D-A型电双稳态高分子功能材料的设计及其非易失性存储效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物的电子性质可以通过分子设计和合成等手段调控或剪裁。与硅存储器相比,基于高分子存储材料制作的存储器具有材料结构多样化、成本低、易加工、柔韧性好、可大面积制作(可通过旋涂或喷墨打印,在塑料、玻璃、CMOS混合集成电路上面进行加工)、响应快、功耗低、高密度存储等优点,在信息存储以及高速计算领域有着非常广泛的应用前景。另一方面,石墨烯存储材料可以实现微型化电路、机械柔韧性、三维堆叠的高密度存储能力、快的响应速度和高的开关比,并且具备碳材料的本征特性,相比于当前的硅基存储材料有更多的优势,有望成为下一代硅基材料的补充者甚至替代者。本文将氧化石墨烯(GO),还原的氧化石墨烯(RGO)和金属纳米粒子引入到高分子体系中,设计和制备了一系列具有推-拉电子结构特征的电子给体-受体型(D-A型)高分子信息存储材料,研究了材料的基本结构、非易失性存储性能和存储机制,获得了一些原创性研究成果。论文分为7章:
     第一章:综述了高分子阻变存储器的基本概念和工作机制及高分子阻变材料的研究进展和存在的丞待解决的问题。在这些文献的基础上提出了本论文的研究课题和主要研究内容。
     第二章:分别通过‘"grafting to"和‘"grafting from"方法制备了聚乙烯基咔唑(PVK)共价修饰的GO功能材料GO-PVK在第一种方法中,我们将链末端带有羧基的聚乙烯基咔唑通过缩合反应接枝到了甲苯-2,4-二异氰酸酯(TD1)修饰的GO衍生物上。第二种方法是利用可逆加成-裂解链转移(RAFT)自由基聚合这种新的"grafting from"方法,从GO表面直接生长出了PVK。探讨了两种不同的制备方法对存储器件“Al/GO-PVK/ITO性能的影响。
     第三章:合成了两种共轭高分子共价修饰的GO功能材料GO-PFCz和GO-PANI,研究了材料的基本结构、表面形貌以及材料的电开关和信息存储效应。在基于GO-PFCz的存储器件中,电子给体PFCz和电子受体GO之间的电场诱导电荷转移形成了材料的电荷转移传导态,导致了从OFF念(低导电状态)到ON态(高导电状态)的跃迁。施加反向电压能够有效分离电荷转移态使器件重新回到起始的OFF态。施加不同电压扫描下测得的GO-PFCz薄膜的原位荧光光谱表现出荧光淬灭和复原,验证了电场诱导电荷转移过程。使用红外光谱,拉曼光谱和X-射线光电子能谱表征了聚苯胺原位接枝的GO功能材料(GO-PANI)的结构。细长的纺锤型PANI:纳米纤维包裹着石墨烯纳米片。Al/GO-PANI/ITO器件表现出电双稳态开关和非易失性可擦写存储效应ON/OFF电流开关比超过了104。
     第四章:利用RGO、肌胺酸和含有醛基的π-共轭高分子之间的1,3偶极环加成反应,制备了两种高度可溶的基于RGO的高分子功能材料RGO-PFTPA和RGO-PFCF。基于这两种材料的器件均表现出非易失性可擦写存储效应。两种器件的开启阈值电压比较接近,而基于RGO-PFC的器件的关闭阈值电压则明显增大、电流开关比也增加了一个数量级存储性能的差异可能是由于在RGO-PFCF的主链上含有给电子能力更强的咔唑单元,进一步强化了RGO和高分子给体之间的电荷转移相互作用,从而更有利于实现器件从OFF态到ON态的转换。
     第五章:合成了两个新颖的给体-陷阱-受体(D-T-A)结构的聚乙烯基咔唑衍生物,PVK-AZO-2CN和PVK-AZO-NO2。使用这两个高分子制备成的A1/高分子/ITO的三明治结构的器件表现出电双稳态特性和WORM型存储效应,开启电压低于-1.9V,电流开关比超过了105。电双稳态特性是由于场诱导的咔唑基团和受体分子之间的电荷转移以及偶氮苯的电荷捕获作用产生的。利用分子模拟计算、原位UV-Vis光谱、XPS、原位高分辨TEM图验证了可能的存储机理。并进一步通过与不含偶氮苯的参照物PVK-CN和PVK-NO2作对比,证实偶氮苯基团对所合成的PVK-AZO高分子的存储性能起到关键作用。
     第六章:结合使用溶胶-凝胶反应,蒸馏-沉淀聚合和氧化接枝聚合等材料制备技术,制备了Au@SiO2@PTEMA-g-P3HT核双层壳式纳米球。使用HF侵蚀除去二氧化硅无机内壳,得到了一种内含可移动的金纳米核的电活性高分子外壳封装的“铃铛”型纳米球Au@air@PTEMA-g-P3HT。这种纳米球拥有独特的结构和良好的单分散性,能规整地嵌入聚苯乙烯薄膜中。通过调变活性聚合物薄膜中“铃铛”型纳米球的含量(5,10,25和50wt%),探讨了器件Al/Au@air@PTEMA-g-P3HT+PS/ITO的存储性能。器件的存储机制归属为充当电子给体的PTEMA-g-P3HT外壳和充当电子受体的金纳米核之间的场诱导电荷转移。
     第七章:总结了博士生阶段获得的主要研究结果,并对课题涉及的技术领域在未来的发展前景予以展望和期盼。
The molecular structure of polymers can be tailored by functionalizing them with electron donors and acceptors of different strengths, spacer moieties of different steric effects for the electroactive pendant groups, or nanostructured electroactive materials, to induce different memory behaviors in simple metal/polymer/metal devices. In comparison to inorganic materials-based memory devices, polymer memories are proposed to revolutionize electrical applications by providing extremely inexpensive, lightweight, and transparent modules that can be fabricated onto plastic, glass, or the top layer of CMOS hybrid integration circuits. On the other hand, with all the advantages including ultraminiature circuitry, mechanical flexibility, high data storage capacity through three-dimensional stacking, high operating speed and ON/OFF ratio, low power consumption, and the non-exotic nature of carbon raw material, over the current state-of-the-art memories and other upcoming technologies, graphene and its derivatives promise themselves great potential as an alternative, or at least a supplement, to silicon for the next generation information storage applications. In this thesis, by introducing graphene oxide (GO). reduced graphene oxide (RGO) and metal nanoparticles into the polymer systems. we designed and synthesized a series of donor-acceptor type polymer memory materials, and investigated their basic structures, nonvolatile memory performance and memory mechanisms as well. This Ph.D. thesis was divided into seven chapters, as follows:
     In chapter one, the basic concept and the memory mechanism of resistive polymer memory, as well as the progress of resistive polymer memory materials and the problems urgently to be solved were reviewed. On the basis of these reported literatures, the research topic and the main contents of the thesis were put forward.
     In chapter two. poly(N-vinylcarbazole)(PVK) covalently functionalized GO (GO-PVK) has been synthesized via "grafting to" and "grafting from" methods, respectively. In the first, GO-PVK was synthesized by reaction of carboxyl terminated PVK with GO-toluene-2.4-diisocynate (GO-TDI). The second approach is to grow PVK chains directly from the surface of GO by using reversible addition fragmentation chain transfer (RAFT) polymerization. The memory performance of the materials were discussed in the AI/GO-PVK/ITO structure.
     In chapter three, two conjugated polymers covalently functionalized GO materials:GO-PFCz and GO-PANI were synthesized, respectively. The basic structures, surface morphology, and memory effects of the materials were characterized. In the GO-PFCz based memory device, electrical field-induced charge-transfer (CT) from the polymer donor to the GO acceptor gives rise to a conductive CT state, resulting in the electrical transition from the initial OFF state to the ON state. However, a reverse bias can dissociate the CT state and reset the device back to the initial OFF state. The electrical field-induced CT process is supported by fluorescence quenching and recovery in the in-situ fluorescence spectra of the GO-PFCz film under electrical biases. The successful in-situ synthesis of the GO-PANI composites was confirmed by IR spectra, Raman spectra, XPS analysis and TEM. After growing PANI from the surface of GO, spindle-shaped PANI nanofibers with large length-to-diameter ratios appear to surround the GO nanosheets. The Al/GO-PANI/ITO device was fabricated and exhibited typical bistable electrical switching and nonvolatile rewritable memory effect, with an ON/OFF current ratio in excess of104.
     In chapter four, two solution-processable RGO-based functional polymer materials (RGO-PFTPA and RGO-PFCF) were synthesized by the1,3-dipolar cycloaddition between^-conjugated polymers with aldehyde groups, N-methylglycine and RGO. Bistable electrical switching and nonvolatile rewritable memory effects were demonstrated in a sandwich structure of Al/RGO-polymer/ITO. The switch-on threshold voltages of the two devices are comparable, while the switch-off threshold voltage and ON/OFF current ratio of the RGO-PFCF device are slightly larger than those of the RGO-PFTPA device. Incorporation of carbazole groups into the RGO-PFCF molecule were believed to account for the differences of electronic performance, the carbazole groups have strong electron-donating ability, further enhanced the charge transfer effects between RGO and electron-donating polymer, thus facilitated the electrical transition from the OFF state to the ON state.
     In chapter five, two poly(N-vinylcarbazole) derivatives with pendant donor-trap-acceptor (D-T-A) structures, PVK-AZO-2CN and PVK-AZO-NO2. were synthesized. The Al/polymer/ITO devices exhibit write-once read-many-times (WORM) memory effects with a switching threshold voltage of less than-1.9V and an ON/OFF current ratio of more than105. The electrical bistability and memory effects in the present devices are attributed to the electric-field-induced charge transfer between the carbazole electron donor and the terminal nitro or cyano electron acceptor entities, and subsequent charge trapping at the intermediate azobenzene chromophores. The proposed switching and conduction mechanism is supported by the molecular computation results. UV-vis spectra, XPS. and TEM images of the polymer thin films. The influence of the charge trapping effect of the azobenzene mediator is further explored by studying the electrical and electronic properties of the other two PVK derivatives in which the nitro or cyano acceptors are directly bonded to the carbazole donor moieties as control samples
     In chapter six. monodisperd hairy Au@air@PTEMA-g-P3HT hybrid nanorattles. with a movable Au nanocore in the cavity and electroactive P3HT polymer brushes on the exterior surface, have been synthesized by selective etching of the silica inner shell of the hairy Au@SiO2@PTEMA-g-P3HT core-double shell nanospheres, prepared from combined sol-gel reaction, distillation-precipitation polymerization and oxidative graft polymerization. The Au@air@PTEMA-g-P3HT hybrid nanorattles can be readily dispersed in toluene and uniformly integrated into polystyrene (PS) thin films. The memory performance of the Al/Au@air@PTEMA-g-P3HT+PS/ITO devices can be tuned by varying the Au@air@PTEMA-g-P3HT content (5,10,25and50wt%) in the active polymer layer. The switching mechanism in the present device can be ascribed to the field-induced charge transfer between the electron-donating PTEMA-g-P3HT shells and the electron-accepting Au nanocores.
     In chapter seven, conclusions and prospective were given.
引文
[1]Ling.Q.-D.;Liaw,D.-J.;Zhu.C.;Chan,D.S.-H.;Kang,E.-T.;Neoh,K.-G.,Polymer electronic memories;Materials,devices and mechanisms.Progress in Poiymer Science 2008,33(10). 917-978.
    [2]Strauss.K.F.;leee.Memory Technologies and Data Recorder Design.In 2009 Ieee Aerospace Conference.Vols 1-7.2009:pp 2039-2056.
    [3]Service.R.F.,Molecular elcctronies - Next-generation technology hits an early midlife crisis. Science 2003,302(5645).556.
    [4]Compano, R., Trends in nanoelectronics.2001; Vol.144, p 353-366.
    [5]Huff, H. R.; Myers, D.; Walden, M.; Beckwith, L.; Weaver, N.; Celler, G.; Standley, B.; Bulsara, M. T., Starting materials and functional layers for the 2005 International Technology Roadmap for Semiconductors:Challenges and opportunities. In Characterization and Metrology for Ulsi Technology 2005, Seiler, D. G.; Diebold, A. C.; McDonald, R.; Ayre, C. R.; Khosla, R. P.; Secula, E. M., Eds.2005; Vol.788, pp 39-50.
    [6]Guizzo, E., Coming soon:Trillion-color TV. Ieee Spectrum 2004,41 (8),17-18.
    [7]Heremans, P.; Gelinck, G. H.; Muller, R.; Baeg, K.-J.; Kim, D.-Y.; Noh, Y.-Y., Polymer and Organic Nonvolatile Memory Devices. Chemistry of Materials 2011,23 (3),341-358.
    [8]Liu, C.-L.; Chen, W.-C., Donor-acceptor polymers for advanced memory device applications. Polymer Chemistry 2011,2 (10),2169-2174.
    [9]Kim, T. W.; Yang, Y.; Li, F.; Kwan, W. L., Electrical memory devices based on inorganic/organic nanocomposites. Npg Asia Materials 2012,4.
    [10]Scott, J. C.; Bozano, L. D., Nonvolatile memory elements based on organic materials. Advanced Materials 2007,19 (11),1452-1463.
    [11]Peng. S.; Zhuge, F.; Chen, X.; Zhu. X.; Hu, B.; Pan, L.; Chen. B.; Li, R.-W.. Mechanism for resistive switching in an oxide-based electrochemical metallization memory. Applied Physics Letters 2012,100(7).
    [12]Zhu, X.; Su, W.:Liu, Y.; Hu, B.; Pan, L.; Lu, W.; Zhang. J.; Li. R.-W., Observation of Conductance Quantization in Oxide-Based Resistive Switching Memory. Advanced Materials 2012,24(29).3941-3946.
    [13]Li. Y.; Chu, Y.; Fang. R.; Ding, S.; Wang, Y.; Shen, Y.; Zheng, A., Synthesis and memory characteristics of polyimides containing noncoplanar aryl pendant groups. Polymer 2012,53 (1).229-240.
    [14]Li. Y.-Q.; Fang, R.-C.;Zheng, A.-M.; Chu, Y.-Y.; Tao. X.:Xu. H.-H.; Ding, S.-J.; Shen. Y.-Z., Nonvolatile memory devices based on polyimides bearing noncoplanar twisted biphenyl units containing carbazole and triphenylamine side-chain groups. Journal of Materials Chemistry 2011,27 (39).15643-15654.
    [15]Wang. L.-H.;Yang. W.; Sun, Q.-Q.; Zhou, P.; Lu, H.-L.; Ding. S.-J.; Zhang. D. W., The mechanism of the asymmetric SET and RESET speed of graphene oxide based flexible resistive switching memories. Applied Physics Letters 2012,100 (6).
    [16]Li. H.;Xu. Q.;Li. N.;Sun. R.;Ge. J.; Lu. J.; Gu. H.; Yan. F.. A Small-Molecule-Based Ternary Data-Storage Device. Journal of the American Chemical Society 2010,132 (16).5542.
    [17]Wang. W.;Ma. D.. Low-Voltage Organic Nonvolatile Thin-Film Transistor Memory Based on a P(MMA-GMA)-A1-O Complex Layer. Ieee Electron Device Letters 2011,32 (3).405-407.
    [18]Wang, W.; Ma, D.; Gao, Q., Optical Programming/Electrical Erasing Memory Device Based on Low-Voltage Organic Thin-Film Transistor. Ieee Transactions on Electron Devices 2012,59 (5),1510-1513.
    [19]Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M., Conductance of a molecular junction. Science 1997,278 (5336),252-254.
    [20]Scott, J. C., Is there an immortal memory? Science 2004,304 (5667),62-63.
    [21]Yang, Y.; Ma, L. P.; Wu, J. H., Organic thin-film memory. Mrs Bulletin 2004,29 (11),833-837.
    [22]Yang, Y.; Ouyang, J.; Ma, L. P.; Tseng, R. J. H.; Chu, C. W., Electrical switching and testability in organic/polymeric thin films and memory devices. Advanced Functional Materials 2006,16 (8),1001-1014.
    [23]Kim, K.; Yen. H.-J.; Ko, Y.-G.; Chang, C.-W.; Kwon, W.; Liou, G.-S.; Ree, M., Electrically bistable digital memory behaviors of thin films of polyimides based on conjugated bis(triphenylamine) derivatives. Polymer 2012,53 (19).4135-4144.
    [24]Rocha, P. R. F.; Gomes, H. L.; Vandamme, L. K. J.; Chen. Q.; Kiazadeh, A.; de Leeuw, D. M.; Meskers. S. C. J., Low-Frequency Diffusion Noise in Resistive-Switching Memories Based on Metal-Oxide Polymer Structure. Ieee Transactions on Electron Devices 2012,59 (9), 2483-2487.
    [25]Zhou. Y.; Han. S.-T.; Xu, Z.-X.; Roy. V. A. L., Low voltage flexible nonvolatile memory with gold nanoparticles embedded in poly(methyl methacrylate). Nanotechnology 2012,23 (34).
    [26]Ko, Y.-G.; Kwon, W.; Yen, H.-J.; Chang, C.-W.; Kim, D. M.; Kim, K.; Hahm, S. G.; Lee. T. J.; Liou, G.-S.; Ree. M., Various Digital Memory Behaviors of Functional Aromatic Polyimides Based on Electron Donor and Acceptor Substituted Triphenylamines. Macromolecules 2012, 45 (9),3749-3758.
    [27]Wang, D.; Li, H.; Li, N.; Zhao, Y.; Zhou, Q.; Xu, Q.; Lu, J.; Wang, L., A new DRAM-type memory devices based on polymethacrylate containing pendant 2-methylbenzothiazole. Materials Chemistry and Physics 2012,134 (1),273-278.
    [28]Stikeman. A., Molecular bloodhounds-Artificial antibodies could sniff out viruses and toxins. Technology Review 2002,105 (9),31-31.
    [29]Forrest. S. R., The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004,428 (6986).911-918.
    [30]Song. Y.; Tan. Y. P.;Teo. E. Y. H.; Zhu, C.; Chan. D. S. H.;Ling, Q. D.; Neoh. K. G.;Kang. E. T., Synthesis and memory properties of a conjugated copolymer of fluorene and benzoate with chelated europium complex. Journal of Applied Physics 2006,100 (8).
    [31]Ling. Q.-D.;Wang. W.;Song. Y.;Zhu. C.-X.;Chan. D. S.-H.; Kang. L.-T.;Neoh. K.-G. Bistable electrical switching and memory effects in a thin film of copolvmer containing electron donor-acceptor moieties and europium complexes. Journal of Physical Chemistry B 2006,110 (47),23995-24001.
    [32]Ling, Q.-D.; Chang, F.-C.; Song, Y.; Zhu, C.-X.; Liaw, D.-J.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G., Synthesis and dynamic random access memory behavior of a functional polyimide. Journal of the American Chemical Society 2006,128 (27).8732-8733.
    [33]Ling, Q.-D.; Song, Y.; Lim, S.-L.; Teo, E. Y.-H.; Tan, Y.-P.; Zhu. C.; Chan, D. S. H.; Kwong, D.-L.; Kang, E.-T.; Neoh, K.-G, A dynamic random access memory based on a conjugated copolymer containing electron-donor and -acceptor moieties. Angewandte Chemie-International Edition 2006,45 (18),2947-2951.
    [34]Segui, Y.; Ai, B.; Carchano, H., Switching In Polystyrene Films - Transition From On To Off State. Journal of Applied Physics 1976,47 (1),140-143.
    [35]Jakobsson, F. L. E.; Crispin, X.; Colle, M.; Buchel, M.; de Leeuw, D. M.; Berggren, M., On the switching mechanism in Rose Bengal-based memory devices. Organic Electronics 2007,8 (5), 559-565.
    [36]Sivaramakrishnan, S.; Chia, P.-J.; Yeo, Y.-C.; Chua, L.-L.; Ho. P. K. H., Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters. Nature Materials 2007,6 (2),149-155.
    [37]Hovel, H. J.; Urgell, J. J., Switching And Memory Characteristics Of Znse-Ge Heterojunctions. Journal of Applied Physics 1971,42 (12),5076.
    [38]Joo, W.-J.; Choi, T.-L.; Lee, J.; Lee, S. K.; Jung, M.-S.; Kim. N.; Kim. J. M., Metal filament growth in electrically conductive polymers for nonvolatile memory application. Journal of Physical Chemistry B 2006,110 (47),23812-23816.
    [39]Colle, M.; Buchel, M.; de Leeuw, D. M., Switching and filamentary conduction in non-volatile organic memories. Organic Electronics 2006,7 (5),305-312.
    [40]Campbell, A. J.; Bradley, D. D. C.; Lidzey. D. G. Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes. Journal of Applied Physics 1997,82 (12), 6326-6342.
    [41]Majumdar. H. S.; Bandyopadhyay, A.; Bolognesi. A.; Pal, A. J., Memory device applications of a conjugated polymer:Role of space charges (vol 91. pg 2433.2002). Journal of Applied Physics 2002,91 (8).
    [42]Majumdar. H. S.; Bandyopadhyay. A.; Pal, A. J., Data-storage devices based on layer-by-layer self-assembled films of a phthalocyanine derivative. Organic Electronics 2003,4 (1).39-44.
    [43]Sadaoka. Y.; Sakai. Y. Switching In Poly(N-Vinylcarbazole) Thin-Films. Journal of the Chemical Society-Faraday Transactions li 1976,72.1911-1915.
    |44| Li. C.;Fan. W. D.;Lei. B.:Zhang. D. H.;Han. S.;Tang. T.;Liu. X. L.;Liu. Z. Q.;Asano. S.; Meyyappan, M.; Han, J.; Zhou, C. W., Multilevel memory based on molecular devices. Applied Physics Letters 2004,84 (11),1949-1951.
    [45]Li, F.; Son, D.-I.; Cha, H.-M.; Seo, S.-M.; Kim, B.-J.; Kim, H.-J.; Jung, J.-H.; Kim, T. W., Memory effect of CdSe/ZnS nanoparticles embedded in a conducting poly 2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene polymer layer. Applied Physics Letters 2007,90 (22).
    [46]Bozano, L. D.; Kean, B. W.; Beinhoff, M.; Carter, K. R.; Rice, P. M.; Scott, J. C., Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles. Advanced Functional Materials 2005,15 (12),1933-1939.
    [47]Ouisse, T.; Stephan, O., Electrical bistability of polyfluorene devices. Organic Electronics 2004,5(5),251-256.
    [48]Taylor, D. M., Space charges and traps in polymer electronics. Ieee Transactions on Dielectrics and Electrical Insulation 2006,13 (5),1063-1073.
    [49]Dei, A.; Gatteschi, D.; Sangregorio, C.; Sorace, L., Quinonoid metal complexes:Toward molecular switches. Accounts of Chemical Research 2004,37(11),827-835.
    [50]Torrance, J. B., Difference between metallic and insulating salts of tetracyanoquinodimethane (Tcnq)-how to design an organic metal. Accounts of Chemical Research 1979,12 (3),79-86.
    [51]Gong. J. P.; Osada, Y., Preparation Of Polymeric Metal-Tetracyanoquinodimethane Film And Its Bistable Switching. Applied Physics Letters 1992,61 (23),2787-2789.
    [52]Hsu, J.-C.; Liu, C.-L.; Chen, W.-C.; Sugiyama, K.; Hirao. A., A supramolecular approach on using poly(fluorenylstyrene)-block-poly(2-vinylpyridine):PCBM composite thin films for non-volatile memory device applications. Macromolecular Rapid Communications 2011,32 (6).528-533.
    [53]Lian. S.-L.; Liu, C.-L.; Chen, W.-C Conjugated fluorene based rod-coil block copolymers and their pcbm composites for resistive memory switching devices. Acs Applied Materials & Interfaces 2011, 3(11),4504-4511.
    [54]Chu. C. W.; Ouyang, J.; Tseng, H. H.; Yang. Y. Organic donor-acceptor system exhibiting electrical bistability for use in memory devices. Advanced Materials 2005,17(11),1440.
    [55]Liu. G.;Ling. Q.-D.; Teo, E. Y. H.; Zhu, C.-X.; Chan. D. S.-H.; Neoh. K.-G.; Kang, E.-T. Electrical conductance tuning and bistable switching in poly(n-vinylcarbazole)-carbon nanotube composite films. Acs Nano 2009,3 (7).1929-1937.
    [56]Prakash. A.;Ouyang. J.;Lin. J.-L.;Yang. Y. Polymer memory device based on conjugated polymer and gold nanoparticles. Journal of Applied Physics 2006,100 (5).
    [57]Song. Y.;Ling. Q. D.;Lim. S. I.;Teo. E. Y. H.;Ian. Y. P.;Li. I.;Kang. L. T.;Chan. D. S. H. Zhu. C., Electrically bistable thin-film device based on PVK and GNPs polymer material. Ieee Electron Device Letters 2007,28 (2),107-110.
    [58]Hahm, S. G.; Kang, N.-G.; Kwon, W.; Kim, K.; Ko, Y.-G.; Ahn, S.; Kang, B.-G.; Chang, T.; Lee, J.-S.; Ree, M., Programmable bipolar and unipolar nonvolatile memory devices based on poly(2-(n-carbazolyl)ethyl methacrylate) end-capped with fullerene. Advanced Materials 2012, 24(8),1062-1066.
    [59]Choi, J.-S.; Kim, J.-H.; Kim, S.-H.; Suh, D. H., Nonvolatile memory device based on the switching by the all-organic charge transfer complex. Applied Physics Letters 2006,89 (15).
    [60]Ling, Q.-D.; Lim, S.-L.; Song, Y.; Zhu, C.-X.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G., Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly(N-vinylcarbazole) with covalently bonded C-60. Langmuir 2007,23 (1),312-319.
    [61]Chen, C.-J.; Yen, H.-J.; Chen, W.-C.; Liou, G.-S., Novel High-Performance Polymer Memory Devices Containing (OMe)(2)Tetraphenyl-p-phenylenediamine Moieties. Journal of Polymer Science Part a-Polymer Chemistry 2011,49 (17),3709-3718.
    [62]Chen, C.-J.; Yen, H.-J.; Chen, W.-C.; Liou, G.-S., Resistive switching non-volatile and volatile memory behavior of aromatic polyimides with various electron-withdrawing moieties. Journal of Materials Chemistry 2012,22 (28),14085-14093.
    [63]Fang, Y.-K.; Liu, C.-L.; Li. C.; Lin. C.-J.; Mezzenga, R.; Chen. W.-C., Synthesis, Morphology, and Properties of Poly(3-hexylthiophene)-block-Poly(vinylphenyl oxadiazole) Donor-Acceptor Rod-Coil Block Copolymers and Their Memory Device Applications. Advanced Functional Materials 2010,20 (18),3012-3024.
    [64]Hsu, J.-C.; Chen, Y.; Kakuchi, T.; Chen. W.-C., Synthesis of Linear and Star-Shaped Poly 4-(diphenylamino)benzyl methacrylate s by Group Transfer Polymerization and Their Electrical Memory Device Applications. Macromolecules 2011,44 (13),5168-5177.
    [65]Lin. P.-H.; Lee, W.-Y.; Wu, W.-C.; Chen. W.-C., Synthesis, properties, and electrical memory characteristics of new diblock copolymers of polystyrene--poly(styrene-pyrene). Polymer Bulletin 2012, 69 (1),29-47.
    [66]Jensen, K. L., Electron emission theory and its application:Fowler-Nordheim equation and beyond. Journal of Vacuum Science & Technology B 2003,21 (4).1528-1544.
    [67]Girlanda. M.; Cacelli.I.; Ferretti, A.; Macucci. M.; Ieee. Conductance modulation in molecular devices via field-induced conformational change.2004; p 131-133.
    [68]Donhauser, Z. J.; Mantooth, B. A.; Kelly. K. F.;Bumm. L. A.;Monnell. J. D.; Stapleton. J. J.: Price. D. W.; Rawlett. A. M.;Allara. D. L.; Tour. J. M.; Weiss. P. S., Conductance switching in single molecules through conformational changes. Science 2001,292 (5525).2303-2307.
    [69]Cacelli. I.:Feretti. A.; Girlanda. M.;Macucci. M., Theoretical study of building blocks for molecular switches based on electrically induced contbrmational chanties. Chemical Physics 2006,320 (2-3),84-94.
    [70]Ma, D.; Aguiar, M.; Freire, J. A.; Hummelgen, I. A., Organic reversible switching devices for memory applications. Advanced Materials 2000,12 (14),1063-1066.
    [71]Lim, S. L.; Ling, Q.; Teo, E. Y. H.; Zhu, C. X.; Chan, D. S. H.; Kang, E.-T.; Neoh, K. G., Conformation-induced electrical bistability in non-conjugated polymers with pendant carbazole moieties. Chemistry of Materials 2007,19 (21),5148-5157.
    [72]Liu, G.; Liaw, D.-J.; Lee, W.-Y.; Ling, Q.-D.; Zhu, C.-X.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G., Tristable electrical conductivity switching in a polyfluorene-diphenylpyridine copolymer with pendant carbazole groups. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 2009,367 (1905),4203-4214.
    [73]Ajayaghosh, A., Donor-acceptor type low band gap polymers:polysquaraines and related systems. Chemical Society Reviews 2003,32 (4),181-191.
    [74]Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz. P. G.; Holmes, A. B., Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices. Chemical Reviews 2009,109 (3),897-1091.
    [75]Arias, A. C.; MacKenzie, J. D.; McCulloch,I.; Rivnay. J.; Salleo, A., Materials and Applications for Large Area Electronics:Solution-Based Approaches. Chemical Reviews 2010, 110(1).3-24.
    [76]Ling, Q.-D.; Liaw, D.-J.; Teo, E. Y.-H.; Zhu, C.; Chan. D. S.-H.; Kang, E.-T.; Neoh, K.-G., Polymer memories:Bistable electrical switching and device performance. Polymer 2007,48 (18),5182-5201.
    [77]Liu, G.; Zhang, B.; Chen, Y.; Zhu. C.-X.; Zeng, L.; Chan. D. S.-H.; Neoh, K.-G.; Chen, J.; Kang, E.-T., Electrical conductivity switching and memory effects in poly(N-vinylcarbazole) derivatives with pendant azobenzene chromophores and terminal electron acceptor moieties. Journal of Materials Chemistry 2011,21 (16),6027-6033.
    [78]Zeng, L.-J.; Liu, G.; Zhang, B.; Chen, J.; Chen, Y.; Kang, E.-T., Synthesis and memory performance of a conjugated polymer with an integrated fluorene, carbazole and oxadiazole backbone. Polymer Journal 2012,44 (3),257-263.
    [79]Zhang, B.; Chen, Y.; Liu, G.; Xu. L.-Q.; Chen. J.; Zhu. C.-X.; Neoh. K.-G.; Kang, E.-T. Push-Pull Archetype of Reduced Graphene Oxide Functionalized with Polyfluorene for Nonvolatile Rewritable Memory. Journal of Polymer Science Part α-Polymer Chemistry 2012, 50(2),378-387.
    [80]Zhang. B.;Liu. G.;Chen. Y.; Wang. C.;Neoh. K.-G.;Bai. T.;Kang. E.-T. Electrical Bistability and WORM Memory Effects in Donor-Acceptor Polymers Based on Poly(N-vinylcarbazole). Chempluschem 2012, 77(1),74-81.
    [81]Zhang, B.; Liu, G.; Chen, Y.; Zeng, L.-J.; Zhu, C.-X.; Neoh, K.-G.; Wang, C.; Kang, E.-T. Conjugated Polymer-Grafted Reduced Graphene Oxide for Nonvolatile Rewritable Memory. Chemistry-a European Journal 2011,17 (49),13646-13652.
    [82]Zhang, B.; Liu, Y.-L.; Chen, Y.; Neoh, K.-G.; Li, Y.-X.; Zhu, C.-X.; Tok, E.-S.; Kang, E.-T., Nonvolatile Rewritable Memory Effects in Graphene Oxide Functionalized by Conjugated Polymer Containing Fluorene and Carbazole Units. Chemistry-a European Journal 2011,17 (37),10304-10311.
    [83]Zhuang, X.-D.; Chen, Y.; Li, B.-X.; Ma, D.-G.; Zhang, B.; Li, Y., Polyfluorene-Based Push-Pull Type Functional Materials for Write-Once-Read-Many-Times Memory Devices. Chemistry of Materials 2010,22 (15),4455-4461.
    [84]Zhuang, X.-D.; Chen, Y.; Liu, G.; Li, P.-P.; Zhu, C.-X.; Kang, E.-T.; Neoh, K.-G.; Zhang, B.; Zhu, J.-H.; Li, Y.-X., Conjugated-Polymer-Functionalized Graphene Oxide:Synthesis and Nonvolatile Rewritable Memory Effect. Advanced Materials 2010,22 (15),1731-1735.
    [85]Zhuang, X.-D.; Chen, Y.; Liu, G.; Zhang, B.; Neoh, K.-G.; Kang, E.-T.; Zhu, C.-X.; Li, Y.-X.; Niu, L.-J., Preparation and Memory Performance of a Nanoaggregated Dispersed Red 1-Functionalized Poly (N-vinylcarbazole) Film via Solution-Phase Self-Assembly. Advanced Functional Materials 2010,20 (17),2916-2922.
    [86]Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society Reviews 2010,39 (1),228-240.
    [87]Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nature Nanotechnology 2009,4 (4),217-224.
    [88]Li, G. L.; Liu, G.; Li, M.; Wan, D.; Neoh, K. G.; Kang, E. T., Organo- and Water-Dispersible Graphene Oxide-Polymer Nanosheets for Organic Electronic Memory and Gold Nanocomposites. Journal of Physical Chemistry C 2010,114 (29),12742-12748.
    [89]Wu, C.; Li, F.; Guo. T.; Kim. T. W.. Controlling memory effects of three-layer structured hybrid bistable devices based on graphene sheets sandwiched between two laminated polymer layers. Organic Electronics 2012,13 (1).178-183.
    [90]Zhang, Q.; Pan, J.; Yi. X.; Li. L.; Shang. S., Nonvolatile memory devices based on electrical conductance tuning in poly(N-vinylcarbazole)-graphene composites. Organic Electronics 2012, 13(8),1289-1295.
    [91]Yu. A.-D.; Liu, C.-L.; Chen. W.-C Supramolecular block copolymers:graphene oxide composites for memory device applications. Chemical Communications 2012,48 (3).383-385.
    [92]Son. D. I.;Kim. T. W.;Shim. J. H.;Jung. J. H.;Lee. D. U.;Lee. J. M.; II Park. W.;Choi. W. K., Flexible Organic Bistable Devices Based on Graphene Embedded in an Insulating Poly(methyl methacrvlate) Polymer Layer. Nano Letters 2010,10(1).2441-2447.
    [93]Son, D. I.; Shim, J. H.; Park, D. H.; Jung, J. H.; Lee, J. M.; II Park, W.; Kim, T. W.; Choi, W. K., Polymer-ultrathin graphite sheet-polymer composite structured flexible nonvolatile bistable organic memory devices. Nanotechnology 2011,22 (29).
    [94]Wu, J. H.; Ma, L. P.; Yang, Y., Single-band Hubbard model for the transport properties in bistable organic/metal nanoparticle/organic devices. Physical Review B 2004,69 (11).
    [95]Ouyang, J. Y.; Chu, C. W.; Szmanda, C. R.; Ma, L. P.; Yang, Y, Programmable polymer thin film and non-volatile memory device. Nature Materials 2004,3 (12),918-922.
    [96]Tseng, R. J.; Huang, J. X.; Ouyang, J.; Kaner, R. B.; Yang, Y, Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Letters 2005,5 (6),1077-1080.
    [97]Tseng, R. J.; Ouyang, J.; Chu, C. W.; Huang, J. S.; Yang, Y., Nanoparticle-induced negative differential resistance and memory effect in polymer bistable light-emitting device. Applied Physics Letters 2006,88 (12).
    [98]Baker, C. O.; Shedd, B.; Tseng, R. J.; Martinez-Morales, A. A.; Ozkan, C. S.; Ozkan, M.; Yang, Y.; Kanert, R. B., Size Control of Gold Nanoparticles Grown on Polyaniline Nanofibers for Bistable Memory Devices. Acs Nano 2011,5 (5),3469-3474.
    [99]Son, D. I.; Park, D. H.; Bin Kim, J.; Choi, J.-W.; Kim. T. W.; Angadi, B.; Yi, Y.; Choi, W. K., Bistable Organic Memory Device with Gold Nanoparticles Embedded in a Conducting Poly(N-vinylcarbazole) Colloids Hybrid. Journal of Physical Chemistry C 2011,115 (5), 2341-2348.
    [100]Wei, D.; Baral, J. K.; Osterbacka. R.; Ivaska, A., Electrochemical fabrication of a nonvolatile memory device based on polyaniline and gold particles. Journal of Materials Chemistry 2008, 18(16).1853-1857.
    [101]Tseng, R. J.; Tsai, C.; Ma, L.; Ouyang, J., Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nature Nanotechnology 2006,1(1),12-11.
    [102]Ling, Q. D.; Song. Y.; Ding, S. J.; Zhu. C. X.; Chan, D. S. H.; Kwong, D. L.; Kang, E. T. Neoh, K. G., Non-volatile polymer memory device based on a novel copolymer of N-vinylcarbazole and Eu-complexed vinylbenzoate. Advanced Materials 2005,17 (4),455.
    [103]Kurosawa. T.; Lai, Y.-C.; Higashihara. T.; Ueda. M.; Liu. C.-L.; Chen, W.-C., Tuning the Electrical Memory Characteristics from Volatile to Nonvolatile by Perylene Imide Composition in Random Copolyimides. Macromolecules 2012,45 (11),4556-4563.
    [104]Hu. B.:Zhu. X.; Chen. X.; Pan. L.;Peng. S.;Wu. Y.;Shang. J.;Liu. G.;Yan, Q.;Li. R.-W.. A Multilevel Memory Based on Proton-Doped Polyazomethine with an Excellent Uniformity in Resistive Switching. Journal of the American Chemical Society 2012,134 (42).17408-17411.
    [105]Chiang. C. K.;Druy. M. A.;Gau. S. C.;Heeger. A. J.;Louis. L. J.;Macdiarmid. A. G.;Park. Y. W.:Shirakawa. H., Synthesis Of Highly Conducting Films Of Derivatives Of Polyacetvlene. (CH)X. Journal of the American Chemical Society 1978,100 (3),1013-1015.
    [106]El-Khouly, M. E.; Chen, Y.; Zhuang, X.; Fukuzumi, S., Long-Lived Charge-Separated Configuration of a Push-Pull Archetype of Disperse Red 1 End-Capped Poly 9,9-Bis(4-diphenylaminophenyl)fluorene. Journal of the American Chemical Society 2009, 131 (18),6370.
    [107]Ling, Q.-D.; Kang, E.-T.; Neoh, K.-G.; Chen, Y.; Zhuang, X.-D.; Zhu, C.; Chan, D. S. H., Thermally stable polymer memory devices based on a pi-conjugated triad. Applied Physics Letters 2008,92 (14).
    [108]Li, L.; Ling, Q.-D.; Lim, S.-L.; Tan, Y.-P.; Zhu, C.; Chan, D. S. H.; Kang, E.-T.; Neoh, K.-G, A flexible polymer memory device. Organic Electronics 2007,8 (4),401-406.
    [109]Liu, S.-J.; Lin, Z.-H.; Zhao, Q.; Ma, Y.; Shi, H.-F.; Yi, M.-D.; Ling, Q.-D.; Fan, Q.-L.; Zhu, C.-X.; Kang, E.-T.; Huang. W., Flash-Memory Effect for Polyfluorenes with On-Chain Iridium(III) Complexes. Advanced Functional Materials 2011,21 (5),979-985.
    [110]Wang, P.; Liu, S.-J.; Lin, Z.-H.; Dong, X.-C.; Zhao, Q.; Lin, W.-P.; Yi, M.-D.; Ye, S.-H.; Zhu. C.-X.; Huang, W.. Design and synthesis of conjugated polymers containing Pt(II) complexes in the side-chain and their application in polymer memory devices. Journal of Materials Chemistry 2012,22 (19).9576-9583.
    [111]Bandyopadhyay, A.; Sahu. S.; Higuchi. M., Tuning of Nonvolatile Bipolar Memristive Switching in Co(111) Polymer with an Extended Azo Aromatic Ligand. Journal of the American Chemical Society 2011,133 (5).1168-1171.
    [112]Fang, Y.-K.; Liu, C.-L.; Chen. W.-C., New random copolymers with pendant carbazole donor and 1.3,4-oxadiazole acceptor for high performance memory device applications. Journal of Materials Chemistry 2011,21 (13),4778-4786.
    [113]Fang, Y.-K.; Liu. C.-L.;Yang, G.-Y.; Chen. P.-C.; Chen, W.-C., New Donor-Acceptor Random Copolymers with Pendent Triphenylamine and 1,3,4-Oxadiazole for High-Performance Memory Device Applications. Macromolecules 2011,44 (8),2604-2612.
    [114]Kang. N.-G.; Cho, B.; Kang. B.-G.; Song, S.; Lee. T.; Lee, J.-S., Structural and Electrical Characterization of a Block Copolymer-Based Unipolar Nonvolatile Memory Device. Advanced Materials 2012,24 (3).385.
    [115]Liu. S.-J.; Wang. P.; Zhao. Q.:Yang. H.-Y.; Wong. J.; Sun. H.-B.; Dong, X.-C.; Lin, W.-P.; Huang. W.. Single Polymer-Based Ternary Electronic Memory Material and Device. Advanced Materials 2012,24 (21).2901-2905.
    [116]Lim. S. L.;Li. N.-J.;Lu. J.-M.:Ling. Q.-D.;Zhu. C. X.;Kang. E.-T.; Neoh. K. G., Conductivity Switching and Electronic Memory Effect in Polymers with Pendant Azobenzenc Chromophores. Acs Applied Materials & Interfaces 2009,1(1).60-71.
    [117]Li, N.; Lu, J.; Li, H.; Kang, E.-T., Nonlinear optical properties and memory effects of the azo polymers carrying different substituents. Dyes and Pigments 2011,88 (1),18-24.
    [118]Chen, Y.; Zhang, B.; Liu, G.; Zhuang, X.; Kang, E.-T., Graphene and its derivatives:switching ON and OFF. Chemical Society Reviews 2012,41 (13),4688-4707.
    [119]Liu, G.; Zhuang, X.; Chen, Y.; Zhang, B.; Zhu, J.; Zhu, C.-X.; Neoh, K.-G.; Kang, E.-T. Bistable electrical switching and electronic memory effect in a solution-processable graphene oxide-donor polymer complex. Applied Physics Letters 2009,95 (25).
    [1]Ajayaghosh, A., Donor-acceptor type low band gap polymers:polysquaraines and related systems. Chemical Society Reviews 2003,32 (4),181-191.
    [2]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004,306 (5696),666-669.
    [3]Allen, M. J.; Tung, V. C.; Kaner, R. B., Honeycomb Carbon:A Review of Graphene. Chemical Reviews 2010,110 (1),132-145.
    [4]Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S., The structure of suspended graphene sheets. Nature 2007,446 (7131).60-63.
    [5]Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill. E. W.; Blake, P.; Katsnelson, M. I.; Novoselov. K. S., Detection of individual gas molecules adsorbed on graphene. Nature Materials 2007,6 (9), 652-655.
    [6]Chen, F.; Tao, N. J., Electron Transport in Single Molecules:From Benzene to Graphene. Accounts of Chemical Research 2009,42 (3).429-438.
    [7]Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006, 442(7100),282-286.
    [8]Dreyer, D. R.; Park, S.; Bielawski. C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society Reviews 2010,39 (1).228-240.
    [9]Loh. K. P.; Bao. Q.; Ang. P. K.; Yang, J., The chemistry of graphene. Journal of Materials Chemistry 2010,20 (12).2277-2289.
    [10]Ye. Y.-S.; Chen, Y.-N.:Wang. J.-S.;Rick. J.:Huang. Y.-J.; Chang, F.-C.; Hwang, B.-J., Versatile Grafting Approaches to Functionalizing Individually Dispersed Graphene Nanosheets Using RAFT Polymerization and Click Chemistry. Chemistry of Materials 2012,24 (15). 2987-2997.
    [11]Fang. M.:Wang, K.; Lu. H.;Yang. Y.;Nutt. S., Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry 2009,19 (38),7098-7105.
    [12]Salavagione, H. J.; Martinez, G., Importance of Covalent Linkages in the Preparation of Effective Reduced Graphene Oxide-Poly(vinyl chloride) Nanocomposites. Macromolecules 2011,44 (8),2685-2692.
    [13]Lee, S. H.; Dreyer, D. R.; An, J.; Velamakanni, A.; Piner, R. D.; Park, S.; Zhu, Y.; Kim, S. O.; Bielawski, C. W.; Ruoff, R. S., Polymer Brushes via Controlled, Surface-Initiated Atom Transfer Radical Polymerization (ATRP) from Graphene Oxide. Macromolecular Rapid Communications 2010,31 (3),281-288.
    [14]Stankovich, S.; Dikin, D. A.; Compton, O. C.; Dommett, G H. B.; Ruoff, R. S.; Nguyen, S. T., Systematic Post-assembly Modification of Graphene Oxide Paper with Primary Alkylamines. Chemistry of Materials 2010,22 (14).4153-4157.
    [15]Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L., Water-Soluble Graphene Covalently Functionalized by Biocompatible Poly-L-lysine. Langmuir 2009,25 (20), 12030-12033.
    [16]Zhuang. X.-D.; Chen, Y.; Liu, G.; Li. P.-P.; Zhu, C.-X.; Kang, E.-T.; Neoh, K.-G.; Zhang, B.; Zhu, J.-H.; Li, Y.-X., Conjugated-Polymer-Functionalized Graphene Oxide:Synthesis and Nonvolatile Rewritable Memory Effect. Advanced Materials 2010,22 (15),1731-1735.
    [17]Li. G. L.; Liu, G.; Li. M.; Wan, D.; Neoh. K. G.; Kang. E. T.. Organo- and Water-Dispersible Graphene Oxide-Polymer Nanosheets for Organic Electronic Memory and Gold Nanocomposites. Journal of Physical Chemistry C 2010,114 (29),12742-12748.
    [18]Moad, G.; Chen, M.; Haeussler. M.; Postma. A.; Rizzardo, E.; Thang, S. H., Functional polymers for optoelectronic applications by RAFT polymerization. Polymer Chemistry 2011,2 (3),492-519.
    [19]Grazulevicius, J. V.; Strohriegl, P.; Pielichowski, J.; Pielichowski, K., Carbazole-containing polymers:synthesis, properties and applications. Progress in Polymer Science 2003,28 (9), 1297-1353.
    [20]Jung, I.; Dikin, D. A.; Piner, R. D.; Ruoff, R. S., Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at "Low" Temperatures. Nano Letters 2008,8 (12), 4283-4287.
    [21]Lai. J. T.; Filla, D.; Shea, R., Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 2002,35 (18),6754-6756.
    [22]Gilje. S.; Han. S.;Wang. M.;Wang. K. L.;Kaner. R. B., A chemical route to graphene for device applications. Nano Letters 2007, 7(11).3394-3398.
    [23]Stankovich. S.; Piner. R. D.;Nguyen. S. T.;Ruoff. R. S., Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006,44 (15).3342-3347.
    [24]Xu, C.; Wu, X.; Zhu, J.; Wang, X., Synthesis of amphiphilic graphite oxide. Carbon 2008,46 (2),386-389.
    25] Lowe, A. B.; McCormick. C. L., Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Progress in Polymer Science 2007,32 (3),283-351.
    [26]Boyer, C.; Bulmus, V.; Davis, T. P.; Ladmiral, V.; Liu, J.; Perrier, S., Bioapplications of RAFT Polymerization. Chemical Reviews 2009,109 (11),5402-5436.
    [27]Chen, Y.; Huang, Z. E.; Cai, R. F., The synthesis and characterization of C-60 chemically modified poly(N-vinylcarbazole). Journal of Polymer Science Part B-Polymer Physics 1996, 34(4),631-640.
    [28]Ling, Q.-D.; Lim, S.-L.; Song, Y.; Zhu, C.-X.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G., Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly(N-vinylcarbazole) with covalently bonded C-60. Langmuir 2007,25 (1),312-319.
    [29]Feng, M.; Chen, Y.; He, N.; Gu, L.; Gao, L.; Hu, Z.; Lin, Y.; Zhuang, X.; Zhan, H., Ultrasound-assisted bulk synthesis of CdS-PVK nanocomposites via RAFT polymerization. Journal of Polymer Science Part a-Polymer Chemistry 2008,46 (16),5702-5707.
    [30]Skaff. H.; Emrick, T., Reversible addition fragmentation chain transfer (RAFT) polymerization from unprotected cadmium selenide nanoparticles. Angewandte Chemie-International Edition 2004,43 (40).5383-5386.
    [31]Zhang, B.; Wang, J.; Chen. Y.; Fruechtl, D.; Yu, B.; Zhuang, X.; He, N.; Blau, W. J., Multiwalled Carbon Nanotubes Covalently Functionalized with Poly(N-vinylcarbazole) via RAFT Polymerization:Synthesis and Nonlinear Optical Properties. Journal of Polymer Science Part a-Polymer Chemistry 2010,48 (14).3161-3168.
    [32]Baethge. H.; Butz, S.; Han, C. H.; Schmidt-Naake, G., Rate enhancement of the N-oxyl-controlled free radical copolymerization of styrene with N-vinylcarbazole. Angewandte Makromolekulare Chemie 1999,267.52-56.
    [33]Nowakowska, M.; Zapotoczny. S.; Karewicz, A., Polymeric photosensitizers. Part 4. Synthesis of poly(sodium styrenesulfonate-block-N-vinylcarbazole) by nitroxide-mediated free radical polymerization. Polymer 2001,42 (5).1817-1823.
    [34]Mori. H.; Ookuma. H.;Nakano. S.; Endo. T., Xanthate-mediated controlled radical polymerization of N-vinylcarbazole. Macromolecular Chemistry and Physics 2006,207 (12). 1005-1017.
    [35]Rienstra-Kiracofe. J. C.;Barden. C. J.;Brown. S. T.;Schaefer. H. F.. Electron affinities of polycyclic aromatic hydrocarbons. Journal of Physical Chemistry A 2001,105 (3).524-528.
    [36]Brown. S. T.;Rienstra-Kiracofe.J. C.;Schaefer.H. F., A systematic application of density functional theory to some carbon-containing molecules and their anions. Journal of Physical Chemistry A 1999,103 (20),4065-4077.
    [37]Wu, T. Y.; Sheu, R. B.; Chen, Y, Synthesis and optically acid-sensory and electrochemical properties of novel polyoxadiazole derivatives. Macromolecules 2004,37 (3),725-733.
    [38]Porres, L.; Holland, A.; Palsson, L. O.; Monkman, A. P.; Kemp, C.; Beeby, A., Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. Journal of Fluorescence 2006,16 (2),267-272.
    [39]Vidano, R. P.; Fischbach, D. B.; Willis, L. J.; Loehr, T. M., Observation of raman band shifting with excitation wavelength for carbons and graphites. Solid State Communications 1981,39 (2),341-344.
    [40]Agullo-Rueda, F.; Moreno, J. D.; Montoya, E.; Guerrero-Lemus, R.; Martinez-Duart, J. M., Influence of wavelength on the Raman line shape in porous silicon. Journal of Applied Physics 1998,84 (4),2349-2351.
    [41]Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007,45 (7),1558-1565.
    [42]Ling, Q.-D.; Liaw, D.-J.; Zhu, C.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G., Polymer electronic memories:Materials, devices and mechanisms. Progress in Polymer Science 2008, 33 (10),917-978.
    [43]Hwang, E. H.; Adam, S.; Das Sarma, S., Carrier transport in two-dimensional graphene layers. Physical Review Letters 2007,98 (18).
    [44]Connolly, T.; Smith. R. C.; Hernandez. Y.; Gun'ko, Y.; Coleman, J. N.; Carey. J. D., Carbon-Nanotube-Polymer Nanocomposites for Field-Emission Cathodes. Small 2009,5 (7), 826-831.
    [45]Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall. M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson. M. I.; Geim, A. K.; Novoselov, K. S., Control of Graphene's Properties by Reversible Hydrogenation:Evidence for Graphane. Science 2009, 323(5914),610-613.
    [46]Robinson, J. T.; Perkins, F. K.;Snow. E. S.; Wei, Z.; Sheehan, P. E., Reduced Graphene Oxide Molecular Sensors. Nano Letters 2008,8 (10).3137-3140.
    [47]Fang. T.;Konar. A.; Xing. H.;Jena. D., Mobility in semiconducting graphene nanoribbons: Phonon. impurity, and edge roughness scattering. Physical Review B 2008,78 (20).
    [48]Martin. I.:Blanter. Y. M., Transport in disordered graphene nanoribbons. Physical Review B 2009,79(23).
    [1]Wu.J;Pisula. W.;Muellen.K.,Graphenes as potential material for electronics. Chemical Reviews 2007,107(3),718.747.
    [2]Chen, F.; Tao, N. J., Electron Transport in Single Molecules:From Benzene to Graphene. Accounts of Chemical Research 2009,42 (3),429-438.
    [3]Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society Reviews 2010,39 (1),228-240.
    [4]Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nature Nanotechnology 2009,4 (4),217-224.
    [5]Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene:The New Two-Dimensional Nanomaterial. Angewandte Chemie-International Edition 2009,48 (42), 7752-7777.
    [6]Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008,321 (5887),385-388.
    [7]Lee, J.; Shim, S.; Kim, B.; Shin, H. S., Surface-Enhanced Raman Scattering of Single-and Few-Layer Graphene by the Deposition of Gold Nanoparticles. Chemistry-a European Journal 2011,17 (8),2381-2387.
    [8]Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Graphene-Based Ultracapacitors. Nano Letters 2008,8 (10).3498-3502.
    [9]Zhang. Y. B.; Tan, Y. W.; Stormer. H. L.; Kim, P., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005,438 (7065),201-204.
    [10]Loh. K. P.; Bao. Q.; Ang. P. K.; Yang, J., The chemistry of graphene. Journal of Materials Chemistry 2010,20 (12).2277-2289.
    [11]Stikeman. A., Molecular bloodhounds - Artificial antibodies could sniff out viruses and toxins. Technology Review 2002,105 (9).31-31.
    [12]Kim. T.-W.; Gao. Y.; Acton, O.; Yip, H.-L.; Ma, H.; Chen, H.; Jen. A. K. Y., Graphene oxide nanosheets based organic field effect transistor for nonvolatile memory applications. Applied Physics Letters 2010,97 (2).
    [13]Liu, G.;Zhuang. X.; Chen. Y.; Zhang. B.; Zhu. J.; Zhu, C.-X.; Neoh. K.-G.; Kang. E.-T., Bistable electrical switching and electronic memory effect in a solution-processable graphene oxide-donor polymer complex. Applied Physics Letters 2009,95 (25).
    [14]Zhang. B.; Chen. Y.; Zhuang. X.; Liu. G.; Yu, B.; Kang, E.-T.:Zhu. J.; Li. Y., Poly(N-Vinylcarbazole) Chemically Modified Graphene Oxide. Journal of Polymer Science Part a-Polymer Chemistry 2010,48 (12).2642-2649.
    [15]Li. Y. N.;Ding. J. F.;Day. M.:Tao. Y.;Lu. J. P.;D'lorio. M., Synthesis and properties of random and alternating fluorene/carbazole copolymers for use in blue light-emitting devices. Chemistry of Materials 2004,16 (11).2165-2173.
    [16]Lu. J. P.;Tao. Y.;D'lorio. M.;Li. Y. N.;Ding. J. F.;Day, M., Pure deep blue light-emitting diodes from alternating fluorene/carbazole copolymers by using suitable hole-blocking materials. Macromolecules 2004,37 (7),2442-2449.
    [17]Lin, Y.; Zhang, K.; Chen, W.; Liu, Y.; Geng, Z.; Zeng, J.; Pan, N.; Yan, L.; Wang, X.; Hou, J. G, Dramatically Enhanced Photoresponse of Reduced Graphene Oxide with Linker-Free Anchored CdSe Nanoparticles. Acs Nano 2010,4 (6),3033-3038.
    [18]Chen, Y.; El-Khouly, M. E.; Sasaki, M.; Araki, Y.; Ito, O., Synthesis of the axially substituted titanium PC-C-60 dyad with a convenient method. Organic Letters 2005,7 (8),1613-1616.
    [19]Kumaresan, D.; Thummel, R. P.; Bura, T.; Ulrich, G.; Ziessel, R., Color Tuning in New Metal-Free Organic Sensitizers (Bodipys) for Dye-Sensitized Solar Cells. Chemistry-a European Journal 2009,15 (26),6335-6339.
    [20]Ling, Q.-D.; Liaw, D.-J.; Teo, E. Y.-H.; Zhu, C.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G., Polymer memories:Bistable electrical switching and device performance. Polymer 2007,48 (18).5182-5201.
    [21]Rienstra-Kiracofe, J. C.; Barden, C. J.; Brown, S. T.; Schaefer, H. F., Electron affinities of polycyclic aromatic hydrocarbons. Journal of Physical Chemistry A 2001,105 (3),524-528.
    [22]Brown, S. T.; Rienstra-Kiracofe, J. C.; Schaefer, H. F., A systematic application of density functional theory to some carbon-containing molecules and their anions. Journal of Physical Chemistry A 1999,103 (20).4065-4077.
    [23]Kong. B.-S.; Yoo. H.-W.; Jung, H.-T., Electrical Conductivity of Graphene Films with a Poly(allylamine hydrochloride) Supporting Layer. Langmuir 2009,25 (18),11008-11013.
    [24]Connolly, T.; Smith, R. C.; Hernandez, Y.; Gun'ko, Y.; Coleman, J. N.; Carey. J. D., Carbon-Nanotube-Polymer Nanocomposites for Field-Emission Cathodes. Small 2009,5 (7), 826-831.
    [25]Geng, X.; Niu, L.; Xing, Z.; Song, R.; Liu, G.; Sun, M.; Cheng, G.; Zhong. H.; Liu, Z.; Zhang, Z.; Sun. L.; Xu, H.; Lu. L.; Liu, L., Aqueous-Processable Noncovalent Chemically Converted Graphene-Quantum Dot Composites for Flexible and Transparent Optoelectronic Films. Advanced Materials 2010,22 (5),638.
    [26]Qi, X.; Pu, K.-Y.; Zhou. X.; Li, H.; Liu, B.; Boey, F.; Huang, W.; Zhang. H., Conjugated-Polyelectrolyte-Functionalized Reduced Graphene Oxide with Excellent Solubility and Stability in Polar Solvents. Small 2010,6 (5).663-669.
    [27]Wang. F.; Zhang. Y.;Tian. C.;Girit, C.;Zettl. A.; Crommie. M.;Shen. Y. R., Gate-variable optical transitions in graphene. Science 2008,320 (5873).206-209.
    [28]Ying. I.;Zou. J.; Yang. W.;Wu. H.;Zhang. A.;Wu. Z.:Cao. Y. Novel Red Light-Emitting Fluorene-alt-Carbazole Copolymers with Carbazole N-Graft Cyclometalated Ir Complexes. Macmniolccular Chemistrv and Physics 2009,210 (6).457-466.
    [29]Liu, G.; Liaw, D.-J.; Lee, W.-Y.; Ling, Q.-D.; Zhu, C.-X.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G., Tristable electrical conductivity switching in a polyfluorene-diphenylpyridine copolymer with pendant carbazole groups. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 2009,367 (1905),4203-4214.
    [30]Ling, Q.-D.; Kang, E.-T.; Neoh, K.-G.; Chen, Y.; Zhuang, X.-D.; Zhu, C.; Chan, D. S. H., Thermally stable polymer memory devices based on a pi-conjugated triad. Applied Physics Letters 2008,92 (14).
    [31]Chen, Y.; Zhang, B.; Liu, G.; Zhuang, X.; Kang, E.-T., Graphene and its derivatives:switching ON and OFF. Chemical Society Reviews 2012,41 (13),4688-4707.
    [32]Zhang, B.; Chen, Y.; Xu, L.; Zeng, L.; He, Y; Kang, E.-T.; Zhang, J., Growing Poly(N-vinylcarbazole) from the Surface of Graphene Oxide via RAFT Polymerization. Journal of Polymer Science Part a-Polymer Chemistry 2011,49 (9),2043-2050.
    [33]MacDiarmid. A. G., "Synthetic metals":A novel role for organic polymers (Nobel lecture). Angewandte Chemie-International Edition 2001,40 (14),2581-2590.
    [34]Dhand. C.; Das, M.; Datta, M.; Malhotra, B. D., Recent advances in polyaniline based biosensors. Biosensors & Bioelectronics 2011,26 (6),2811-2821.
    [35]Snook, G. A.; Kao, P.; Best, A. S., Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources 2011,196 (1),1-12.
    [36]Wang. Y.-G.; Li, H.-Q.; Xia, Y-Y., Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Advanced Materials 2006,18(19),2619.
    [37]Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J., Graphene/Polyaniline Nanoriber Composites as Supercapacitor Electrodes. Chemistry of Materials 2010,22 (4),1392-1401.
    [38]Coskun. E.; Zaragoza-Contreras, E. A.; Salavagione. H. J., Synthesis of sulfonated graphene/polyaniline composites with improved electroactivity. Carbon 2012,50 (6). 2235-2243.
    [39]Yan. J.:Wei. T.; Shao, B.; Fan, Z.; Qian, W.; Zhang. M.; Wei, F.. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 2010,48 (2). 487-493.
    [40]Bai. H.;Xu. Y.;Zhao. L.; Li. C.;Shi. G., Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chemical Communications 2009, (13).1667-1669.
    [41]Wu. Q.;Xu. Y.;Yao. Z.;Liu. A.; Shi. G., Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. Acs Nemo 2010,4 (4).1963-1970.
    [42]Feng. X.-.M.;Li. R.-M.;Ma. Y.-W.;Chen. R.-F.;Shi. N.-E.;Fan. Q.-L.;Huang. W., One-Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications. Advanced Functional Materials 2011,21 (15),2989-2996.
    [43]Xu, L. Q.; Liu, Y. L.; Neoh, K.-G.; Kang, E.-T.; Fu, G. D., Reduction of Graphene Oxide by Aniline with Its Concomitant Oxidative Polymerization. Macromolecular Rapid Communications 2011,32 (8),684-688.
    [44]Mao, L.; Zhang, K.; Chan, H. S. O.; Wu, J., Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. Journal of Materials Chemistry 2012,22 (1),80-85.
    [45]Kumar, N. A.; Choi, H.-J.; Shin, Y. R.; Chang, D. W.; Dai, L.; Baek, J.-B., Polyaniline-Grafted Reduced Graphene Oxide for Efficient Electrochemical Supercapacitors. Acs Nano 2012,6 (2), 1715-1723.
    [46]Liu. Y.; Deng, R.; Wang, Z.; Liu, H., Carboxyl-functionalized graphene oxide-polyaniline composite as a promising supercapacitor material. Journal of Materials Chemistry 2012,22 (27).13619-13624.
    [47]Kang. E. T.; Neoh, K. G.; Tan, K. L., Polyaniline:A polymer with many interesting intrinsic redox states. Progress in Polymer Science 1998,23 (2),277-324.
    [48]Stankovich. S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006,44 (15),3342-3347.
    [49]Stankovich. S.:Dikin. D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes. A.; Jia. Y.;Wu. Y.; Nguyen. S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007,45 (7),1558-1565.
    [50]Tuinstra. F.; Koenig, J. L., Raman Spectrum Of Graphite. Journal of Chemical Physics 1970, 53(3).1126.
    [51]Xu. L. Q.; Yang, W. J.; Neoh, K.-G.; Kang, E.-T.; Fu, G. D., Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets. Macromolecules 2010,43 (20),8336-8339.
    [52]Zhu. C.; Guo, S.; Fang, Y.; Dong, S., Reducing Sugar:New Functional Molecules for the Green Synthesis of Graphene Nanosheets. Acs Nano 2010,4 (4),2429-2437.
    [53]Ling. Q.-D.; Liaw, D.-J.; Zhu, C.; Chan, D. S.-H.; Kang, E.-T.; Neoh. K.-G., Polymer electronic memories:Materials, devices and mechanisms. Progress in Polymer Science 2008, 33 (10).917-978.
    [54]Elias. D. C.; Nair. R. R.; Mohiuddin. T. M. G.; Morozov, S. V.; Blake. P.; Halsall, M. P.; Ferrari. A. C.;Boukhvalov. D. W.:Katsnelson. M.I.;Geim. A. K.; Novoselov. K. S., Control of Graphene's Properties by Reversible Hydrogenation:Evidence for Graphane. Science 2009, 323 (5914).610-613.
    [1]Chen.Y.;Huang Z. E.;Cai.R.F.;Yu,B.C.,Polymeric modification and functionalization of 60 fullerene.European Polyner Journal 1998,34(@),137-152.
    [2]Andrews.R.;Jacques.D.;Qian.DL.;Rantell.T.,Multiwall carbon nanotubes;Synthesis and application. Accounts of Chemical Research 2002,35 (12),1008-1017.
    [3]Segura, J. L.; Martin, N.; Guldi, D. M., Materials for organic solar cells:the C-60/pi-conjugated oligomer approach. Chemical Society Reviews 2005,34 (1),31-47.
    [4]Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M., Chemistry of carbon nanotubes. Chemical Reviews 2006,106 (3),1105-1136.
    [5]Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society Reviews 2010,39(1),228-240.
    [6]Georgakilas, V.; Guldi, D. M.; Signorini, R.; Bozio, R.; Prato, M., Organic functionalization and optical properties of carbon onions. Journal of the American Chemical Society 2003,125 (47), 14268-14269.
    [7]Chen, Y.; El-Khouly, M. E.; Sasaki, M.; Araki, Y.; Ito, O., Synthesis of the axially substituted titanium PC-C-60 dyad with a convenient method. Organic Letters 2005,7 (8),1613-1616.
    [8]Georgakilas, V.; Bourlinos, A.; Gournis, D.; Tsoufis, T.; Trapalis, C.; Mateo-Alonso, A.; Prato, M., Multipurpose organically modified carbon nanotubes:From functionalization to nanotube composites. Journal of the American Chemical Society 2008,130 (27),8733-8740.
    [9]Chen, Y.; E1-Khouly, M. E.; Zhuang, X.-D.; He, N.; Araki, Y.; Lin. Y.; Ito, O., Synthesis and photoinduced electron-transfer process of a novel triphenylamine-substituted polytluorene-C-60 triad. Chemistry-a European Journal 2007,13 (6).1709-1714.
    [10]Kostarelos, K.; Lacerda. L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto. D.; Briand. J.-P.; Muller, S.; Prato, M.; Bianco, A., Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotechnology 2007,2 (2),108-113.
    [11]Georgakilas. V.; Bourlinos. A. B.; Zboril, R.; Steriotis, T. A.; Dallas. P.; Stubos, A. K.; Trapalis, C. Organic functionalisation of graphenes. Chemical Communications 2010,46 (10). 1766-1768.
    [12]Quintana. M.; Montellano, A.; Castillo, A. E. d. R.; Van Tendeloo, G.; Bittencourt, C.; Prato, M., Selective organic functionalization of graphene bulk or graphene edges. Chemical Communications 2011,47 (33),9330-9332.
    [13]Loh. K. P.; Bao, Q.:Ang. P. K.; Yang, J., The chemistry of graphene. Journal of Materials Chemistry 2010,20 (12).2277-2289.
    [14]Liu. G.;Zhuang. X.;Chen. Y.; Zhang. B.; Zhu. J.; Zhu. C.-X.; Neoh. K.-G.; Kang. E.-T. Bistable electrical switching and electronic memory effect in a solution-processable graphene oxide-donor polymer complex. Applied Physics Letters 2009,95 (25).
    [15]Zhang. B.;Chen. Y.;Zhuang. X.;Liu. C.;Yu. B.;Kang. E.-T.;Zhu. J.;Li. Y. Poly(N-Vinylcarbazole) Chemically Modified Graphene Oxide. Journal of Polymer Science Part a-Polymer Chemistry 2010,48 (12),2642-2649.
    [16]Zhuang, X.-D.; Chen, Y.; Liu, G.; Li, P.-P.; Zhu, C.-X.; Kang, E.-T.; Neoh, K.-G.; Zhang, B.; Zhu, J.-H.; Li, Y.-X., Conjugated-Polymer-Functionalized Graphene Oxide:Synthesis and Nonvolatile Rewritable Memory Effect. Advanced Materials 2010,22 (15),1731-1735.
    [17]Li, P.-P.; Chen, Y.; Zhu, J.; Feng, M.; Zhuang, X.; Lin, Y.; Zhan, H., Charm-Bracelet-Type Poly(N-vinylcarbazole) Functionalized with Reduced Graphene Oxide for Broadband Optical Limiting. Chemistry-a European Journal 2011,17(3),780-785.
    [18]Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W.-F.; Tour, J. M., Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets. Journal of the American Chemical Society 2008,130 (48),16201-16206.
    [19]Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W. A.; Haddon, R. C., Chemical Modification of Epitaxial Graphene:Spontaneous Grafting of Aryl Groups. Journal of the American Chemical Society 2009,131 (4).1336.
    [20]Shen, J.; Hu, Y.; Li, C.; Qin, C.; Ye, M., Synthesis of Amphiphilic Graphene Nanoplatelets. Small 2009,5(1),82-85.
    [21]Shi, J. M.; Tang, C. W.; Chen, C. H.; Ieee, Novel blue fluorescent materials for organic electroluminescent (EL) devices.1997; p 154-155.
    [22]Fang, Q.; Yamamoto. I., New alternative copolymer constituted of fluorene and triphenylamine units with a tunable-CHO group in the side chain. Quantitative transformation of the -CHO group to -CH=CHAr groups and optical and electrochemical properties of the polymers. Macromolecules 2004,57(16),5894-5899.
    [23]Lin, H.-Y.; Liou, G.-S.; Lee, W.-Y.; Chen, W.-C., Poly(triarylamine):Its synthesis, properties, and blend with polyfluorene for white-light electroluminescence. Journal of Polymer Science Part a-Polymer Chemistry 2007,45 (9),1727-1736.
    [24]Park. J.-H.; Cho, N. S.; Jung, Y. K.; Cho, H.-J.; Shim. H.-K.; Kim, H.; Lee. Y. S., Polymeric light emitting properties and structural relationships of fluorene-based conjugated copolymers containing various hole transporting derivatives. Organic Electronics 2007,8 (2-3).272-285.
    [25]Stankovich. S.; Piner, R. D.; Nguyen. S. T.; Ruoff. R. S., Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006,44 (15),3342-3347.
    [26]Tuinstra. F.;Koenig. J. L., Raman spectrum of graphite. Journal of Chemical Physics 1970,53 (3).1126.
    [27]Xu. I., Q.;Yang. W. J.;Neoh. K.-G.; Kang. E.-T.;Fu. G. D., Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets. Macromolecules 2010,43 (20).8336-8339.
    [28]Zhang. J.;Yang. H.;Shen. G.;Cheng. P.:Zhang. J.;Guo. S., Reduction of graphene oxide via I.-ascorbic acid. ('hemical Communications 2010,46 (1).1112-1114.
    [29]Rienstra-Kiracofe, J. C.; Barden, C. J.; Brown, S. T.; Schaefer, H. F., Electron affinities of polycyclic aromatic hydrocarbons. Journal of Physical Chemistry A 2001,105 (3),524-528.
    [30]Brown, S. T.; Rienstra-Kiracofe, J. C.; Schaefer, H. F., A systematic application of density functional theory to some carbon-containing molecules and their anions. Journal of Physical Chemistry A 1999,103 (20),4065-4077.
    [31]Liu, J.; Lin, Z.; Liu, T.; Yin, Z.; Zhou, X.; Chen, S.; Xie, L.; Boey, F.; Zhang, H.; Huang, W., Multilayer Stacked Low-Temperature-Reduced Graphene Oxide Films:Preparation, Characterization, and Application in Polymer Memory Devices. Small 2010,6 (14), 1536-1542.
    [32]Liu, J.; Yin, Z.; Cao, X.; Zhao, F.; Lin, A.; Xie, L.; Fan, Q.; Boey, F.; Zhang, H.; Huang, W., Bulk Heterojunction Polymer Memory Devices with Reduced Graphene Oxide as Electrodes. Acs Nano 2010,4 (7),3987-3992.
    [33]Porres, L.; Holland, A.; Palsson, L. O.; Monkman, A. P.; Kemp, C.; Beeby, A., Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. Journal of Fluorescence 2006,16 (2),267-272.
    [34]Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone. J.:Kim, P.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Communications 2008,146 (9-10),351-355.
    [35]Chen. F.; Tao, N. J., Electron Transport in Single Molecules:From Benzene to Graphene. Accounts of Chemical Research 2009,42 (3),429-438.
    [36]Ling. Q.-D.; Liaw, D.-J.; Zhu, C.; Chan, D. S.-H.; Kang. E.-T.; Neoh. K.-G. Polymer electronic memories:Materials, devices and mechanisms. Progress in Polymer Science 2008, 33 (10).917-978.
    [37]Martin. I.; Blanter. Y. M., Transport in disordered graphene nanoribbons. Physical Review B 2009,79 (23).
    [38]Nair. R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth. T. J.; Stauber. T.; Peres. N. M. R.; Geim. A. K., Fine structure constant defines visual transparency of graphene. Science 2008,320(5881).1308-1308.
    [39]Casiraghi. C.; Hartschuh, A.; Lidorikis, E.; Qian. H.; Harutyunyan, H.; Gokus, T.; Novoselov, K. S.:Ferrari. A. C. Rayleigh imaging of graphene and graphene layers. Nano Letters 2007,7 (9).2711-2717.
    [1]Reichmanis, E.; Katz, H.; Kloc. C.; Maliakal, A., Plastic electronic devices:From materials design to device applications. Bell Labs Technical Journal 2005,10 (3),87-105.
    [2]Ling, Q.-D.; Liaw, D.-J.; Zhu. C.;Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G., Polymer electronic memories:Materials, devices and mechanisms. Progress in Polymer Science 2008,33 (10). 917-978.
    [3]Ago, H.; Petritsch, K.; Shaffer. M. S. P.; Windle, A. H.; Friend, R. H., Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Advanced Materials 1999,11 (15),1281.
    [4]Forrest, S. R., The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004,428 (6986),911-918.
    [5]Goto, H.; Yashima. E., Electron-induced switching of the supramolecular chirality of optically active polythiophene aggregates. Journal of the American Chemical Society 2002,124 (27). 7943.7949.
    [6]Smith, R. C.; Carey. J. D.; Murphy. R. J.; Blau. W. J.:Coleman. J. N.; Silva, S. R. P.. Charge transport effects in field emission from carbon nanotube-polymer composites. Applied Physics Letters 2005,87 (26).
    [7]Valentini. L.;Kenny. J. M., Novel approaches to developing carbon nanotube based polymer composites:fundamental studies and nanotech applications. Polymer 2005,46 (17). 6715-6718.
    [8]Bandhopadhvay. A.:Pal. A. J., Large conductance switching and binary operation in organic devices:Role of functional groups. Journal of Physical Chemistry B 2003,107 (11), 2531-2536.
    [9]Scott, J. C; Bozano, L. D., Nonvolatile memory elements based on organic materials. Advanced Materials 2007,19 (11),1452-1463.
    [10]Lim, S. L.; Ling, Q.; Teo, E. Y. H.; Zhu, C. X.; Chan, D. S. H.; Kang, E.-T.; Neoh, K. G., Conformation-induced electrical bistability in non-conjugated polymers with pendant carbazole moieties. Chemistry of Materials 2007,19 (21),5148-5157.
    [11]Xie, L.-H.; Ling, Q.-D.; Hou, X.-Y.; Huang, W., An effective Friedel-Crafts postfunctionalization of poly(N-vinylcarbazole) to tune carrier transportation of supramolecular organic semiconductors based on pi-stacked polymers for nonvolatile flash memory cell. Journal of the American Chemical Society 2008,130 (7),2120.
    [12]Ling, Q.-D.; Chang, F.-C.; Song, Y.; Zhu, C.-X.; Liaw, D.-J.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G., Synthesis and dynamic random access memory behavior of a functional polyimide. Journal of the American Chemical Society 2006,128 (27),8732-8733.
    [13]Ling, Q.-D.; Song, Y.; Lim, S.-L.; Teo, E. Y-H.; Tan, Y.-P.; Zhu, C.; Chan, D. S. H.; Kwong, D.-L.; Kang, E.-T.; Neoh, K.-G., A dynamic random access memory based on a conjugated copolymer containing electron-donor and -acceptor moieties. Angewandte Chemie-International Edition 2006,45 (18).2947-2951.
    [14]Zhuang, X.-D.; Chen. Y.; Liu. G.; Li, P.-P.; Zhu. C.-X.; Kang, E.-T.; Neoh, K.-G.; Zhang, B.; Zhu, J.-H.; Li, Y.-X., Conjugated-Polymer-Functionalized Graphene Oxide:Synthesis and Nonvolatile Rewritable Memory Effect. Advanced Materials 2010,22 (15),1731-1735.
    [15]Fang, Y.-K.; Liu, C.-L.; Chen, W.-C., New random copolymers with pendant carbazole donor and 1,3,4-oxadiazole acceptor for high performance memory device applications. Journal of Materials Chemistry 2011,21 (13).4778-4786.
    [16]Fang, Y.-K.; Liu, C.-L.; Li, C.; Lin, C.-J.; Mezzenga, R.; Chen, W.-C., Synthesis, Morphology, and Properties of Poly(3-hexylthiophene)-block-Poly(vinylphenyl oxadiazole) Donor-Acceptor Rod-Coil Block Copolymers and Their Memory Device Applications. Advanced Functional Materials 2010,20 (18).3012-3024.
    [17]Lim. S. L.; Li, N.-J.; Lu, J.-M.; Ling, Q.-D.; Zhu. C. X.; Kang, E.-T.; Neoh, K. G., Conductivity Switching and Electronic Memory Effect in Polymers with Pendant Azobenzene Chromophores. Acs Applied Materials & Interfaces 2009,7(1).60-71.
    [18]Zhuang. X.-D.; Chen. Y:Liu. G.;Zhang. B.;Neoh. K.-G.;Kang. E.-T.; Zhu. C.-X.;Li. Y.-X.; Niu. L.-J., Preparation and Memory Performance of a Nanoaggregated Dispersed Red 1-Functionalized Poly (N-vinylcarbazole) Film via Solution-Phase Self-Assembly. Advanced Functional Materials 2010,20 (17).2916-2922.
    [19]Liu, G.; Ling, Q.-D.; Kang, E.-T.; Neoh. K.-G.; Liaw, D.-J.; Chang, F.-C.; Zhu, C.-X.; Chan, D. S.-H., Bistable electrical switching and write-once read-many-times memory effect in a donor-acceptor containing polyfluorene derivative and its carbon nanotube composites. Journal of Applied Physics 2007,102 (2).
    [20]Moller, S.; Forrest, S. R.; Perlov, C.; Jackson, W.; Taussig, C., Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories. Journal of Applied Physics 2003,94 (12),7811-7819.
    [21]Chu, C. W.; Ouyang, J.; Tseng, H. H.; Yang, Y., Organic donor-acceptor system exhibiting electrical bistability for use in memory devices. Advanced Materials 2005,77(11),1440.
    [22]Shi, J.; Jiang, Z. W.; Cao, S. K., Synthesis of carbazole-based photorefractive polymers via post-azo-coupling reaction. Reactive & Functional Polymers 2004,59 (1),87-91.
    [23]Makowska-Janusik, M.; Sanetra. J.; Palmer, H.; Bogdal, D.; Gondek, E.; Kityk, I. V., Absorption spectra of poly-N-vinylcarbazole derivatives by experiment and simulation. European Polymer Journal 2004,40 (4),799-804.
    [24]Hagiri, M.; Ichinose, N.; Zhao. C. L.; Horiuchi, H.; Hiratsuka, H.; Nakayama, T. Sub-picosecond time-resolved absorption spectroscopy of a push-pull type p,p'-substituted trans-azobenzene. Chemical Physics Letters 2004,391 (4-6),297-301.
    [25]Cojocariu, C.; Rochon. P., Thermotropic side-chain liquid crystalline copolymers containing both mono- and bisazobenzene mesogens:Synthesis and properties. Macromolecules 2005,38 (23),9526-9538.
    [26]Ling, Q. D.; Song. Y.; Ding, S. J.; Zhu, C. X.; Chan, D. S. H.; Kwong, D. L.; Kang, E. T.; Neoh, K. G. Non-volatile polymer memory device based on a novel copolymer of N-vinylcarbazole and Eu-complexed vinylbenzoate. Advanced Materials 2005,17 (4),455.
    [27]Teo, E. Y. H.; Ling, Q. D.; Song. Y.; Tan, Y. P.; Wang. W.; Kang, E. T.; Chan, D. S. H.; Zhu. C X., Non-volatile WORM memory device based on an acrylate polymer with electron donating carbazole pendant groups. Organic Electronics 2006,7(3).173-180.
    [28]Zhuang, X.-D.; Chen, Y.; Li. B.-X.;Ma. D.-G.; Zhang, B.; Li, Y., Polyfluorene-Based Push-Pull Type Functional Materials for Write-Once-Read-Many-Times Memory Devices. Chemistry of Materials 2010,22 (15).4455-4461.
    [29]Liu. C. Y.; Bard. A. J., Optoelectric charge trapping/detrapping in thin solid films of organic azo dyes:Application of scanning tunneling microscopic tip contact to photoconductive films for data storage. Chemistry of Materials 1998,10 (3).840-846.
    [30]Brown. S. T.;Rienstra-Kiracofe. J. C.;Schaefer. H. F.. A systematic application of density functional theory to some carbon-containing molecules and their anions. Journal of Physical Chemistry A 1999,103 (20).4065-4077.
    [31]Brown, S. T.; Rienstra-Kiracofe, J. C.; Schaefer, H. F., A systematic application of density functional theory to some carbon-containing molecules and their anions (vol 103, pg 4065, 1999). Journal of Physical Chemistry A 1999,103 (20),4129-4129.
    [32]Murgatro.Pn, Theory of space-charge-limited current enhanced by frenkel effect. Journal of Physics D-Applied Physics 1970,3 (2),151.
    [33]Lednev, I. K.; Ye, T. Q.; Hester, R. E.; Moore, J. N., Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene in solution. Journal of Physical Chemistry 1996, 100(32),13338-13341.
    [34]Lednev, I. K.; Ye, T. Q.; Matousek, P.; Towrie, M.; Foggi, P.; Neuwahl, F. V. R.; Umapathy, S.; Hester, R. E.; Moore, J. N., Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene:dependence on excitation wavelength. Chemical Physics Letters 1998,290 (1-3).68-74.
    [35]Rau, H.; Luddecke, E., On the rotation-inversion controversy on photo-isomerization of azobenzenes - experimental proof of inversion. Journal of the American Chemical Society 1982,704(6),1616-1620.
    [36]Azuma. J.; Tamai, N.; Shishido, A.; Ikeda, T., Femtosecond dynamics and stimulated emission from the S-2 state of a liquid crystalline trans-azobenzene. Chemical Physics Letters 1998,288 (1).77-82.
    [37]Henisch, H. K.; Smith. W. R., Switching in organic polymer-films. Applied Physics Letters 1974,24(12),589-591.
    [38]Liu, G.; Ling, Q.-D.; Teo. E. Y. H.; Zhu. C.-X.; Chan, D. S.-H.; Neoh, K.-G.; Kang. E.-T., Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films. Acs Nano 2009,3 (7).1929-1937.
    [39]Cacelli, I.; Feretti, A.; Girlanda, M.; Macucci, M., Theoretical study of building blocks for molecular switches based on electrically induced conformational changes. Chemical Physics 2006,320 (2-3),84-94.
    [40]Foresman, J. B.; Headgordon, M.; Pople. J. A.; Frisch, M. J., Toward a systematic molecular-orbital theory for excited-states. Journal of Physical Chemistry 1992,96 (1). 135-149.
    [41]Liu. G.;Liaw. D.-J.; Lee. W.-Y.;Ling. Q.-D.; Zhu. C.-X.;Chan. D. S.-H.; Kang. E.-T.; Neoh. K.-G., Tristable electrical conductivity switching in a polyfluorene-diphenylpyridine copolymer with pendant carbazole groups. Philosophical Transactions of the Royal Society α-Mathematical Physical and Engineering Sciences 2009,367 (1905).4203-4214.
    [1]Liu.J.;Yang,H.Q.;Kleitz,r.;Chen.Z.G.;Yang, T.;Strounina,E.;Lu.G. Q.;Qiao.S.Z., Yolk-Shell Hybrid Materials.with a Periodic Mesoporous Organosilica Shell:Ideal Nanoreactors for Selective Alcohol Oxidation.Advancced Functional Materials 2012,22(3). 591-599.
    [2]Fu.G-D.;Li.G.L.;Ncoh.K.G.;Kang.E.T.,Hollow polymeric nanostructures-Synthesis. morphology and function.Progress in Polymer Science 2011,36(1).127-167.
    [3]Fang, Q.; Xuan, S.; Jiang, W.; Gong, X., Yolk-like Micro/Nanoparticles with Superparamagnetic Iron Oxide Cores and Hierarchical Nickel Silicate Shells. Advanced Functional Materials 2011, 21(10),1902-1909.
    [4]Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q., Monodisperse Yolk-Shell Nanoparticles with a Hierarchical Porous Structure for Delivery Vehicles and Nanoreactors. Angewandte Chemie-International Edition 2010,49 (29),4981-4985.
    [5]Lee, I.; Joo, J. B.; Yin, Y.; Zaera, F., A Yolk@Shell Nanoarchitecture for Au/TiO2 Catalysts. Angewandte Chemie-International Edition 2011,50 (43),10208-10211.
    [6]Wu, S.; Dzubiella, J.; Kaiser, J.; Drechsler, M.; Guo, X.; Ballauff, M.; Lu, Y., Thermosensitive Au-PNIPA Yolk-Shell Nanoparticles with Tunable Selectivity for Catalysis. Angewandte Chemie-International Edition 2012,51(9),2229-2233.
    [7]Khalavka, Y.; Becker, J.; Soennichsen, C., Synthesis of Rod-Shaped Gold Nanorattles with Improved Plasmon Sensitivity and Catalytic Activity. Journal of the American Chemical Society 2009,131 (5),1871-1875.
    [8]Wu, X.-J.; Xu, D., Formation of Yolk/SiO2 Shell Structures Using Surfactant Mixtures as Template. Journal of the American Chemical Society 2009,131 (8),2774.
    [9]Wu, X.-J.; Xu, D., Soft Template Synthesis of Yolk/Silica Shell particles. Advanced Materials 2010,22(13).1516-1520.
    [10]Lou, X. W.; Archer, L. A.; Yang. Z., Hollow Micro-/Nanostructures:Synthesis and Applications. Advanced Materials 2008,20 (21).3987-4019.
    [11]Shevchenko. E. V.; Bodnarchuk, M. I.; Kovalenko, M. V.; Talapin, D. V.; Smith. R. K.:Aloni. S.; Heiss. W.; Alivisatos. A. P.. Gold/Iron Oxide Core/Hollow-Shell Nanoparticles. Advanced Materials 2008,20 (22).4323-4329.
    [12]Li, G. L.;Xu. L. Q.; Neoh, K. G.; Kang, E. T., Hairy Hybrid Microrattles of Metal Nanocore with Functional Polymer Shell and Brushes. Macromolecules 2011,44 (7).2365-2370.
    [13]Yin. Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P., Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science 2004,304 (5671),711-714.
    [14]Ibanez. M.; Fan. J.; Li. W.; Cadavid. D.; Nafria. R.; Carrete, A.; Cabot. A., Means and Limits of Control of the Shell Parameters in Hollow Nanoparticles Obtained by the Kirkendall Effect. Chemistry of Materials 2011,23 (12).3095-3104.
    [15]Li. H.;Bian. Z.;Zhu. J.;Zhang. D.;Li. G.;Huo. Y.; Li. H.;Lu. Y. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. Journal of the American Chemical Society 2007,129 (27).8406.
    [16]Liang. X.;Li. J.;Joo. J. B.;Gutierrez. A.;Tillekaratne. A.;Lee. I.;Yin. Y.;Zaera. F., Diffusion through the Shells of Yolk-Shell and Core-Shell Nanostructures in the Liquid Phase. Angewandte Chemie-International Edition 2012,51 (32),8034-8036.
    [17]Chen, Y.; Chen, H.; Guo, L.; He, Q.; Chen, F.; Zhou, J.; Feng, J.; Shi, J., Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based Selective Etching Strategy. Acs Nano 2010,4(1),529-539.
    [18]Baker. C. O.; Shedd, B.; Tseng, R. J.; Martinez-Morales, A. A.; Ozkan, C. S.; Ozkan, M.; Yang, Y.; Kanert, R. B., Size Control of Gold Nanoparticles Grown on Polyaniline Nanofibers for Bistable Memory Devices. Acs Nano 2011,5 (5),3469-3474.
    [19]Tseng, R. J.; Huang, J. X.; Ouyang, J.; Kaner, R. B.; Yang, Y., Polyaniline nano fiber/gold nanoparticle nonvolatile memory. Nano Letters 2005,5 (6),1077-1080.
    [20]Ouyang, J. Y.; Chu, C. W.; Szmanda, C. R.; Ma, L. P.; Yang, Y, Programmable polymer thin film and non-volatile memory device. Nature Materials 2004,3 (12),918-922.
    [21]Lowe. J.; Holdcroft, S., Synthesis And Photolithography Of Polymers And Copolymers Based On Poly(3-(2-(Methacryloyloxy)Ethyl)Thiophene). Macromolecules 1995,28 (13), 4608-4616.
    [22]Bai. F.; Yang, X. L.; Huang, W. Q., Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillation-precipitation polymerization. Macromolecules 2004,37 (26), 9746-9752.
    [23]Enustun. B. V.; Turkevich. J., Coagulation Of Colloidal Gold. Journal of the American Chemical Society 1963,85 (21),3317-&.
    [24]Kamata. K.; Lu, Y.; Xia. Y. N., Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. Journal of the American Chemical Society 2003,125 (9).2384-2385.
    [25]Zhang. Q.; Zhang, T.; Ge, J.; Yin, Y., Permeable silica shell through surface-protected etching. Nano Letters 2008,8 (9),2867-2871.
    [26]Graf. C.; Vossen. D. L. J.; Imhof. A.; van Blaaderen, A., A general method to coat colloidal particles with silica. Langmuir 2003,79(17).6693-6700.
    [27]Li. G. L.; Tai. C. A.; Neoh. K. G.; Kang, E. T.; Yang, X., Hybrid nanorattles of metal core and stimuli-responsive polymer shell for confined catalytic reactions. Polymer Chemistry 2011,2 (6).1368-1374.
    [28]Li. G.;Shi.Q.;Yuan. S. J.;Neoh. K. G.; Kang. E. T.; Yang. X., Alternating Silica/Polymer Multilayer Hybrid Microspheres Templates for Double-shelled Polymer and Inorganic Hollow Microstructurcs. Chemistry of Materials 2010,22 (4).1309-1317.
    [29]Tan. K. I.;Woon. L. L.;Wong. H. K.;Kang. E. T.;Neoh. K. G., Surface Modification Of Plasma-Pretreated Poly(Tetrafluoroethylene) Films By Graft-Copolymerization. Macromolecules 1993,26 (11),2832-2836.
    [30]Wan, D.; Yuan, S.; Neoh, K. G.; Kang, E. T., Surface Functionalization of Copper via Oxidative Graft Polymerization of 2,2'-Bithiophene and Immobilization of Silver Nanoparticles for Combating Biocorrosion. Acs Applied Materials & Interfaces 2010,2 (6),1653-1662.
    [31]Kim, T. W.; Yang, Y.; Li, F.; Kwan, W. L., Electrical memory devices based on inorganic/organic nanocomposites. Npg Asia Materials 2012,4.
    [32]Ouyang, J. Y.; Chu, C. W.; Sieves, D.; Yang, Y., Electric-field-induced charge transfer between gold nanoparticle and capping 2-naphthalenethiol and organic memory cells. Applied Physics Letters 2005,86 (12).
    [33]Prakash, A.; Ouyang, J.; Lin, J. L.; Yang, Y, Polymer memory device based on conjugated polymer and gold nanoparticles. Journal of Applied Physics 2006,100 (5).
    [34]Ling, Q.-D.; Liaw, D.-J.; Zhu, C.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G. Polymer electronic memories:Materials, devices and mechanisms. Progress in Polymer Science 2008, 33 (10).917-978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700