初始酶活的76%。
This paper is focusing on applications of nanoporous gold (NPG) in electrochemical catalysis, fuel cell and enmzy immobilization. Investigations are based on several aspects mainly including:electrochemical detection of hydrazine by NPG, direct N2H4/H2O2 fuel cell based on NPG, glucose fuel cell based on NPG and NPG-Pt, xylanase immobilized on nanoporous gold as a highlyefficient biocatalyst.
     1. An effective and rapid electrochemical detection of hydrazine by NPG
     NPG membranes prepared by dealloying AgAu alloys in concentrated nitric acid towards hydrazine electrochemical oxidation were studied. Compared with bulk gold, NPG shows not only the enhanced current but lower overpotential of hydrazine oxidation. The diffusion coefficient of hydrazine was examined to be 1.68×10-3 cm2 s-1 using chronoamperometry. In addition, it can be found that the behavior of hydrazine oxidation on NPG depends strongly on the pH value of the solution. A detection limit of 16.7 nM hydrazine can be determined by high sensitive NPG. These results indicate that NPG can be employed to be as an efficient electrode material of electrochemical sensors for hydrazine detection in solution.
     2. A platinum-free direct N2H4/H2O2 fuel cell based on NPG
     DealloyedNPG is found to exhibit high electrocatalytic properties toward both hydrazine (N2H4) oxidation and hydrogen peroxide (H2O2) reduction. This observation allows the implementation of a direct hydrazine-hydrogen peroxide fuel cell (DHHPFC) based on these novel membrane electrode materials. The effects of fuel and oxidizer flow rate, concentration and cell temperature on the performance of DHHPFC are systematically investigated. With a loading of 0.1 mg cm-2 Au on each side, an open circuit voltage of 1.2 V is obtained at 80℃with a maximum power density 195 mW cm-2, which is 22 times higher than that of commercial Pt/C as electrocatalysts at the same noble metal load. NPG thus holds great potential as an effective and stable platinum-free electrocatalyst for DHHPFCs.
     3. NPG and Pt-decorated NPG for DGFC
     (1)NPG for DGFC
     The NPG with 12 nm pore size was obtained by electrochemical dealloying under anodic potential, and using it as catalyst for DGFC performance studying. Activity of glucose electrocatalytic oxidation on NPG was investigated in neutral and alkaline solution. The results indicated that the activity in alkaline was higher than that in neutral solution for glucose oxidation. Then e plored the performance of DGFC on NPG, the results illustrated that the performance of DGFC was improved with the increasing of temperature.
     (2) NPG-Pt for GDFC
     Pt-decorated nanoporous gold (NPG-Pt), created by depositing a thin layer of Pt on NPG surface, was proposed as an active electrode for GDFC in neutral and alkaline solutions. The structure and surface properties of NPG-Pt were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD). A direct glucose fuel cell (DGFC) was performed based on the novel membrane electrode materials. With a low precious metal load of less than 0.3 mg cm-2 Au and 60μg cm-2 Pt in anode and commercial Pt/C in cathode, the performance of DGFC in alkaline is much better than that in neutral condition.
     4. Xylanase immobilized nanoporous gold as a biocatalyst
     NPG, a nanostructured metallic sponge with tunable porosity and excellent biocompatibility, was employed as an effective support material for xylanase immobilization. Structure analyses revealed that the immobilization of xyalanse was realized via chemical bonding of sulphur end-groups with gold surface atoms, suggesting a characteristic self-assembled monolayer type adsorption process. The activity and stability for the immobilized enzyme were investigated under different conditions. And the immobilized enzymes were found to keep as high as 80% of the activity of free ones. More importantly, these novel composite nanobiocatalysts showed quite impressive stability. Even after ten reaction cycles, this bio-nanocomposite could still retain76% of the initial activity.
引文
[1]Shen, X.F.; Ding, Y.S.; Liu, J.; Cai, J.; Laubcrnds, K.; Zergcr, R.P. A.; Vasiliev, Aindow, M.; Suid, S.L.; Control of Nanometer-Scale Tunnel. Sizes of Porous Manganese Oxide Octahedral Molecular Sieve Nanomaterials. Adv. Mater.2005, 17,805-809.
    [2]Guo, Y.G.; Hu, J.S.; Zhang, H.M.; Liang, H.P.; Wan, L.J.; Bai, C.L. Tin/Platinum bimetallic nanotube array and its electrocatalytic activity for methanol oxidation, Adv. Mater.2005,17,746-746.
    [3]Sun, F.Q.; Cai, W.P.; Li, Y.; Jia, L.C.; Lu, F.; Morphology controlled growth of large area ordered porous film. Adv. Mater.2005,21,500-504.
    [4]Habas, S.E.; Lee, H.; Radmilovic, V.; Somorjai, G.A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth, Nat. Mater.2007,6,692-697.
    [5]Snyder, J.; Asanithi, P.; Dalton, A. B.; Erlebacher, J. Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv. Mater.2008,20,4883-4886.
    [6]Dixon, M. C.; Daniel, T. A.; Hieda, M.; Smilgies, D. M.; Chan, M. H. W.; Allara, D. L. Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 2007,23,2414-2422.
    [7]Noort, D.; Mandenius, C. Porous gold surfaces for biosensor applications. Biosens. Bioelectron.2000,15,203-209.
    [8]He, X.; Antonelli, D. Recent advances in synthesis and applications of transition metal containing mesoporous molecular Sieves. Angew. Chem. Intl. Ed.2001,41, 214-229.
    [9]Zielasek, V.; Jurgens, B.; Schulz, C.; Biener, J.; Biener, M. M.; Hamza, A. V.; Baumer, M. Gold Catalysts:Nanoporous Gold Foams. Angew.Chem. Int. Edit. 2006,45,8241-8244.
    [10]Xu, C.X.; Su, J.X.; Xu, X.H.; Liu, P.P.; Zhao, H.J.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007,129,42-43.
    [11]Teng, X.; Liang, X.; Rahman, S.; Yang, H. Porous membrane of nanoparticles: Synthesis and its application as fuel cell catalysts. Adv. Mater.2005,17: 2237-2241.
    [12]Zeis R.; Mathur A.; Fritz G. Platinum plated nanoporous gold:An efficient, low Pt loading elect rocatalyst'for PEM fuel cells. J. Power Sources 2007,165, 65-72.
    [13]Liu Z.; Searson P.C. Single nanoporous gold nanowire sensors. J Phys Chem B. 2006,110,4318-4322.
    [14]Van Noort, D.; Mandenius, C.F. Porous gold surfaces for biosensor applications, Biosens. Bioelectron.2000,15,203-209.
    [15]Hu, K.; Lan, D.; Li, X.; Zhang, S. Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. Anal Che.2008,80,9124-9030.
    [16]Jiang, P.; Cizeron, J.; Bertone, J.F.; Colvin, V.L. Preparation of Macroporous Metal Films from Colloidal Crystals. J. Am. Chem. Soc.1999,121,7957-7958.
    [17]Velev, O.D.; Tessier, P.M.; Lenhoff, A.M.; Kaler, E.W. A class of porous metallic nanostructures. Nature 1999,401,548-548.
    [18]Kulinowski, K.M.; Jiang, P.; Vaswani, H.; Colvin, V.L. Porous metals from colloidal templates, Adv. Mater.2000,12,833-838.
    [19]Pu, L.; Bao, X.; Zou, J.; Feng, D.; Individual alumina nanotubes, Angew. Chem. Int. Ed.2001,40,1490-1493.
    [20]Chu, S.; Wada, K.; Inoue, S.; Todoroki, S. Fabrication of oxide nanostructures on glass by aluminum anodization and sol-gel process, Surf. Coat. Technol.2003, 169,190-194.
    [21]Seshadri, R.; Meldrum, F.C.; Bioskeletons as templates for ordered macroporous structures, Adv. Mater.2000,12,1149-1151.
    [22]Attard, G.S.; Leclerc, S.A.A.; Maniguet, S.; Russell, A.E.; Nandhakumar, I.; Gollas, B.R.; Bartlett, P.N. Liquid crystal phase templated mesoporous platinum alloy, Micropor. Mesopor. Mater.2001,44,159-163.
    [23]Shchukin, D.G.; Caruso, R.A.; Template synthesis of porous gold microspheres, Chem. Commun.2003,13,1478-1479.
    [24]Zhang, H.; Cooper, A.I.; New approaches to the synthesis of macroporous metals, J. Mater. Chem.2005,15,2157-2159.
    [25]Erlebacher, J.; Aziz, M. J.; Karama, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001,410,450-453.
    [26]Thorp J.C.; Sieradzki K.; Tang L. Formation of nanoporous noble metal thin by electrochemical dealloying of PtxSil-x. Appl. Phys. Lett.2006,88, DOI: 10.1063/1.2161939.
    [27]Pugh D.V.; Dursun A.; Corcoran S.G.. Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75 Pt0.25. J.Mater. Res.2003,18,216-221.
    [28]Lu H.B.; Li Y.; Wang F.H. Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying. Scr. Mater.2007,56,165-168.
    [29]Hayes, J.R.; Hodge A.M.; Biener, J.; Hamza, A.V.; Sieradzki, K. Monolithic nanoporous copper by dealloying Mn-Cu. J. Mater. Res.2006,21,2611-2616.
    [30]Meyerheim, H.L.; Soyka, E.; Kirschner, J. Alloying and dealloying in pulsed laser deposited Pd films on Cu (100). Phys. Rev. B.2006,74, DOI:10.1103/ 74.085405.
    [31]Schofield, E.; Anodic routes to nanoporous materials. Trans Inst. Met. Finish. 2005,83,35-42.
    [32]Zhang, Z.H.; Wang, Y.; Qi, Z.; Zhang, W.H.; Qin, J.Y.; Frenzel, J. Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying.J. Phys. Chem. C 2009,113,12629-12636.
    [33]REsner, H.; Parida, S.; Kramer, D.; Volkert, C.A.; Weissmueller, J. Reconstructing a nanoporous metal in three dimensions:An electron tomography study of dealloyed gold leaf. Adv. Eng. Mater.2007,9,535-541.
    [34]Hodge, A.M.; Hayes, J.R. Caro, J.A.; Biener, J.; Hamza, A.V. Characterization and mechanical behavior of nanoporous gold. Adv. Eng. Mater.2006,8,853-857.
    [35]Hodge, A.M.; Biener J.; Hayes, J.R.; Bythrow, P.W.; Hamza, A.V. Scaling equation for yied strength of nanoporous open-cell foams. Acta Mater.2007,55, 1343-1349.
    [36]Biener, J.; Hodge, A.M.; Hamza, A.V; Hamza, A.V; Hsiung, L.M.; Satcher, J. Nanoporous Au:A high yield strength material. Appl. Phys.2005,97, DOI: 10.1063/1.1832742.
    [37]Lu, X.; Bischoff, E.; Spolenak R.; Balk, T.J. Investigation of dealloying in Au-Ag thin films by quantitative electron probe microanalysis. Scr: Mater.2007,56, 557-560.
    [38]Yoo, S.H.; Park, S. Platinum-coated, nanoporous gold nanorod arrays:Synthesis and characterization. Adv. Mater.2007,19,1612-1615.
    [39]Mathur, A.; Erlebacher, Size dependence of effective Young's modulus of nanoporous gold. J. Appl. Phys. Lett.2007,90, DOI:10.1063/1.2436718.
    [40]Ding, Y.; Kim, Y.J.; Erlebacher, J. Nanoporous gold leaf "Ancient technology" Adv. Mater.2004,16,1897-1900.
    [41]Huang, J.F.; Sun, I.W. Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers. Adv. Functional Mater.2005,15, 989-994.
    [42]Smith, G.B.; Maaroof, A.I.; Gentle, A. Homogenized lorentz-drude optical response in highly nanoporous conducting gold layers produced by de-alloying. Opt. Commun.2007,271,263-268.
    [43]Fritz, J.D. Picking, H.W. Selective anodic dissolution of Cu-Au alloys:TEM and current transient study. J. Electrochem. Soc.1991,138,3209-3218.
    [44]Renner, F.U.; Grunder, Y. Lyman, P.F.; Zegenhagen, J. In situ X-ray diffraction study of the initial dealloying of Cu3Au(001) and Cu0.83 Pd0.17(001). Thin Solid Films 2007,515,5574-5580.
    [45]Ding, Y.; Erlebacher, J. Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc.2003,125,7772-7773.
    [46]Dursun, A.; Pugh, D.B.; Corcoran, S.G. Probing the dealloying critical potential-Morphological characterization and steady-state current behavior. J. Electrochem. Soc.2005,152,B65-B72.
    [47]Zhang, J.T.; Liu, P.P.; Ma, H.Y.; Ding, Y. Nanostrucrured porous gold for methanol electro-oxidation. J. Phys. Chem. C.2007,111,10382-10388.
    [48]Yin, H.M.; Zhou C.Q.; Xu, X.H.; Ding, Y. Aerobic Oxidation of D-Glucose on Support-Free Nanoporous Gold. J. Phys. Chem. C 2008,112,9673-9678.
    [49]Liu, Z.N.; Huang, L.H.; Zhang, L.L.; Ma, H.Y.; Ding, Y. Electrocatalytic oxidation of d-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions. Electrochim. Acta 2009,54,7286-7293.
    [50]Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C.M.; Baumer, M. Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature. Science 2010,327,319-322.
    [51]Jia, C.C.; Yin, H.M.; Ma, H.Y.; Wang, R.Y.; Ge, X.B.; Zhou, A.Q.; Xu, X.H.; Ding, Y. Enhanced Photoelectrocatalytic Activity of Methanol Oxidation on TiO2-Decorated Nanoporous Gold. J. Phys. Chem. C2009,113,16138-16143.
    [52]Ge, X.B.;Wang, R.Y.; Liu, P.P.; Ding, Y. Platinum-decorated nanoporous gold leaf for methanol electrooxidation. Chem. Mater.2007,19,5827-5829.
    [53]Ge, X.B.; Wang, R.Y.; Cui, S.Z.; Tian, F.; Xu, L.; Ding, Y. Structure dependent electrooxidation of small organic molecules on Pt-dccorated nanoporous gold membrane catalysts. Electrochem. Commun.2008,10,1494-1497.
    [54]Ding, Y.; Chen, M.W.; Erlebacher, J. Metallicmesoporous nanocomposites for eletrocatalysis. J. Am. Chem. Soc.2004,126,6876-6877.
    [55]Meng, F.H.;_Yan, X.L.; Liu J.G.*; Gu, J.; Zou, Z.G. Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim. Acta 2011,56, 4657-4662.
    [56]Liu, Z.N.; Du, J.G.; Qiu, C.C.; Huang L.H.; Ma, H.Y.; Shen, D.Z.; Ding, Y. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold Eletrochemistry,2009,11,1365-1368.
    [57]Ge, X.B.; Wang, L.Q.; Liu, Z.N., Ding, Y, Nanoporous Gold Leaf for Amperometric Determination of Nitrite. Eletroanal.2011,23,381-386.
    [58]Qiu, H.J.; Xue, L.Y.; Ji, G.L.; Zhou, G.P. Huang, X.R. Qu, Y.B.; Gao P.J. Enzyme-modified nanoporous gold-based electrochemical biosensors. Biosens. Bioelectron.2009,24,3014-3018.
    [59]Biener, J.; Wittstock, A.; Zepeda-Ruiz, L.A., Biener, M.M.; Zielasek, V.; Kramer, D.; Viswanath, R.N.; Weissmuller, J.; Baumer, M.; Hamza, A.V. Surface-chemistry-driven actuation in nanoporous gold. Nat. Mater.2009, 8,47-51.
    [60]Kucheyev, S.O.; Hayes, J.R.; Biener, J. Surface-enhanced Raman scattering on nanoporous Au. Appl. Phys. Lett.2006,89,053102-053104.
    [61]衣宝廉,燃料电池(高效、环境友好的发电方式)[M],北京:化工出版社(第—版),2000.
    [62]Wee J.H. Which type of fuel cell is more competitive for portable application: direct methanol fuel cells or borohydride fuel cells. J. Power Sources 2006,161, 1-10.
    [63]Rose A.; Lakeman J.B; Pointon K.D. The direct borohydride fuel cell for UUV propulsion power. J. Power Sources 2006,162,765-772.
    [64]Spets, J.P.; Kuosa, M.A.; Kiros, Y.; Anttila, T.; Rantanen, J.; Lampinen, M.J.; Saari, K. Enhancement of glucose electro-oxidation by an external electromagnetic field in direct-mode fuel cells. J. Power Sources 2010,195, 475-479.
    [65]Asazawa, K.; Yamada, K.; Tanaka, H.; Taniguchi, M.; Oguro, K. Electrochemical oxidation of hydrazine and its derivatives on the surface of metal electrodes in alkaline media. J. Power Sources 2009,191,362-365.
    [66]Li, Z.P.; Liu, B.H.; Arai, K.; Suda, S. A fuel cell development for using borohydrides as the fuel. J. Electrochem. Soc.2003,150, A868-A872.
    [67]Yamada, K.; Asazawa, K.; Yasuda, K.; Ioroi, T.; Tanaka, H.; Miyazaki, Y.; Kobayashi, T. Investigation of PEM type direct hydrazine fuel cell J. Power Sources 2003,115,236-242.
    [68]Rosca, V.; Koper, M.T.M. Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions. Electrochim. Acta 2008,53,5199-5205.
    [69]Pasta, M.; La Mantia, F.; Ruffo, R.; Peri, F.; Della Pina, C.; Mari, C.M. Optimizing operating conditions and electrochemical characterization of glucose-gluconate alkaline fuel cells. J. Power Sources 2011,196,1273-1278.
    [70]林维明.燃料电池系统[M].北京:化学工业出版社(第一版),1996.
    [71]Lima, F.H.B.; Ticianelli, E.A. Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum-cobalt electrodes in alkaline media. Electrochim. Acta 2004,49,4091-4099.
    [72]Arico, A.S.; Shukla, A.K.; Kim, H.; Parkc, S.; Minc, M.; Antonucci, V. An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen. Appl. Surf. Sci.2001,172,33-40.
    [73]Li, J.; Lin, X. Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle-polypyrrole nanowire modified glassy carbon electrode. Sens. Actuators B 2007,126,527-535.
    [74]Yi, Q.; Yu, W. Nanoporous gold particles modified titanium electrode for hydrazine oxidation.J. Electroanal. Chem.2009,633,159-164.
    [75]Gao, G.Y; Guo, D.J; Wang, C.; Li, H. Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation. Electrochem. Commun.2007,9,1582-1586.
    [76]Tan, C.; Wang, F.; Liu, J.; Zhao, Y.; Wang, J.; Zhang, L.; Park, K.C.; Endo, M. An easy route to prepare carbon black-silver hybrid catalysts for electro-catalytic oxidation of hydrazine. Mater. Lett.2009,63,969-971.
    [77]Ye, W.; Yang, B.; Cao, G.; Duan, L.; Wang, C. Electrocatalytic oxidation of hydrazine compound on electroplated Pd/WO3 film. Thin Solid Films 2008,516, 2957-2961.
    [78]Dong, B.; He, B.L.; Huang, J.; Gao, G.Y.; Yang, Z.; Li, H.L. High dispersion and elcctrocatalytic activity of Pd/titanium dioxide nanotubes catalysts for hydrazine oxidation. J. Power Sources 2008,175,266-271.
    [79]Chen, L.; Hu, G.; Zou, G.; Shao, S.; Wang, X. Efficient anchorage of Pd nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Electrochem. Commun.2009,11,504-507.
    [80]Shen, Y.; Xu, Q.; Gao, H.; Zhu, N. Dendrimer-encapsulated Pd nanoparticles anchored on carbon nanotubes for electro-catalytic hydrazine oxidation. Electrochem. Commun.2009,11,1329-1332.
    [81]Yamada, K.; Yasuda, K.; Tanaka, H.; Miyazaki, Y.; Kobayashi, T. Effect of anode electrocatalyst for direct hydrazine fuel cell using proton exchange membrane. J. Power Sources 2003,122,132-137.
    [82]Jin, C.; Taniguchi, I. Electrocatalytic activity of silver modified gold film for glucose oxidation and its potential application to fuel cells. Mater. Lett.2007,61, 2365-2367.
    [83]McGinley, J.; McHale, F.N.; Hughes, P.; Reid, C.N.; McHale, A.P. Production of electrical energy from carbohydrates using a transition metal-catalysed liquid alkaline fuel cell. Biotechnol. Lett.2004,26,1771-1776.
    [84]Essis Yei, L.H.; Beden, B.; Lamy, C. Electrocatalytic oxidation of glucose at platinum in alkaline medium: on the role of temperature. J. Electroanal. Chem. Lnterfacial Electrochem.1988,246,349-362.
    [85]Beden, B.; Largeaud, F.; Kokoh, K.B.; Lamy, C. Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose:Identification of reactive intermediates and reaction products. Electrochim. Acta 1996,41,701-709.
    [86]Li, L.H.; Zhang, W.D.; Ye, J.S. Electrocatalytic Oxidation of Glucose at Carbon Nanotubes Supported PtRu Nanoparticles and Its Detection. Electroanal.2008, 20,2212-2216.
    [87]Xiao, F.; Zhao, F.; Mei, D.; Mo, Z.; Zeng, B. Nonenzymatic glucose sensor based on ultrasonic-electrode position of bimetallic PtM (M= Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosens. Bioelectron.2009,24,3481-3486.
    [88]Demirci, U.B. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J. Power Sources 2007,173, 11-18.
    [89]Cui, H.F.; Ye, J.S.; Liu, X.; Zhang, W.D.; Sheu, F.S. Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite:a strong electrocatalyst for glucose oxidation. Nanotechnology 2006,17,2334-2339.
    [90]Habrioux, A.; Sibert, E.; Servat, K.; Vogel, W.; Kokoh, K.B.; Alonso-Vante, N. Activity of platinum-gold alloys for glucose electrooxidation in biofuel cells. J. Phys. Chem.B 2007,111,10329-10333.
    [91]Basu, D.; Basu, S. A study on direct glucose and fructose alkaline fuel cell. Electrochim. Acta 2010,55,5775-5779.
    [92]Karski, S.; Witonska, I. Bismuth as an additive modifying the selectivity of palladium catalysts. Mol. Catal. A Chem.2003,191,87-92.
    [93]Karski S, Witonska. Thallium as additive modifies the selective of Pd/SiO2, catalysts. Kinetics Catal.2004,45,256-259.
    [94]Bonnemann, H.; Brijoux, W.; Brinkmann, R. Selective oxidation of glucose onbismuth-promoted Pd-Pt/C catalysts prepared from NOct4Cl-stabilized Pd-Pt colloids. Inorg. Chim. Acta 1998,270,95-110.
    [95]Biella, S.; Parati, L.; Rossi, M. SeLective oxidation of D-glucose on gold catalyst. J. Catal.2002,206,242-247.
    [96]Beotrame, P.; Comotti, M.; Della Pina, C.; Aerobic oxidation of glucose Ⅱ Catalysis by colloidal gold. Appl. Catal. A-General 2006,297,1-7.
    [1]Zelnick, S. D.; Mattie,D. R.; Stepaniak, P. C.; Occupational exposure to hydrazines:Treatment of acute central nervous system toxicity, Aviat. Space Environ. Med.2003,74,1285-1291.
    [2]Asazawa, K.; Yamada, K.; Tanaka, H.; Oka, A.; Taniguchi, M.; Kobayashi, T.; A Platinum-Free Zero-Carbon-Emission Easy Fuelling Direct Hydrazine Fuel Cell for Vehicles, Angew. Chem. Int. Ed.2007,46,8024-8027.
    [3]Tafazoli, S.; Mashregi, M.; O'Brien, P. J. Role of hydrazine in isoniazid-induced hepatotoxicity in a hepatocyte inflammation model. Toxicol Appl. Pharmacol. 2008,229,94-101.
    [4]Tostmann, A.; Boeree, M.J.; Peters, W.H.M. Isoniazid and its toxic metabolite hydrazine induce in vitro pyrazinamide toxicity. Int. J. Antimicrob. Ag.2008,31, 577-580.
    [5]Ahn, J.H.; Shin, M.S.; Jun, M.A. Synthesis, biological evaluation and structural determination of b-aminoacyl-containing cyclic hydrazine derivatives as dipeptidyl peptidase IV (DPP-IV) inhibitors. Bioorg. Med. Chem. Lett.2007,17, 2622-2628.
    [6]Brown, B.E.; Mahroof, F.M.; Cook. N.L.; Reyk, D.M.V.; Davies, M.J. Hydrazine compounds inhibit glycation of low-density lipoproteins and prevent the in vitro formation of model foam cells from glycolaldehyde-modified low-density lipoproteins. Diabetologia 2006,49,775-783.
    [7]Ragnarsson, U. Synthetic methodology for alkyl substituted hydrazines. Chem. Soc. Rev.2001,30,205-213.
    [8]Golabi, S.M.; Zare, H.R. Electrocatalytic oxidation of hydrazine at a chlorogenic acid (CGA) modified glassy carbon electrode. J. Electroanal. Chem.1999,465, 168-176.
    [9]Choudhary, G.; Hansen, H. Human health perspective on environmental exposure to hydrazines:a review. Chemosphere 1998,37,801-843.
    [10]Wang, J.; Prakash, M.; Tian, B.; Polsky, R. Capillary Electrophoresis Chips with Thick-Film Amperometric Detectors:Separation and Detection of Hydrazine Compounds. Electroanal.2000,12,691-694.
    [11]Baron, R.; Sljukic, B.; Salter, C.; Crossley, A.; Compton, R.G. Development of an Electrochemical Sensor Nanoarray for Hydrazine Detection Using a Combinatorial Approach. Electroanal.2007,19,1062-1068.
    [12]Zhang, H.J.; Huang, J.S.; Hou, H.Q.; You, T.Y. Electrochemical Detection of Hydrazine Based on Electrospun Palladium Nanoparticle/Carbon Nanofibers. Electroanal.2009,21,1869-1874.
    [13]Raoof, J.B.; Ojani, R.; Mohammadpour, Z. Electrocatalytic Oxidation and Voltammetric Determination of Hydrazine by 1,1'-Ferrocenedicarboxylic Acid at Glassy Carbon Electrode. Int. J. Electrochem. Sci.2010,5,177-188.
    [14]Li, X.F.; Zhang, S.X.; Sun, C.Q. Fabrication of a covalently attached multilayer film electrode containing cobalt phthalocyanine and its electrocatalytic oxidation of hydrazine. J. Electroanal Chem.2003,553,139-145.
    [15]Faizullah, A.T.; Townshend, A. Flow injection analysis with chem-iluminescence detection: determination of hydrazine. Anal. Proc.1985,22,15-16.
    [16]Collins, G.E.; Latturner, S.; Rose-Pehrsson, S.L. Chemiluminescence detection of hydrazine vapor. Talanta 1995,42,543-551.
    [17]Safavi, A., Baezzat, M.R. Flow injection chemiluminescence determination of hydrazine. Anal. Chim. Acta 1998,358,121-125.
    [18]Safavi, A.; Karimi, M.A. Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates Talanta 2002,58, 785-792.
    [19]Budkuley, J.S. Determination of Hydrzine and Sulphite in the Presence of one Another. Mikrochim. Acta 1992,108,103-105.
    [20]M. George, K. S. Nagaraja, N. Balasubramanian. Spectrophotometric determination of hydrazine. Talanta 2008,75,27-31.
    [21]Zhao, Y.D.; Zhang, W.D.; Chen, H.; Luo, Q.M. Anodic oxidation of hydrazine at carbon nanotube powder microelectrode and its detection. Talanta 2002,58, 529-534.
    [22]Kruusma, J.; Mould, N.; Jurkschat, K.; Crossley, A.; Banks, C.E. Single walled carbon nanotubes contain residual iron oxide impurities which can dominate their electrochemical activity. Electrochem. Commnn.2007,7,2330-2333.
    [23]Yang, C.C.; Kumar, A. S.; Kuo, M.C.; Chien, S.H.; Zen, J.M. Copper-palladium alloy nanoparticle plated electrodes for the electrocatalytic determination of hydrazine. Anal. Chim. Acta 2005,554,66-73.
    [24]Jena, B.K.; Raj, C.R. Ultrasensitive Nanostructured Platform for the Electrochemical Sensing of Hydrazine. J. Phys. Chem. C.2007,111,6228-6232.
    [25]Kannan, P.; John, S.A. Highly sensitive determination of hydroxylamine using fused gold nanoparticles immobilized on sol-gel film modified gold electrode. Anal. Chim. Acta,2010,663,158-164.
    [26]Yi, Q.; Yu, W. Nanoporous gold particles modified titanium electrode for hydrazine oxidation. J. Electroanal. Chem.2009,633,159-164.
    [27]Jin, C.; Taniguchi, I. Electrocatalytic activity of silver modified gold film for glucose oxidation and its potential application to fuel cells. Mater. Lett.2007,61, 2365-2367.
    [28]Yang, G.W.; Gao, G.Y.; Wang, C.; Xu, C.L.; Li, H.L. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon 2008,46,747-752.
    [29]Xu, C.X.; Xu, X.H.; Su, J.X.; Ding, Y. Research on unsupported nanoporous gold catalyst for CO oxidation. J. Catal.2007,252,243-248.
    [30]Zeis, R.; Tang, L.; Sieradzki, K.; Snyder, J.; Erlebacher, J. Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J. Catal.2008,253, 132-138.
    [31]Ge, X.B.; Wang, R.Y.; Liu, P.P.; Ding, Y. Platinum-decorated nanoporous gold leaf for methanol electrooxidation, Chem. Mater.2007,19,5827-5829.
    [32]Ge, X.B.; Wang, R.Y.; Cui, S.Z.; Tian, F.; Xu, L.; Ding, Y. Structure dependent electrooxidation of small organic molecules on Pt-decorated nanoporous gold membrane catalysts. Electrochem. Commun.2008,10,1494-1497.
    [33]Hu, K.; Lan, D.; Li, X.; Zhang, S. Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. Anal. Che.,2008,80,9124-9030.
    [34]Ding, Y; Erlebacher, J. Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc.2003,125,7772-7773.
    [35]Qian, L.H.; Yan, X.Q.; Fujita, T.; Inoue, A.; Chen, M.W. Surface enhanced Raman scattering of nanoporous gold:smaller pore sizes stronger enhancements. Appl. Phys. Lett.2007,90,153120-1-3.
    [36]Ding, Y.; Kim, Y.J.; Erlebacher, J. Nanoporous gold leaf "Ancient technology". Adv. Mater.2004,16,1897-1900.
    [37]Meng, F.H.; Yan, X.L.; Liu, J.G.; Gu, J.; Zou, Z.G.; Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim. Acta 2011,56, 4657-4662.
    [38]Li, J.; Lin, X.Q.; Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle-polypyrrole nanowire modified glassy carbon electrode, Sensor Actuat. B,2007,126,527-535.
    [39]Zhang, J.T.; Liu, P.P.; Ma, H.Y.; Ding, Y. Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C.2007,111,10382-10388.
    [40]Zare, H.R.; Habibirad, A.M. Electrochemistry and electrocatalytic activity of catechin film on a glassy carbon electrode toward the oxidation of hydrazine. J Solid State Electr.2006,10,348-359.
    [41]Ojani, R.; Raoof, J.B.; Norouzi, B. Acetylferrocene Modified Carbon Paste Electrode; A Sensor for Electrocatalytic Determination of Hydrazine. Electroanal. 2008,20,1378-1382.
    [1]Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006,443,63-66.
    [2]Prater, D.N.; Rusek, J.J. Energy density of a methanol/hydrogenperoxide fuel cell. Appl. Energ.2003,74,135-140.
    [3]Olson, T.S.; Blizanac, B.; Piela, B.; Davey, J.R.; Zelenay, P.; Atanassov, P. Electrochemical Evaluation of Porous Non-Platinum Oxygen Reduction Catalysts for Polymer Electrolyte Fuel Cells. Fuel cells 2009,5,547-553.
    [4]Yamazaki, S.I.; Siroma, Z.; Senoh, H.; Loroi, T.; Fujiwara, N.; Yasuda, K. A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel.J. Power Source 2008,178,20-25.
    [5]Yamada, K.; Yasuda, K.; Fujiwara, N.; Siroma, Z.; Tanaka, H.; Miyazaki, Y.; Kobayashi, Potential application of an ion-exchange membrane for hydrazine fuel cell electrolyte. T. Electrochem. Commun.2003,5,892-896.
    [6]. Cao, D.X.; Gao, Y.Y.; Wang, G.L.; Miao,R.R.; Liu, Y. A direct NaBH4-H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes. Int. J. Hydrogen energy.2010,35,807-813.
    [7]Yin W.X.; Li, Z.P.; Zhu, J.K.; Qin, H.Y. Effects of NaOH addition on performance of the direct hydrazine fuel cell. J. Power Sources 2008,182,520-523.
    [8]Asazawa, K.; Yamada, K.; Tanaka, H.; Oka, A.; Taniguchi, M.; Kobayashi, T. A Platinum-Free Zero-Carbon-Emission Easy Fuelling Direct Hydrazine Fuel Cell for Vehicles. Angew. Chem. Int. Ed.2007,46,8024-8027.
    [9]Gu, H.X.; Ran, R.; Zhou, W.; Shao, Z.P.; Jin, W.Q.; Xu, N.; Ahn, J. Solid-oxide fuel cell operated on in situ catalytic decomposition products of liquid hydrazine. J. Power Sources 2008,177,323-329.
    [10]Yamada, K.; Asazawa, K.; Yasuda, K.; Ioroi, T.; Tanaka, H.; Miyazaki, Y.; Kobayashi, T. Investigation of PEM type direct hydrazine fuel cell J. Power Sources 2003,115,236-242.
    [11]Yamada, K.; Yasuda, K.; Tanaka, H.; Miyazaki, Y.; Kobayashi, T. Effect of anode electrocatalyst for direct hydrazine fuel cell using proton exchange membrane. J. Power Sources 2003,122,132-137.
    [12]Gu, L.F.; Luo, N.; Miley, G.H. Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell.J. Power Sources 2007,173, 77-85.
    [13]Cao, D.X.; Chen, D.D.; Lan, J.; Wang, G.L. An alkaline direct NaBH4-H2O2 fuel cell with high power density. J. Power Sources 2009,190,346-350.
    [14]Lao, S.J.; Qin, H.Y.; Ye, L.Q.; Liu, B.H.; Li, Z.P. A development of direct hydrazine/hydrogen peroxide fuel cell. J. Power Sources 2010,195,4135-4138.
    [15]Jena, B.K.; Raj, C.R. Ultrasensitive Nanostrucrured Platform for the Electrochemical Sensing of Hydrazine. J. Phys. Chem. C 2007,111,6228-6232.
    [16]Li, J.; Lin, X. Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle-polypyrrole nanowire modified glassy carbon electrode. Sens. Actuators B 2007,126,527-535.
    [17]Maduralveeran, G.; Ramaraj, R. Gold nanoparticles embedded in silica sol-gel matrix as an amperometric sensor for hydrogen peroxide. J. Electroanal. Chem. 2007,608,52-58.
    [18]Zeis, R.; Tang, L.; Sieradzki, K.; Snyder, J.; Erlebacher, J. Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J. Catal.2008,253, 132-138.
    [19]Ding, Y.; Chen, M.W. Nanoporous Metals for Catalytic and Optical Applications. MRS Bull 2009,34,569-576.
    [20]Ding, Y.; Chen, M.W.; Erlebacher, J. Metallicmesoporous nanocomposites for eletrocatalysis. J. Am. Chem. Soc.2004,126,6876-6877.
    [21]Xu, C.X.; Su, J.X.; Xu, X.H.; Liu, P.P.; Zhao, H.J.; Tian, F.; Ding, Y. Low Temperature CO Oxidation over Unsupported Nanoporous Gold. J. Am. Chem. Soc.2007,129,42-43.
    [22]Wang, R.Y.; Wang, C.; Cai, W.B.; Ding, Y.; Ultralow-Platinum-Loading High-Performance Nanoporous Electrocatalysts with Nanoengineered Surface Structures. Adv. Mater.2010,22,1845-1848.
    [23]Ding, Y.; Kim, Y.J.; Erlebacher, J. Nanoporous gold leaf "Ancient technology". Adv. Mater.2004,16,1897-1900.
    [24]Zhang, J.T.; Liu, P.P.; Ma, H.Y.; Ding, Y. Nanostructured porous gold for methanol electro-oxidation.J. Phys. Chem. C.2007,111,10382-10388.
    [25]K. Doblhofer, G. Flatgen, S. Horswell, B. Pettinger, S. Wasle, K.G. Weil, Autocatalysis by the intermediate surface hydroxide formed during hydrogen peroxide reduction on silver electrodes. Surf. Sci.2009,603,1900-1903.
    [26]Choudhury N.A.; Raman, R.K.; Sampath, S.; Shukla, A.K.; An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. J. Power Sources 2005, 143,1-8.
    [1]Chaudhuri, S.K., Lovley, D.R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol.2003,21, 1229-1232.
    [2]Liu, H.; Logan, B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Techno I.2004,38,4040-4046.
    [3]Bullen, R.A.; Arnot, T.C.; Lakeman, J.B; Walsh, EC. Biofuel cells and their development. Biosens. Bioelectron.2006,21,2015-2045.
    [4]Logan, B.; Cheng, S.; Watson, V.; Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol.2007,41,3341-3346.
    [5]Freguia, S.; Rabaey, K.; Yuan, Z.G.; Keller, J. Syntrophic Processes Drive the Conversion of Glucose in Microbial Fuel Cell Anodes. Environ. Sci. Technol. 2008,42,7937-7943.
    [6]An, L.; Zhao, T.S.; Shen, S.Y.; Wu, Q.X.; Chen, R. An alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output. J. Power Sources 2011,196,186-190.
    [7]Fujiwara, N.; Yamazaki, S.; Siroma, Z.; Ioroi, T.; Senoh, H.; Yasuda, K. Nonenzymatic glucose fuel cells with an anion exchange membrane as an electrolyte. Electrochem. Commun.2009,11,390-392.
    [8]Basu, D.; Basu, S. A study on direct glucose and fructose alkaline fuel cell. Electrochim. Acta 2010,55,5775-5779.
    [9]Tominaga, M.; Taema, Y.; Taniguchi, I. Electrocatalytic glucose oxidation at bimetallic gold-copper nanoparticle-modified carbon electrodes in alkaline solution. J. Electroanal. Chem.2008,624,1-8.
    [10]Singha, B.; Laffirb, F.; McCormacc, T.; Dempseya, E. PtAu/C based bimetallic nanocomposites for non-enzymatic electrochemical glucose detection. Sensor. Actuat. B 2010,150,80-92.
    [11]Li, L.H.; Zhang, W.D.; Ye, J.S. Electrocatalytic Oxidation of Glucose at Carbon Nanotubes Supported PtRu Nanoparticles and Its Detection. Electroanal.2008, 20,2212-2216.
    [12]Xiao, F.; Zhao, F.; Mci, D.; Mo, Z.; Zeng, B. Nonenzymatic glucose sensor based on ultrasonic-electrode position of bimetallic PtM (M=Ru, I'd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosens. Bioelectron.2009,24,3481-3486.
    [13]Cui, H.F.; Ye, J.S.; Liu, X.; Zhang, W.D.; Sheu, F.S. Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite:a strong electrocatalyst for glucose oxidation. Nanotechnology 2006,17,2334-2339.
    [14]Stetten, F.V.; Kerzenmacher, S.; Lorenz, A.; Chokkalingam, V.; Miyakawa, N.; Zengerle, R.; Ducree, J. A one-compartment, direct glucose fuel cell for powering long-term medical implants. MEMS,19th IEEE International Conference 2006,934-937.
    [15]Mor, L.; Bubis, E.; Hemmes, K.; Schechner, P. Performance of a Glucose AFC. 11th IEEE International Conferen 2004,278-281.
    [16]Jin, C.; Taniguchi, I. Electrocatalytic activity of silver modified gold film for glucose oxidation and its potential application to fuel cells. Mater. Lett.2007,61, 2365-2367.
    [17]McGinley, J.; McHale, F.N.; Hughes, P.; Reid, C.N.; McHale, A.P. Production of electrical energy from carbohydrates using a transition metal-catalysed liquid alkaline fuel cell. Biotechnol. Lett.2004,26,1771-1776.
    [18]Mor, L.; Rubin, Z.; Schechner, P. Measuring Open Circuit Voltage in a Glucose Alkaline Fuel Cell Operated as a Continuous Stirred Tank Reactor. J. Fuel Cell Sci. Tech.2008,5,014503-1-4.
    [19]Spets, J.P.; Kiros, Y.; Kuosa, M.A.; Rantanen, J.; Lampinen, M.J.; Saari, K. Bioorganic materials as a fuel source for low-temperature direct-mode fuel cells Electrochim. Acta 2010,55,7706-7709.
    [20]Pinchas S.; Ehud K.; Eugenia B.; Shmuel C.; Eyal Z.; Silver-Plated Electrospun Fibrous Anode for Glucose Alkaline Fuel Cells; J. Electrochem. Soc.2007,154, B942-B948.
    [21]Guerra-Balcazar, M.; Morales-Acosta, D.; Castaneda, F.; Ledesma-Garcia, J.; Arriaga, L.G. Synthesis of Au/C and Au/Pani for anode electrodes in glucose microfluidic fuel cell. Electrochem. Commun.2010,12,864-867.
    [22]Ryu, J.; Kimb, H.S.; Thomas, H.; Lashmore, D. Carbon nanotubes with platinum nano-islands as glucose biofuel cell electrodes. Biosens. Bioelectron.2010,25, 1603-1608.
    [23]An, L.; Zhao, T.S.; Wu, Q.X.; Chen, R.; Shen, S.Y. Performance of a direct ethylene glycol fuel cell with an anion-exchange membrane. Int. J. Hydrogen Energy 2010,35,4329-4335.
    [24]Li, Y.S.; Zhao, T.S; Liang, Z.X. Performance of alkaline electrolyte-membrane based direct ethanol fuel cells. J. Power Sources,2009,187,387-392.
    [25]Li, Y.S.; Zhao, T.S.; Yang, W.W. Measurements of water uptake and transport properties in anion-exchange membranes. Int. J. Hydrogen Energy,2010,35, 5656-5665.
    [26]Fieser, L. F., Fieser, M. Advanced Organic Chemistry, Reinhold Publishing Corporation, New York,1963, p.941.
    [27]Rao, M.L.B.; Drake, R.F.; Studies of electrooxidation of dextrose in neutral media,J. Electrochem. Soc.1969,116,334-337.
    [28]Park, S.; Boo, H.; Chung, T.D. Electrochemical non-enzymatic glucose sensors, Anal. Chim. Acta.2006,556,46-57.
    [29]Cosnier, S.; Szunerits, S.; Marks, R.S.; Novoa, A.; Puech, L.; Perez, E.; Rico-Lattes, I. A rapid and easy procedure of biosensor fabrication by micro-encapsulation of enzyme in hydrophilic synthetic latex films. Application to the amperometric determination of glucose, Electrochem. Commun.2000,2, 851-855.
    [30]Habrioux, A.; Sibert, E.; Servat, K.; Vogel, W.; Kokoh, K.B.; Alonso-Vante, N. Activity of platinum-gold alloys for glucose electrooxidation in biofuel cells, J. Phys. Chem.B 2007,111,10329-10333.
    [31]Spets, J.P.; Kuosa, M.A.; Kiros, Y.; Anttila, T.; Rantanen, J.; Lampinen, M.J.; Saari, K. Enhancement of glucose electro-oxidation by an external electromagnetic field in direct-mode fuel cells. J. Power Sources 2010,195, 475-479.
    [32]Lei, H.W.; Wu, B.; Cha, C.S.; Kita, H. Electro-oxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additives, J. Electroanal. Chem.1995,382,103-110.
    [33]Beden, B.; Largeaud, F.; Kokoh, K.B.; Lamy, C. Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose:Identification of reactive intermediates and reaction products. Electrochim. Acta 1996,41,701-709.
    [34]Wang, J.; Thomas, D.F.; Chen, A. Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks, Anal. Chew.2008,80,997-1004.
    [35]Xiao, F.; Zhao, F.; Mei, D.; Mo, Z.; Zeng,13. Nonenzymatic glucose sensor based on ultrasonic-electrode position of bimetallic PtM (M= Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosens. Bioelectron.2009,24,3481-3486.
    [36]Jin, C.; Chen, Z.; Electrocatalytic oxidation of glucose on gold-platinum nanocomposite electrodes and platinum-modified gold electrodes, Synth. Met. 2007,157,592-596.
    [37]Popovic, K.D.; Markovic, N.M.; Tripkovic, A.V.; Adzic, R.R. Structural effects in electrocatalysis:Oxidation of D-glucose on single crystal platinum electrodes in alkaline solution, J. Electroanal Chem.1991,313,181-199.
    [38]Tominaga, M.; Shimazoe, T.; Nagashima, M.; Taniguchi, I. Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions, Electrochem. Commun.2005,7,189-193.
    [39]Aoun, S.B.; Dursun, Z.; Koga, T.; Bang, G.S.; Sotomura, T.; Taniguchi, I. Electrocatalytic properties of platinum particles incorporated with polypyrrole films in D-glucose oxidation in phosphate media, J. Electroanal. Chem.2004, 576,175-193.
    [40]Ye, J.S.; Wen, Y.; Zhang, W.D.; Gan, L.M.; Xu, G.Q.; Sheu, F.S. Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes, Electrochem. Commun.2004,6,66-70.
    [41]Yuan, J.; Wang, K.; Xia, X.; Highly ordered platinum-nanotubule arrays for amperometric glucose sensing, Adv. Funct. Mater.2005,15,803-809.
    [42]Park, S.; Chung, T.D.; Kim, H.C. Nonenzymatic glucose detection using Mesoporous platinum, Anal. Chem.2003,75,3046-3409.
    [43]Hindle, P.H.; Nigro, S.; Asmussen, M.; Chen, A. Amperometric glucose sensor based on platinum-iridium nanomaterials, Electrochem. Commun.2008,10, 1438-1441.
    [44]Zhang, J.T.; Liu, P.P.; Ma, H.Y.; Ding, Y. Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C.2007,111,10382-10388.
    [45]Ge, X.B.;Wang, R.Y.; Liu, P.P.; Ding, Y. Platinum-decorated nanoporous gold leaf for methanol electrooxidation, Chem. Mater.2007,19,5827-5829.
    [46]Ge, X.B.; Wang, R.Y.; Cui, S.Z.; Tian, F.; Xu, L.; Ding, Y. Structure dependent electrooxidation of small organic molecules on Pt-decorated nanoporous gold membrane catalysts, Electrochem. Commun.2008,10,1494-1497.
    [47]Ding, Y.; Chen, M.W.; Erlebacher, J. Metallicmesoporous nanocomposites for eletrocatalysis. J. Am. Chem. Soc.2004,126,6876-6877.
    [48]Meng, F.H.; Yan, X.L.; Liu J.G.*; Gu, J.; Zou, Z.G. Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim. Acta 2011,56, 4657-4662.
    [49]Bubis, E.; Mor, L.; Kaufman; Schechner P., Hemmes K.; Saccharide fuel cells with platinum particles anode.23rd IEEE Convention of Electrical and Electronics Engineers in Israel 2004,350-353.
    [50]Schofield, E.J.; Ingham, B.; Turnbull, A.; Toney M. F.; Ryan, M.P. Strain Development in Nanoporous Metallic Foils Formed by Dealloying, Appl. Phys. Lett.2008,92,043118.
    [51]Jia, C.C.; Yin, H.M.; Ma, H.Y.; Wang, R.Y.; Ge, X.B.; Zhou, A.Q.; Xu, X.H.; Ding, Y. Enhanced Photoelectrocatalytic Activity of Methanol Oxidation on TiO2-Decorated Nanoporous Gold. J. Phys. Chem. C2009,113,16138-16143.
    [52]Zebda, A.; Renaud, L.; Cretin, M.; Innocent, C.; Pichot, F.; Ferrigno, R.; Tingry, S. Electrochemical performance of a glucose/oxygen microfluidic biofuel cell. J. Power Sources 2009,193,602-606.
    [53]Liu, Y.; Dong, S. A biofuel cell harvesting energy from glucose-air and fruit juice-air. Biosens. Bioelectron.2007,23,593-597.
    [1]Lee, C.;K., Darah, I.; Ibrahim C.O.; Enzymatic deinking of laser printed office waste papers:Some governing parameters on deinking efficiency. Bioresour. Technol.2007,98,1684-1689.
    [2]Diebold, G.; Mosenthin, R.; Piepho, H.P.; Sauer WC. Effect of supplementation of xylanase and phospholipase to a wheat-based diet for weanling pigs on nutrient digestibility and concentrations of microbial metabolites in ileal digesta and feces. J. Anim. Sci.2004,82,2647-2656.
    [3]Rouau, X.; Daviet, S.; Tahir, T.; Cherel, B.; Saulnier, L. Effect of the proteinaceous wheat xylanase inhibitor XIP-I on the performances of an Aspergillus niger xylanase in breadmaking.J. Sci. Food. Agric.2006,86, 1604-1609.
    [4]Jiang, Z.Q.; Bail, A.L.; Wu, A. Effect of the thermostable xylanase B (XynB) from Thermotoga maritima on the quality of frozen partially baked bread. J. Cereal. Sci. 2008,47,172-179.
    [5]Courtin, C.M.; Roelants, A.; Delcour, J.A. Fractionation-Reconstitution Experiments Provide Insight into the Role of Endoxylanases in Bread-Making. J. Agric. Food. Chem.1999,47,1870-1877.
    [6]Maalej-Achouri, I.; Guerfali, M.; Gargouri, A.; Belghith, H. Production of xylo-oligosaccharides from agro-industrial residues using immobilized Talaromyces thermophilus xylanase. J. Mol. Catal.. B:Enzym.2009,59,145-152.
    [7]Beg, Q.K.; Bhushan, B.; Kapoor, M.; Hoondal, G.S. Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb. Technol.2000,27, 459-466.
    [8]Senthilkumar, S.R.; Dempsey, M.; Krishnan, C.; Gunasekaran, P. Optimization of biobleaching of paper pulp in an expanded bed bioreactor with immobilized alkali stable xylanase by using response surface methodology. Bioresour: Technol.2008, 99,7781-7787.
    [9]Lazaro, R.; Garcia, M.; Aranibar, M.J. Effect of enzyme ad2dition to wheat-barley-and rye-based diets on nutrient digestibility and performance of laying hens. British. Poultry Sc.2003,44,256-265.
    [10]Preston, C.M.; Mccracken, K.J.; Mcallister, A. Effect of diet form and enzyme supplementation on growth, efficiency and energy utilization of wheat-based diets for broilers. British. Poultry Sci.2000,41,324-331.
    [11]Kim, J.C.; Mullan, B.P.; Pluske, J.R. A comparison of waxy versus non-waxy wheats in diets for weaner pigs:effects of particle size,enzyme supplementation, and collection day on total tract apparent digestibility and pig performance. Anim. Feed Sci. Tech.2005,120,51-65.
    [12]Bedford, M.R. Exogenous enzymes in monogastric nutrition-their current value and future benefits. Anim. Feed Sci. tech.2000,86,1-13.
    [13]Vahjen, W.; Glaser, K.; Schafer, K. Influence of xylanase-supplemented feed on the development of selected bacterial groups in the intestinal tract of broiler chicks. J. Agr. Sci.1998,130,489-500.
    [14]Kim, J.C.; Simmins, P.H.; Mullan, B.P. The digestible energy value of wheat for pigs, with special reference to the post-weaned animal. Anim. Feed Sci. Tech. 2005,122,257-287.
    [15]Hogberg, A.; Lindberg, J.E. Influence of cereal non-starch polysac-charides and enzyme supplementation on digestion site and gut environment in weaned piglets. Anim. Feed Sci. Tech.2004,116,113-128.
    [16]Uysal, H.; Bilgicli, N.; Elgun, A. Effect of dietary fibre and xylanase enzyme addition on the selected properties of wire-cut cookies. J. Food Eng.2007,78, 1074-1078.
    [17]Jiang, Z.Q. Li, X.T.; Yang, S.Q. Improvement of the bread-making quality of wheat flour by the hyperthermophilic xylanase B from Thermotoga maritime. Food Res. Int.2005,38,37-43.
    [18]Li, Y.; Lu, J.; Gu, G.X. Studies on water2extractable arabinoxylans during malting and brewing. Food Chem.2005,93,33-38.
    [19]Zhao, J.; Li, X.Z.; Qu, Y.B. Application of enzymes in producing bleached pulp from wheat straw. Bioresource Technol.2006,97,1470-1476.
    [20]Khandeparkar, R.; Bhosle, N.B. Application of thermoalkalophilic xylanase from a rthrobacter sp. MTCC 5214 in biobleaching of kraft pulp. Bioresource Technol. 2007,98,897-903.
    [21]Jiang, Z.Q.; Li, X.T.; Yang, S.Q. Biobleach boosting effect of recombinant xylanase B from the hyperthermophilic Thermotoga maritimaon wheat straw pulp. Appl. Microbiol Biotechnol.2006,70,65-71.
    [22]Christopher, L.; Bissoon, S.; Singh, S. Bleach-enhancing abilities of thermomyces lanuginosusxylanases produced by solid state fermentation. Process Biochem.2005,40,3230-3235.
    [23]Chauhan, S.; Choudhury, B.; Singh, S.N. Application of xylanase enzyme of bacillus coagulans as a prebleaching agent on non-woody pulps. Process Biochem.2006,41,226-231.
    [24]Ninawe, S.; Kuhad, R.C. Bleaching of wheat straw-rich soda pulp with xylanase from a thermoalkalophilic Streptomyces cyaneus SN32. Bioresource Technol. 2006,97,2291-2295.
    [25]Haki, G.D.; Rakshit, S.K. Developments in industrially important thermostable enzymes:a review. Bioresource Technol.2003,89,17-34.
    [26]Saha, B.C.; Iten, L.B.; Cotta, M.A. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 2005,40,3693-3700.
    [27]Karl, G.; Gerd, K.; Christoph, K. Thermophilic xylanase from Thermomyces lanuginosus High-resolution X-ray structure and modeling studies. Biochem. 1998,37,13475-13485.
    [28]Qasim, K.B.; Bharat, B.; Mukesh, K.; Hoondal, G.S. Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb. Tech.2000,27,459-466.
    [29]Sarah, H.; Edmond, M.; Jakki, C.; Hodnett, B.K. Methodology for the immobilization of Enzymes onto Mesoporous Materials. J. Phys. Chem. B,2005, 109,19496-19506.
    [30]Schechner, P.; Kroll, E.; Bubis, E.; Chervinsky, S.; Zussman, E. Silver-Plated Electrospun Fibrous Anode for Glucose Alkaline Fuel Cells Journal of The Electrochem. Soc.2007,154, B942-B948.
    [31]Tan, S.S.; Li, D.Y.; Jiang, Z.Q. Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima xylanase B (XynB) immobilized on nickel-chelated Eupergit C. Bioresource Technol.2008,99, 200-204.
    [32]Gouda, M.K.; Abdel-Naby, M.A. Catalytic properties of the immobilized aspergillus tamarii xylanase. Microbiol Res.2002,157,275-281.
    [33]Gawande, P.V.; Kamat, M.Y. Preparation, characterization and application of aspergillus sp. xylanase immobilized on Eudragit S-100. J. Biotechnol.1998,66, 165-175.
    [34]Ai, Z.L.; Jiang, Z.Q; Li, L.; Deng, W.; Kusakabe, I.; Li, H.S. Immobilization of streptomyces olivaceoviridis E-86 xylanase on Eudragit S-100 for xylo-oligosaccharide production. Process Biochem.2005,40,2707-2714.
    [35]Sardar, M.; Roy, I.; Gupta, M.N. Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversibly soluble polymer EudragitTM L-100. Enzyme Microb. Teclmol.2000,27,672-679.
    [36]Mesta, L.; Heyraud, A.; Joseleau, J.P.; Coulet, P.R. Catalytic properties of endoxylanase fusion proteins from Neocallimastix frontalis and effect of immobilization onto metal-chelate matrix. J. Biotechnol.2003,101,253-265.
    [37]Cano, A.; Minguillon, C.; Palet, C. Immobilization of endo-1,4-β-xylanase on polysulfone acrylate membranes:Synthesis and characterization. J. Membrane Sci.2006,280,383-388.
    [38]Sarbu, A.; de Pinho, M.N.; Freixo, M.D.; Goncalves, F.; Udrea, I. New method for the covalent immobilization of a xylanase by radical grafting of acrylamide on cellulose acetate membranes. Enzyme Microb. Technol.2006,39,125-130.
    [39]Hung, Y.J.; Peng, C.C.; Tzen, J.T.C.; Chen, M.J.; Liu, J.R. Immobilization of neocallimastix patriciarum xylanase on artificial oil bodies and statistical optimization of enzyme activity. Bioresource Technol.2008,99,8662-8666.
    [40]Liu, J.H.; Selinger, L.B.; Cheng, K.J.; Beauchemin, K.A.; Moloney, M.M. Plant seed oil-bodies as an immobilization matrix for a recombinant xylanase from the rumen fungus Neocallimastix patriciarum. Mol. Breeding 1997,3,463-470.
    [41]Rogalski, J.; Szczodrak, J.; Dawidowicz, A.; Ilczuk, Z.; Leonowica, A. immobilization of cellulase and d-xylanase complexes from Aspergillusterreus F-413 on controlled porosity glasses. Enzyme Microb. Technol.1985,7,395-400.
    [42]Tyagi, R.; Gupta, M.N. Immobilization of Aspergillus niger xylanase on magnetic latex beads. Biotechnol. Appl. Biochem.1995,21,217-22.
    [43]Dumitriu, S.; Chornet, E. Immobilization of xylanase in chitosan-xanthan hydrogels. Biotechnol. Progr.1997,13,539-545.
    [44]Kapoor, M.; Kuhad, R.C. Immobilization of Xylanase from Bacillus pumilus strain MK001 and its Application in Production of Xylo-oligosaccharides. Appl. Biochem. Biotechnol.2007,142,125-138.
    [45]Shah, S.; Gupta, M.N. Simultaneous refolding, purification and immobilization of xylanase with muti-walled carbon nanotubes. Biochim Biophys Acta,2008, 1784,363-367.
    [46]Chen, J.; Tang, J.H.; Yan, F.; Ju, H.X. A gold nanoparticles/sol-gcl composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay. Biomaterials 2006,27,2313-2321.
    [47]Wang, X.; Liu, X.; Yan, X. Zhao, P.; Ding, Y.; Xu, P. Enzyme-nanoporous gold biocomposite:excellent biocatalyst with improved biocatalytic performance and stability. PLoS ONE 2011, doi 10.1371/journal.pone.0024207.
    [48]Qiu, H.J.; Xue, L.Y.; Ji, G.L.; Zhou, GP. Huang, X.R. Qu, Y.B.; Gao P.J. Enzyme-modified nanoporous gold-based electrochemical biosensors. Biosens. Bioelectron.2009,24,3014-3018.
    [49]Torronen, A.; Harkkil, A.; Rouvinen, J. Three-dimensional structure of endo-1,4-β-xylanase Ⅱ from Trichoderma reesei:two conformational states in the active site. EMBO J.1994,13,2493-2501.
    [50]Kumar, A.; Mandal, S.; Selvakannan, P.R.; Pasricha, R.; Mandale, A.B.; Sastry, M. Investigation into the Interaction between Surface-Bound Alkylamines and Gold Nanoparticles. Langmuir 2003,19,6277-6282.
    [51]Bensebaa, F.; Zhou, Y.; Deslands, Y.; Kruus, E.; Eills, T.H. XPS study of metal-sulfur bonds in metal-alkanethiolate materials. Surf. Sci.1998,405, 472-476.
    [I]S. D. Zelnick, D. R. Mattic, P. C. Stepaniak, Occupational exposure to hydrazines: Treatment of acute central nervous system toxicity. Aviat. Space Environ. Med.74 (2003) 1285-1291.
    [2]K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi, T. Kobayashi, A Platinum-Free Zero-Carbon-Emission Easy Fuelling Direct Hydrazine Fuel Cell for Vehicles. Angew. Chem. Int. Ed.46 (2007) 8024-8027.
    [3]S. Tafazoli, M. Mashregi, P. J. O'Brien et al. Role of hydrazine in isoniazid-induced hepatotoxicity in a hepatocyte inflammation model, Toxicol. Appl. Pharmacol.229 (2008) 94-101.
    [4]B. E. Brown, F. M. Mahroof, N. L. Cook, D.M.V. Reyk, M.J. Davies, Hydrazine compounds inhibit glycation of low-density lipoproteins and prevent the in vitro formation of model foam cells from glycolaldehyde-modified low-density lipoproteins. Diabetologia 49 (2006) 775-783.
    [5]U. Ragnarsson. Synthetic methodology for alkyl substituted hydrazines. Chem. Soc. Rev.30(2001)205-213.
    [6]S. M. Golabi, H. R. Zare, Electrocatalytic oxidation of hydrazine at a chlorogenic acid (CGA) modified glassy carbon electrode. J. Electroanal. Chem.465 (1999) 168-176.
    [7]G. Choudhary, H. Hansen, Human health perspective on environmental exposure to hydrazines:a review. Chemosphere,37 (1998) 801-843.
    [8]J. Wang, M. Prakash, B. Tian, R. Polsky. Capillary Electrophoresis Chips with Thick-Film Amperometric Detectors:Separation and Detection of Hydrazine Compounds. Electroanal.12 (2000) 691-694.
    [9]R. Baron, B. Sljukic, C. Salter, A. Crossley, R. G. Compton. Development of an Electrochemical Sensor Nanoarray for Hydrazine Detection Using a Combinatorial Approach. Electroanal.19(2007) 1062-1068.
    [10]H. J. Zhang, J. S. Huang, H. Q. Hou, T. Y. You. Electrochemical Detection of Hydrazine Based "on Electrospun Palladium Nanoparticle/Carbon Nanofibers. Electroanal.21 (2009) 1869-1874.
    [11]J. B. Raoof, R. Ojani, Z. Mohammadpour, Mohammadpour, Z. Electrocatalytic Oxidation and Voltammetric Determination of Hydrazine by 1,1'-Ferrocenedicarboxylic Acid at Glassy Carbon Electrode. Int. J. Elcctrochem. Sci.5(2010) 177-188.
    [12]X. Li, S. Zhang, C. Sun, Fabrication of a covalently attached multilayer film electrode containing cobalt phthalocyanine and its electrocatalytic oxidation of hydrazine. J. Electroanal. Chem.553 (2003) 139-145.
    [13]G. E. Collins, S. Latturner, S. L. Rose-Pehrsson, Chemiluminescence detection of hydrazine vapor. Talanta,42 (1995) 543-551.
    [14]J. S. Budkuley, Determination of Hydrzine and Sulphite in the Presence of one Another, Mikrochim. Acta 108 (1992) 103-105.
    [15]M. George, K. S. Nagaraja, N. Balasubramanian, Spectrophotometric determination of hydrazine, Talanta 75 (2008) 27-31.
    [16]Y. D. Zhao, W. D. Zhang, H. Chen, Q. M. Luo, Anodic oxidation of hydrazine at carbon nanotube powder microelectrode and its detection. Talanta 58 (2002) 529-534.
    [17]J. Kruusma, N. Mould, K. Jurkschat, A. Crossley, C. E. Banks, Single walled carbon nanotubes contain residual iron oxide impurities which can dominate their electrochemical activity, Electrochem. Commun.7 (2007) 2330-2333.
    [18]C. C. Yang, A. S. Kumar, M. C. Kuo, S. H. Chien, J. M. Zen, Copper-palladium alloy nanoparticle plated electrodes for the electrocatalytic determination of hydrazine. Anal. Chim. Acta 554 (2005) 66-73.
    [19]J. Li, X. Q. Lin, Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle-polypyrrole nanowire modified glassy carbon electrode, Sensor Actuat. B,126 (2007) 527-535.
    [20]B. K. Jena, C. R. Raj, Ultrasensitive Nanostructured Platform for the Electrochemical Sensing of Hydrazine, J. Phys. Chem. C,111 (2007) 6228-6232.
    [21]Q. Yi, W. Yu. Nanoporous gold particles modified titanium electrode for hydrazine oxidation. J. Electroanal. Chem.633 (2009) 159-164.
    [22]P. Kannan, S.A. John. Highly sensitive determination of hydroxylamine using fused gold nanoparticles immobilized on sol-gel film modified gold electrode, Anal. Chim. Acta 663 (2010) 158-164.
    [23]G. W. Yang, G. Y. Gao, C. Wang, C. L. Xu, H. L. Li, Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation, Carbon 46 (2008) 747-752.
    [24]S. Chakraborty, C. R. Raj, Carbon nanotube supported platinum nanoparticles for the voltammetric sensing of hydrazine. Sensor. Actual. B-Cliem.147 (2010) 222-227.
    [25]C. X. Xu, J. X. Su, X. H. Xu, P. P. Liu, H. J. Zhao, F. Tian, Y. Ding, Low Temperature CO Oxidation over Unsupported Nanoporous Gold. J. Am. Chem. Soc.129(2007)42-43.
    [26]C. X. Xu, X. H. Xu, J. X. Su, Y. Ding, Research on unsupported nanoporous gold catalyst for CO oxidation. J. Catal.252 (2007) 243-248.
    [27]X. B. Ge, R. Y. Wang, P. P. Liu, Y. Ding, Platinum-Decorated Nanoporous Gold Leaf for Methanol Electrooxidation. Chem. Mater.19 (2007) 5827-5829.
    [28]X. B. Ge, R.Y. Wang, S. Z. Cui, F. Tian, L. Q. Xu, Y. Ding, Structure dependent electrooxidation of small organic molecules on Pt-decorated nanoporous gold membrane catalysts. Electrochem. Commun.10 (2008) 1494-1497.
    [29]R. Zeis, L. Tang, K. Sieradzki, J. Snyder, J. Erlebacher, Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J. Catal.253 (2008) 132-138.
    [30]K. C. Hu, D. X. Lan,X. M. Li, S. S. Zhang. Electrochemical DNA Biosensor Based on Nanoporous Gold Electrode and Multifunctional Encoded DNA-Au Bio Bar Codes. Anal. Chem.80 (2008) 9124-9130.
    [31]Y. Ding, J. Erlebacher, Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc.125 (2003) 7772-7773.
    [32]Y. Ding, Y.J. Kim, J. Erlebacher. Nanoporous gold leaf "Ancient technology" Adv. Mater.16 (2004) 1897-1900.
    [33]L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen. Surface enhanced Raman scattering of nanoporous gold:smaller pore sizes stronger enhancements. Appl. Phys. Lett.90 (2007) 153120-1-3.
    [34]H. Qiu, L. Xue, G Ji, G Zhou, X. Huang, Y Qu, P. Gao, Enzyme-modified nanoporous gold-based electrochemical biosensors. Biosens. Bioelectron.24 (2009)3014-3018.
    [35]J. T. Zhang, P. P. Liu, H. Y. Ma, Y. Ding. Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C. 111 (2007) 10382-10388.
    [36]H. R. Zare, A.M. Habibirad. Electrochemistry and electrocatalytic activity of catechin film on a glassy carbon electrode toward the oxidation of hydrazine. J Solid State Electr.10 (2006) 348-359.
    [37]R. Ojani, J-B. Raoof, B. Norouzi, Acetylferrocene Modified Carbon Paste Electrode; A Sensor for Electrocatalytic Determination of Hydrazine. Electroanal. 20(2008) 1378-1382.
    [1]K. Yamada, K. Yasuda, N. Fujiwara, Z. Siroma, H. Tanaka, Y. Miyazaki, T. Kobayashi, Electrochem. Commun.2003,5,892.
    [2]W. Yin, Z.P. Li, J.K. Zhu, H.Y. Qin, J. Power Sources 2008,82,520.
    [3]K. Yamada, K. Asazawaa, K. Yasuda, T. loroi, H. Tanaka, Y. Miyazaki, T. Kobayashi,J. Power Sources 2003,115,236.
    [4]K. Yamada, K. Yasuda, H. Tanaka, Y. Miyazaki, T. Kobayashi, J. Power Sources 2003,122,132.
    [5]K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi, T. Kobayashi, Angew. Chem. Int. Ed.2007,46,8024.
    [6]H. Gu, R. Ran, W. Zhou, Z. Shao, W. Jin, N. Xu, J. Ahn, J. Power Sources 2008, 777,323.
    [7]L. Gu, N. Luo, G.H. Miley, J. Power Sources 2007,173,77.
    [8]D. Cao, D. Chen, J. Lan, G. Wang, J. Power Sources 2009,190,346.
    [9]S.J Lao, H.Y. Qin, L.Q. Ye, B.H. Liu, Z.P. Li, J. Power Sources 2010,195,4135.
    [10]J. Li, X. Lin, Sensor. Actuat. B-Chem.2007,126,527.
    [11]B.K. Jena, C. R. Raj, J. Phys. Chem. C.2007,111,6228.
    [12]G. Maduralveeran, R. Ramaraj, J. Electroanal. Chem.2007,608,52.
    [13]R. Zeis, L. Tang, K. Sieradzki, J. Snyder, J. Erlebacher, J. Catal.2008,253,132.
    [14]Y. Ding, M.W. Chen, MRS Bull.2009,34,569.
    [15]Y. Ding, Y. J. Kim, J. Erlebacher, Adv. Mater.2004,16,1897.
    [16]Y. Ding, M.W. Chen, J. Erlebacher, J. Am. Chem. Soc.2004,126,6876.
    [17]J.T. Zhang, P.P. Liu, H.Y. Ma, Y. Ding, J. Phys. Chem. C 2007,111,10382.
    [18]C.X. Xu, J.X. Su, X.H. Xu, P.P. Liu, H.J. Zhao, F. Tian, Y. Ding, J. Am. Chem. Soc.2007,129,42.
    [19]R.Y. Wang, C. Wang, W.B. Cai, Y. Ding, Adv. Mater.2010,22,1845.
    [20]K. Doblhofer, G. Flatgen, S. Horswell, B. Pettinger, S. Wasle, K.G. Weil, Surf. Sci. 2009,603,1900.
    [21]GH. Miley, N. Luo, J. Mather, et al. J. Power Sources 2007,165,509.
    [22]E.D. Byrd, G. H. Miley, J. Power Sources 2008,176,222.
    [23]N.A. Choudhury, R.K. Raman, S. Sampath, A.K. Shukla, J. Power Sources 2005, 143,1.
    [24]D.X. Cao, Y.Y. Gao, G.L. Wang, R.R. Miao, Y. Liu, Int. J. Hydrogen energy.2010,35,807.
    [1]M.L.B. Rao, R.F. Drake, J. Electrochem. Soc.116,334 (1969)
    [2]S. Park, H. Boo, T.D. Chung, Anal. Chim. Acta.556,46 (2006)
    [3]S. Cosnier, S. Szunerits, R.S. Marks, A. Novoa, L. Puech, E. Perez, I. Rico-Lattes,Electrochem. Commun.2,851 (2000).
    [4]A. Habrioux, E. Sibert, K. Servat, W. Vogel, K. B. Kokoh, N. Alonso-Vante, J. Phys. Chem. B.111,10329 (2007)
    [5]J.P. Spetsa, M.A. Kuosa, Y. Kiros, T. Anttila, J. Rantanen, M.J. Lampinen, K. Saari, J. Power Sources.195,475 (2010)
    [6]H.W. Lei, B. Wu, C.S. Cha, H. Kita, J. Electroanal. Chem.382,103 (1995)
    [7]B. Beden, F. Largeaud, K.B. Kokoh, C. Lamy, Electrochim. Acta.41,701 (1996)
    [8]J. Wang, D.F. Thomas, A. Chen, Anal. Chem.80,997 (2008)
    [9]H.F. Cui, J.S. Ye, X. Liu, W.D. Zhang, F.S. Sheu, Nanotechnology 17,2334 (2006)
    [10]F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Biosens. Bioelectron.24,3481 (2009).
    [11]L.H. Li, W.D. Zhang, J.S. Ye, Electroanalysis 20,2212 (2008)
    [12]C. Jin, Z. Chen, Synth. Met.157,592 (2007)
    [13]K.D. Popovic, N.M. Markovic, A.V. Tripkovic, R.R. Adzic, J. Electroanal. Chem.313,181 (1991)
    [14]M. Tominaga, T. Shimazoe, M. Nagashima, I. Taniguchi, Electrochem. Commun.7,189(2005)
    [15]S.B. Aoun, Z. Dursun, T. Koga, G.S. Bang, T. Sotomura, I. Taniguchi, J. Electroanal. Chem.576,175 (2004)
    [16]J.S. Ye, Y. Wen, W.D. Zhang, L.M. Gan, G.Q. Xu, F.S. Sheu, Electrochem. Commun.6,66 (2004)
    [17]J. Yuan, K. Wang, X. Xia, Adv. Funct. Mater.15,803 (2005)
    [18]S. Park, T.D. Chung, H.C. Kim, Anal. Chem.75,3046 (2003)
    [19]P.H. Hindle, S. Nigro, M. Asmussen, A. Chen, Electrochem. Commun.10,1438 (2008)
    [20]Y. Ding, Y. J. Kim, J. Erlebacher, Adv. Mater.16,1897 (2004)
    [21]J. Zhang, P. Liu, H. Ma, Y. Ding, J. Phys. Chem. C.111,10382 (2007)
    [22]X. Gc, R. Wang, P. Liu, Y. Ding, Chem. Mater.19,5827 (2007).
    [23]X. Ge, R. Wang, S. Cui, F. Tian, L. Xu, Y. Ding, Elcctrochem. Commun.10, 1494 (2008)
    [24]Y. Ding, M. Chen, J. Erlebacher, J. Am. Chem. Soc.126,6876 (2004)
    [25]R. Zeis, A. Mathur, G. Fritz, J. Lee, J. Erlebacher, J. Power Sources 165,65 (2007)
    [26]E. J. Schofield, B. Ingham, A. Turnbull, M. F. Toney, M. P. Ryan, Appl. Phys. Lett.92,043118(2008)
    [27]M. W. Hsiao, R.R. Adzic, E. B. Yeager, J. Electrochem. Soc.143,759 (1996)
    [28]F. Stetten, S. Kerzenmacher, A. Lorenz, V. Chokkalingam, N. Miyakawa, R. Zengerle, J. Ducree, MEMS,19,934 (2006)
    [29]D. Basu, S. Basu, Electrochimica Acta 55,5775 (2010)
    [30]C. Jin, I. Taniguchi, Mater. Lett.61,2365 (2007)
    [1J Lee CK, Darah I, Ibrahim CO. Enzymatic deinking of laser printed office waste papers:Some governing parameters on deinking efficiency. Bioresour Tcchnol 2007;98:1684-1689.
    [2]Diebold G, Mosenthin R, Piepho HP, Sauer WC. Effect of supplementation of xylanase and phospholipase to a wheat-based diet for weanling pigs on nutrient digestibility and concentrations of microbial metabolites in ileal digesta and feces. J Anim Sci 2004;82:2647-2656.
    [3]Rouau X, Daviet S, Tahir T, Cherel B, Saulnier L. Effect of the proteinaceous wheat xylanase inhibitor XIP-I on the performances of an Aspergillus niger xylanase in breadmaking. J Sci Food Agric 2006;86:1604-1609.
    [4]Jiang ZQ, Bail AL, Wu A. Effect of the thermostable xylanase B (XynB) from Thermotoga maritima on the quality of frozen partially baked bread. J Cereal Sci 2008;47:172-179.
    [5]Courtin CM, Roelants A, Delcour JA. Fractionation-Reconstitution Experiments Provide Insight into the Role of Endoxylanases in Bread-Making. J Agric Food Chem 1999;47:1870-1877.
    [6]Maalej-Achouri I, Guerfali M, Gargouri A, Belghith H. Production of xylo-oligosaccharides from agro-industrial residues using immobilized Talaromyces thermophilus xylanase. J Mol Catal B:Enzym 2009;59:145-152.
    [7]Beg QK, Bhushan B, Kapoor M, Hoondal GS. Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb Technol 2000;27: 459-466.
    [8]Senthilkumar SR, Dempsey M, Krishnan C, Gunasekaran P. Optimization of biobleaching of paper pulp in an expanded bed bioreactor with immobilized alkali stable xylanase by using response surface methodology. Bioresour Technol 2008;99:7781-7787.
    [9]Gouda MK, Abdel-Naby MA. Catalytic properties of the immobilized Aspergillus tamarii xylanase. Microbiol Res 2002; 157:275-281.
    [10]Gawande PV, Kamat MY. Preparation, characterization and application of Aspergillus sp. xylanase immobilized on Eudragit S-100. J Biotechnol 1998;66:165.
    [11]Ai ZL, Jiang ZQ, Li L, Deng W, Kusakabe I, Li HS. Immobilization of Streptomyces olivaceoviridis E-86 xylanase on Eudragit S-100 for xylo-oligosaccharide production. Process Biochem 2005;40:2707-2714.
    [12]Sardar M, Roy I, Gupta MN. Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversibly soluble polymer EudragitTM L-100. Enzyme Microb Technol 2000;27:672-679.
    [13]Mesta L, Heyraud A, Joseleau JP, Coulet PR. Catalytic properties of endoxylanase fusion proteins from Neocallimastix frontalis and effect of immobilization onto metal-chelate matrix. J Biotechnol 2003; 101:253-265.
    [14]Cano A, Minguillon C, Palet C. Immobilization of endo-1,4-(3-xylanase on polysulfone acrylate membranes:Synthesis and characterization. J Membr Sci 2006;280:383-388.
    [15]Sarbu A, de Pinho MN, Freixo MD, Goncalves F, Udrea I. New method for the covalent immobilization of a xylanase by radical grafting of acrylamide on cellulose acetate membranes. Enzyme Microb Technol 2006;39:125-130.
    [16]Hung YJ. Peng CC, Tzen JTC, Chen MJ, Liu JR. Immobilization of Neocallimastix patriciarum xylanase on artificial oil bodies and statistical optimization of enzyme activity. Bioresour Technol 2008;99:8662-8666.
    [17]Liu JH, Selinger LB, Cheng KJ, Beauchemin KA, Moloney MM. Plant seed oil-bodies as an immobilization matrix for a recombinant xylanase from the rumen fungus Neocallimastix patriciarum. Mol Breeding 1997;3:463-470.
    [18]Rogalski J, Szczodrak J, Dawidowicz A, Ilczuk Z, Leonowica A. Immobilization of cellulase and d-xylanase complexes from Aspergillusterreus F-413 on controlled porosity glasses. Enzyme Microb Technol 1985;7:395-400.
    [19]Tyagi R, Gupta MN. Immobilization of Aspergillus niger xylanase on magnetic latex beads. Biotechnol Appl Biochem 1995;21:217-22.
    [20]Dumitriu S, Chornet E. Immobilization of xylanase in chitosan-xanthan hydrogels. Biotechnol Progr 1997;13:539-545.
    [21]Kapoor M, Kuhad RC. Immobilization of Xylanase from Bacillus pumilus Strain MK001 and its Application in Production of Xylo-oligosaccharides. Appl Biochem Biotechnol 2007;142:125-138.
    [22]Shah S, Gupta MN. Simultaneous refolding, purification and immobilization of xylanase with muti-walled carbon nanotubes. Biochim Biophys Acta 2008; 1784:363-367.
    [23]Chen J, Tang JH, Yan F, Ju HX. A gold nanoparticles/sol-gcl composite architecture for encapsulation of immunoconjugate for rcagentless electrochemical immunoassay. Biomaterials 2006;27:2313-2321.
    [24]Erlebacher J, Aziz MJ, Karama A, Dimitrov N, Sieradzki K. Evolution of nanoporosity in dealloying. Nature 2001;410:450-453.
    [25]Qiu HJ, Xue LY, Gao BJ. Enzyme-modified nanoporous gold-based electrochemical biosensors. Biosens Bioelectron 2009;24:3014-3018.
    [26]Wang, X.; Liu, X.; Yan, X. Zhao, P.; Ding, Y.; Xu, P. Enzyme-nanoporous gold biocomposite:excellent biocatalyst with improved biocatalytic performance and stability. PLoS ONE 2011; doi 10.1371/journal.pone.0024207.
    [27]Torronen, A, Harkkil A, Rouvinen J. Three-dimensional structure of endo-1,4-β-xylanase II from Trichoderma reesei:two conformational states in the active site. EMBO J 1994; 13:2493-2501.
    [28]Kumar A, Mandal S, Selvakannan PR, Pasricha R, Mandale AB, Sastry M. Investigation into the Interaction between Surface-Bound Alkylamines and Gold Nanoparticles. Langmuir 2003; 19:6277-6282.
    [29]Bensebaa F, Zhou Y, Deslands Y, Kruus E, Eills TH. XPS study of metal-sulfur bonds in metal-alkanethiolate materials. Surf Sci 1998;405:472-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700