常用内参基因在小鼠乳腺、肝脏、小肠组织中表达稳定性比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验由三部分组成,主要研究了不同泌乳期小鼠乳腺组织、经过不同免疫处理的小鼠肝脏组织以及幼龄小鼠成长过程中小肠组织内参基因的稳定性。应用荧光实时定量PCR检测基因B2M, ACTB, GAPDH, SDHA, HPRT1和ARBP的表达水平,并应用geNorm程序进行分析,最终选出合适的内参基因,为研究目标基因的表达奠定基础。
     试验一:实时定量PCR(qPCR)是检测细胞和组织中mRNA表达量最常用的技术之一,而使用qPCR要求对数据进行标准化。在本试验中通过qPCR研究六个潜在内参基因(B2M, ACTB, GAPDH, SDHA, HPRT1和ARBP)在不同泌乳期小鼠乳腺组织中的表达情况。经过SAS6.12中ANOVA模型进行统计分析,结果表明B2M差异显著(P<0.05)。经过geNorm程序分析,所选内参基因稳定性从高到低排序分别是GAPDH/HPRT1, ARBP, ACTB, SDHA, B2M。由此推荐应用基因GAPDH和HPRT1作为实时定量PCR不同泌乳期小鼠乳腺组织的内参照。
     试验二:目前实时定量PCR技术已广泛应用于细胞或组织mRNA的转录水平的检测和定量。选择合适的内参基因可以消除不同标本在RNA的产量、质量以及逆转录效率上可能存在的差别,从而获得目标基因特异性表达的真正差异。本试验应用实时定量PCR技术,研究小鼠在经过免疫刺激后,B2M, ACTB, GAPDH, SDHA, HPRT1和ARBP共6个内参基因在肝脏组织中的表达情况。结果表明,这6个内参基因表达存在差异。经过geNorm程序统计学分析,确定了ACTB, GAPDH两个看家基因适用于校正目标基因的表达量,为研究小鼠免疫刺激后肝脏目标基因的表达奠定基础。
     试验三:内参基因常用于实时定量PCR检测mRNA表达水平的校正和标准化,但是内参基因表达受生理阶段、组织或细胞以及实验条件的影响。因此,本试验选择B2M, ACTB, GAPDH, SDHA, HPRT1和ARBP共6个内参基因,研究其在幼龄小鼠小肠组织内的表达情况。经过geNorm程序和NormFinder程序分析,最终确定了内参基因SDHA和HPRT1适合用于校正目标基因的表达量,为研究幼龄小鼠小肠组织基因表达奠定基础。
This research composed of three experiments which were carried out to study the stability of reference genes in mammary gland of mouse in different lactation period, in liver of mouse after immunity treatment and in small intestine of growing mouse. The expression levels of B2M, ACTB, GAPDH, SDHA, HPRT1 and ARBP genes were detected and quantified by real-time PCR respectively. Data were analysed subsequently by geNorm algorithm, and then the suitable reference genes were chosen and applied usefully for the research of target gene in mouse.
     EXPERIMENT 1:Real-time quantitative PCR (qPCR) is one of the most widely used techniques for detection and quantification of mRNA expression in cells or tissues. The use of qPCR requires data normalization using internal standards such as housekeeping genes (HKGs) to obtain accurate results because of potential analytical errors due to variation. In this study, the expression levels of six potential reference genes (B2M, ACTB, GAPDH, SDHA, HPRT1 and ARBP) were investigated in mouse mammary gland by real-time qPCR using SYBR green during the different lactation days. Data were analyzed by ANOVA procedure of SAS (Version 6.12, SAS). The results showed that the expression of B2M exhibited a significant difference (P<0.05). The ranking of expression stability in these genes was (from the most stable to the least stable): GAPDH/HPRT1, ARBP, ACTB, SDHA, B2M by means of geNorm algorithm. This study suggested that the two genes GAPDH and HPRT1 may be recommented as references for normalization of real-time qPCR in mammary gland of mice in different lactation days.
     EXPERIMENT 2:Real-time quantitative PCR (RT-PCR) is the techniques of choice for detection and quantification of mRNA expression in cells or tissues. Suitable reference gene is essential for high precision of target gene by taking the RNA quality and efficiencies of reverse transcription into account. The purpose of the present study was to investigate the expression of B2M, ACTB, GAPDH, SDHA, HPRT1 and ARBP in mouse liver after immunity treatment by RT-PCR individually. Differences in expression levels were observed by geNorm analysis. ACTB and GAPDH were determined as suitable internal control genes. The resuts implied ACTB and GAPDH could be applied to compare the expression of target gene in mouse liver after immunity treatment.
     EXPERIMENT 3: Reference genes are widely used for normalization of the expression levels of mRNA in RT-PCR. But the expression of reference gene is influenced by physiological stage, tissues or cells, and the condition of experiment. The aims of this experiment were to investigate the expression of B2M, ACTB, GAPDH, SDHA, HPRT1 and ARBP by RT-PCR in small intestine of young mouse. By geNorm and normFinder analysis, SDHA and HPRT1 were finally determined as suitable reference genes used to normalize mRNA levels between different samples. The two chosen genes could be useful for research of target gene in small intestine of growing mouse.
引文
1. Becker-Andre M, et al. Molecular cloning, a laboratory manual [M]. Nucleic Acids Res, 1989, 17: 9437.
    2. Erlich H A, et al. Molecular cloning and diseases association of hepatitis viruses [J]. Sciences, 1991, 252: 1643.
    3. Shindo M, et al. Testing for hepatitis C virus sequences in PBM cells of patients with chronic hepatitis C [J]. Ann Intern Med, 1991, 115: 700.
    4. Hirofum iN, et al. Progressing in quantitative detection assay [J]. Am J Gastroenter, 1997, 92: 119.
    5. Jalava T, et al. quantitative PCR: A new diagno sticmethod for kinds of infectious diseases [J]. Bio techniques, 1993, 15:134.
    6. Kaneko S, et al. Dominant replication of either virus in dual infection with hepatitis viruses B and C [J]. J Med Virol, 1992, 37: 278.
    7. Gilliland, et al. Fluorescence quantitative PCR assay for agents in hepatitis [J]. Proc Natl Sci USA, 1990, 87: 2725.
    8. Marjut R, et al. Single step method of RNA isolation by acid quanidinium extraction [J]. Hepatol, 1995, 21: 1492.
    9. Wittwer C T, et al.Treatment of chronic hepatitis B infection [J]. Biotechniques, 1997, 22: 176.
    10. Wittwer C T, et al. Hepatitis B virus mutants with 3TC and famciclourir administration are replication defective [J].Biotechniques, 1997, 22: 130.
    11. Qzaki H, McLaughlin L W. The estimation of distances between specific backbone2labeled sites in DNA using fluorescence resonance energy transfer [J]. Nucleic Acids Res, 1992, 20(19): 5205-5214.
    12. Livak K J, Flood S J A, Marmaro J, et al. Oligonuleotides with fluorescent dyes at opposite end provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization [M]. PCR Meth& Appl, 1995, 4: 362-375.
    13. Tyagi S and Kramer F R, Molecular beacons: probes that fluoresce upon hybridization [J]. Nature biothchnology, 1996, 14: 303-308.
    14.王晓红.荧光定量PCR技术研究进展[M],国外医学分子生物学分册, 2001, 23(1): 42-45.
    15.宋敏,胡建民,何孔旺. PCR定量方法概述[J].上海畜牧兽医通讯, 2005(2):18-19.
    16.葛忠源,熊东艳,张启勇.实时荧光定量PCR技术及应用[J].中国牧业通讯, 2008, 13:12-14.
    17. Revillion F, Pawlowski V, Hornez L, et al. Glyceraldehyde-3-phosphate dehydrogenase gene exp ression in human breast cancer[J]. Eur J Cancer, 2000, 36 (8): 1038-1042.
    18. Vila M R, Nicolas A, Morote J, et al. Increased glyceraldehydes-3-phosphate dehydrogenase expression in renal cell carcinomaidentified by RNA2based, arbitrarily p rimed polymerase chain reaction [J]. Cancer, 2000, 89 (1): 152-164.
    19. Zhu G, Chang Y, Zuo J, et al. Fudenine, a C-terminal truncated rat homologue of mouse prominin, is blood glucose-regulated and can up-regulate the exp ression of GAPDH [J]. Biochem Biophys Res Commun, 2001, 281 (4): 951-956.
    20. Tricarico C, Pinzani P, Bianchi S, et al. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies [J]. Anal Biochem, 2002, 309 (2): 293-300.
    21. Lossos I S, Czerwinski D K, Wechser M A, et al. Optimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies [J]. Leukemia, 2003, 17 (4):789-795.
    22. Radonic A, Thulke S, Mackay I M, et al. Guideline to reference gene selection for quantitative real2time PCR [J]. Biochem Biophys Res Commun, 2004, 313 (4): 856-862.
    23. Schmittgen T D, Zakrajsek B A. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR [J]. J Biochem Biophys Methods, 2000, 46 (122):69-81.
    24. Hamalainen H K, Tubman J C, Vikman S, et al. Identification and validation of endogenous reference genes for expression profiling of T helper cell differentiation by quantitative real-time RT-PCR [J].Anal Biochem, 2001, 299 (1): 63-70.
    25. Goidin D, Mamessier A, Staquet M J, et al. Ribosomal 18S RNA prevails over glyceraldehydes-3-phosphate dehydrogenase andβ-actin genes as internal standard for quantitative comparison of mRNA levels in invasive and noninvasive humanmelanoma cell subpopulations[J]. Anal Biochem, 2001, 295 (1): 17-21.
    26. Kim S and Kim T. Selection of op timal internal controls for gene expression profiling of liver disease [J]. Bio Techniques, 2003, 35(3): 456-460.
    27. Lupberger J, Kreuzer K A, Baskaynak G, et al. Quantitative analysis of beta-actin,β2-microglobulin and porphobilinogen deaminase mRNA and their comparison as control transcrip ts for RT-PCR [J]. Mol Cell Probes, 2002, 16 (1) : 25-30.
    28. Beillard E, Pallisgaard N, van derVelden V H J, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using‘real-time’quantitative reverse-transcriptase polymerase chain reaction (FQ-PCR)-a Europe against cancer program [J]. Leukemia, 2003, 17 (12): 2474-2486.
    29. Bustin S A. Quantification of mRNA using real-time reverse transcription PCR ( RT-PCR ) : trends and problems [J]. J Mol Endocrinol, 2002, 29 (1): 23-39.
    30. Schmid H, Cohen C D, Henger A, et al. Validation of endogenous controls for gene exp ression analysis in microdissected human renal biopsies[J]. Kidney Int, 2003, 64 (1): 356-360.
    31. Vandesompele J, Preter K D, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes [J]. Genome Biol, 2002, 3 (7):research0034.1-0034.11.
    32. Glare E M., Divjak M, Bailey M J, et al. b-Actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels[J]. Thorax, 2002, 57:765-770.
    33.朱芷葳,董常生.持家基因作为相对定量内标物的稳定性比较[J].生物技术通讯,2006,17(5):807-809.
    34.徐安定,谭少华.缺氧时星形胶质细胞定量mRNA表达的内参照标准研究[J].中国病理生理杂志, 2004,20(5):774.
    35. Harun M Said, Carsten Hagemann, Jelena Stojic, et al. GAPDH is not regulated in human glioblastoma under hypoxic Conditions [J]. BMC Molecular Biology, 2007, 8:55.
    36. Duncan Ayers, Dylan N Clements, Fiona Salway, et al. Expression stability of commonly used reference genes in canine articular connective tissues [J]. BMC Veterinary Research, 2007, 3:7.
    37. Nicholas Silver, Steve Best, et al. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR [J]. BMC Molecular Biology, 2006, 7:33.
    38. Ann-Britt Nygard, Claus B J?rgensen, Susanna Cirera, et al. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR [J]. BMC Molecular Biology, 2007, 8:67
    39. Lies Bogaert, Mario Van Poucke, Cindy De Baere, et al. Selection of a set of reliable reference genes for quantitative real-time PCR in normal equine skin and in equine sarcoids [J]. BMC Biotechnology, 2006, 6:24.
    40. Hao-Zhi Yan, Ruey-Fen Liou. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica [J]. Fungal Genetics and Biology, 2006, 43: 430-438.
    41. Amy L Filby, Charles R Tyler. Appropriate 'housekeeping' genes for use in expression profiling the effects of environmental estrogens in fish [J]. BMC Molecular Biology, 2007, 8:10.
    42. Stefan Toegel, Wenwen Huang, Claudia Piana, et al. Selection of reliable reference genes for qPCR studies on chondroprotective action [J]. BMC Molecular Biology, 2007, 8:13.
    43. Claus Lindbjerg Andersen, Jens Ledet Jensen, Torben Falck ?rntoft. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets [J]. CANCER RESEARCH, 2004, 64(8): 5245-5250.
    44. Michael W Pfaffl, Ales Tichopad, Christian Prgomet, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations [J]. Biotechnology Letters, 2004, 26: 509-515.
    45.张艳君,朱志峰,陆融,等.基因表达转录分析中内参基因的选择[J].生物化学与生物物理进展, 2007, 34(5): 546-550.
    46. Raquel Perez, Isabel Tupac-Yupanqui, Susana Dunner. Evaluation of suitable reference gene for gene expression studies in bovine muscular tissue [J]. BMCMolecular Biology, 2008, 9: 79.
    47. Massimo Bionaz, Juan J. Loor. Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle [J]. Physiol Genomics, 2007, 29: 312-319.
    48. Solomon Mamo, Arpad Baji Gal, Szilard Bodo, et al. Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro [J]. BMC Developmental Biology, 2007, 7:14.
    49. Schmittgen T D, Zakrajsek B A. Effect of experimental treatment on housekeep ing gene exp ression: validation by real2time, quantitative RT-PCR [J]. J Biochem Biophys Methods, 2000, 46 (122): 69-81.
    50. Suzuki T, Higgins P J, Crawford D R. Control selection for RNA quantitation [J]. Biotechniques, 2000, 29 (2): 332-337.
    51. Liu D W, Chen S T, Liu H P. Choice of endogenous control for gene expression in nonsmall cell lung cancer [J]. Eur Respir J, 2005, 26 (6):1002-1008.
    52. Selvey S, Thompson E W, Matthaei K, et al. Beta-actin—an unsuitable internal control for RT-PCR [J]. Mol Cell Probes, 2001, 15(5): 307-311.
    53. Huggett J, Dheda K, Bustin S, et al. Real-time RT-PCR normalisation; strategies and considerations [J]. Genes Immun, 2005, 6(4): 279-284.
    54. Pombo-Suarez M, Calaza M, Gomez-Reino J J, Gonzalez A: Reference genes for normalization of gene expression studies in human osteoarthritic articular cartilage [J]. BMC Mol Biol, 2008, 9:17.
    55. Infante C, Matsuoka M P, Asensio E, Canavate J P, Reith M, Manchado M: Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR [J]. BMC Mol Biol, 2008, 9:28.
    56. Yan H Z, Liou R F: Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica [J]. Fungal Genet Biol, 2006, 43(6):430-438.
    57. Spinsanti G, Panti C, Lazzeri E, Marsili L, Casini S, Frati F, Fossi CM: Selection of reference genes for quantitative RT-PCR studies in striped dolphin (Stenella coeruleoalba) skin biopsies [J]. BMC Mol Biol, 2006, 7:32.
    58. Neville M C, Forsyth I: Hormonal regulation of mammary differentiation and milksecrection [J]. J Mammary Gland Biol Neoplasia, 2002, 7:49-66.
    59. Bionaz M, Loor J J: Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle [J]. Physiol Genomics 2007, 29(3):312-319.
    60. Denamur R. Ribonucleic acids and ribonucleoprotein particles of the mammary gland. In: Lactation: a Comprehensive Treatise, edited by Larson BL and Smith VR [J]. New York and London: Academic Press, 1974, p414–491.
    61. van Wijngaarden P, Brereton H M, Coster D J, Williams KA: Stability of housekeeping gene expression in the rat retina during exposure to cyclic hyperoxia [J]. Mol Vis, 2007, 13:1508-1515.
    62. Willems E, Mateizel I, Kemp C, Cauffman G, Sermon K, Leyns L: Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells [J]. Int J Dev Biol 2006, 50(7):627-635.
    63. Zuker M: Mfold web server for nucleic acid folding and hybridization prediction [J]. Nucleic Acids Res,2003, 31(13):3406-3415.
    64. Wain HM BE, Lovering R C, Lush M J, Wright M W, Povey S: Guidelines for Human Gene Nomenclature [J]. Genomics,2002, 79: 464-470.
    65. Xu W J, Xu B, Li B: One-step real-time fluorescence quantitative PCR for detecting WT1 mRNA expression in leukemia [J]. Nan Fang Yi Ke Da Xue Xue Bao,2008, 28(2):290-292.
    66. Tao H, Zhang B, Lu Z L, Pei Y, Mi S H: New compound heterozygous mutation causes partial combined 17 alpha-hydroxylase/17,20-lyase deficiency [J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2007, 24(1):19-22.
    67. Lei M J, Wu S T, Dai WX, Pan H R, Lin Q P, Wen JX, Huang DN, Gao ST, Zhang RL: High efficiency expression and antigenicity analysis of the SAG2 gene from Toxoplasma gondii RH strain [J]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi,2004, 22(4):231-234.
    68.张贤玲,顾燕云,周文中,等.胰腺发育相关maf基因在胰腺导管和胰岛的表达[J].生物化学与生物物理进展, 2008, 35(4): 431-436.
    69. Andersen C L, Jensen J L, Orntoft T F: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach toidentify genes suited for normalization, applied to bladder and colon cancer data sets [J]. Cancer Res,2004, 64(15):5245-5250.
    70. Michael W, Pfaffl A T, Christian Prgomet, Tanja P. Neuvians: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations [J]. Biotechnology LETTERS, 2004, 26:509-515.
    71. Silver N, Cotroneo E, Proctor G, Osailan S, Paterson K L, Carpenter G H: Selection of housekeeping genes for gene expression studies in the adult rat submandibular gland under normal, inflamed, atrophic and regenerative states [J]. BMC Mol Biol, 2008, 9:64.
    72. Tricarico C, Pinzani P, Bianchi S, et a1. Quantitative real—time reverse transcription polymerase chain reaction:normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies [J]. Anal Biochem,2002, 309(2): 293-300.
    73. Spanakis E. Problems related to the interpretation of autoradiographic data on gene expression using conllnon constitutive transcripts as controls [J]. Nucleic Acids Res, l 993, 21(16):3809-38l9.
    74. Johnson M L, Redm er D A, Reynolds L P. Quantification of lane’-to--lane loading of poly(A) RNA using a biotinylated oligo(dT) probe and chemilum inescent detection [J]. Biotechniques,1995,19(5):7l2-7l5.
    75. Warner J R. The economics of ribosome biosynthesis in yeast [J]. Trends Biochem Sci, l999, 24(I1):437-440.
    76. Perez R, Tupac-Yupanqui I, Dunner S: Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue [J]. BMC Mol Biol, 2008, 9:79.
    77. Wang Y, Dou H L,Geng H L, et al. Detection of the proliferation-inducing ligand APRIL mRNA in autoimmune using real-time quantitative PCR assay [J]. Current Immunololgy, 2007,27(4): 336-340.
    78. Robert D. Barber, Dan W. Harmer,Robert A. Coleman, and Brian J. Clark. GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues [J]. Physiol Genomics, 2005, 21:389-395.
    79. Dijk F, Kraal-Muller E, Kamphuis W. Ischemia-induced changes of AMPA-typeglutamate receptor subunit expression pattern in the rat retina: a real-time quantitative PCR study [J]. Invest Ophthalmol Vis Sci, 2004, 45:330-41.
    80. Bond B C, Virley D J, Cairns N J, Hunter A J, Moore GB, Moss SJ, Mudge AW, Walsh FS, Jazin E, Preece P. The quantification of gene expression in an animal model of brain ischaemia using TaqMan real-time RT-PCR [J]. Brain Res Mol Brain Res, 2002,106:101-16.
    81. Eckersall P D, Young F J, Nolan A M, et al. Acute phase proteins in bovine milk in an experimental model of Staphylococcus aureus subclinical mastitis [J]. J Dairy Sci, 2006, 89 (5): 1488-1501.
    82.陈勇,程明,夏启松,等.四氯化碳损伤小鼠肝脏基因表达谱的变化[J].药学学报, 2005, 40(10): 898-901.
    83.于英男,郭江,李烨,等.双环醇对刀豆蛋白A引起肝损伤小鼠肝脏基因表达谱的影响[J].药学学报, 2008, 43(6): 596-600.
    84. Morein B, Bengtsson L K. Immunomodulation by iscoms, immune stimulating complexes [J]. Methods, 1999, 19(1): 94-102.
    85. Ishii T, Wallace A M, Zhang X, et al. Stability of housekeeping genes in alveolar macrophages from COPD patients [J]. Eur Respir J, 2006, 27 (2): 300-306.
    86. Toegel S, Huang W, Piana C, et al. Selection of reliable reference genes for qPCR studies on chondroprotective action [J]. BMC Mol Biol, 2007, 8:13.
    87.王兰芳,乐国伟,施用晖,等.日粮核苷酸对早期断奶小鼠生长发育的影响[J].无锡轻工大学学报, 2003, 22(4):18-22.
    88.房永祥,景志忠,陈国华,等.猪TOLL样受体2基因在CHO-K1细胞中的表达[J].甘肃农业大学学报, 2008, 43(1) :14-17.
    89.陈凤花,王琳,胡丽华.实时荧光定量RT-PCR内参基因的选择[J].临床检验杂志, 2005, 23(2) : 393-395.
    90.韦宜峰,黄光武.荧光定量PCR在鼻咽喉中的应用[J].中国医学文摘:肿瘤学, 2003, 13(2):68-170.
    91. Radonic A, Thulke S, Mackay IM, et a1. Guideline to reference gene selection for quantitative real-time PCR [J]. Biochemical Biophysical Research Communication, 2004, 313(4): 856-862.
    92. De Ketelaere A, Goossens K, Peelman L, et al. Technical note: validation of internal control genes for gene expression analysis in bovine polymorphonuclear leukocytes [J]. Journal Dairy Science,2006,89: 4066-4069.
    93. Goossens K, Van Poucke M, Van Soom A, et al. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos [J]. BMC Developmental Biology, 2005, 5:27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700