孕妇血浆中RASSF1A基因的检测及其在子痫前期中的定量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨应用TaqMan探针实时定量PCR技术检测孕妇血浆中微量胎源性Ras相关区域家族1A (ras association domain family 1A, RASSFIA)基因的可行性;对正常妊娠期间孕妇血浆中酶切前、后RASSFIA基因水平定量分析,且进一步证实酶切后RASSFIA基因具有胎儿DNA的性质,弥补遗传基因标志物的不足;探讨其含量变化在子痫前期中的应用价值。
     方法:选择妊娠7-41周孕妇80例,其中妊娠早、中、晚期及子痫前期孕妇各20例(轻、重度各10例),另取20例健康未妊娠女性为阴性对照。提取血浆游离DNA,经两种甲基化敏感的限制性内切酶HinP1I和Hhal消化处理,去除非甲基化的RASSFIA序列,保留超甲基化RASSFIA序列。应用基于TaqMan探针的荧光定量PCR (FQ-PCR)技术测定血浆中酶切前、后RASSFIA基因的含量,分别代表总游离DNA和游离胎儿DNA水平。同时检测β肌动蛋白(β-actin)基因,确保酶的完全消化。
     结果:(1)80例孕妇除3例早期孕妇外,其余均检出了酶切后RASSFIA基因,且最早可在妊娠7+3周检测出该基因;未妊娠对照组中酶切后均未检测到RASSFIA基因,检测孕妇血浆中超甲基化RASSFIA基因的灵敏度和特异度分别为96.25%和100%。(2)孕妇血浆中酶切后RASSFIA基因的含量随妊娠的进程逐渐增加,在妊娠期间,超甲基化RASSFIA基因的平均浓度在早期妊娠组为55.52拷贝/ml,中期妊娠组为112.46拷贝/ml,晚期妊娠组为557.50拷贝/ml,分别占酶切前总游离DNA的1.78%、2.91%、9.45%。(3)子痫前期组孕妇血浆中酶切后RASSFIA基因含量为正常同期妊娠组的3.72倍,且其水平变化与子痫前期病情的严重程度呈正相关。(4)10例正常晚期孕妇分娩后24小时均检测不到超甲基化RASSFIA基因,10例子痫前期孕妇分娩后24小时有8例仍能检测到该序列,在分娩后1周检测不到。结论:孕妇血浆中超甲基化RASSFIA基因具有游离胎儿DNA的性质,是一种胎儿特异性表观遗传学标记物;应用Taqman探针荧光定量PCR技术可以更简便、准确地检测孕妇血浆中微量胎源性RASSFIA序列的水平;孕妇血浆中超甲基化RASSFIA基因浓度变化与子痫前期的病情具有相关性,其含量的异常变化可以提示子痫前期-子痫的发生及预后,扩大了游离胎儿DNA在无创产前诊断中的应用范围。
Objective:To investigate the feasibility of quantitative detection of hypermethylated Ras association domain family 1A (RASSFIA) gene in maternal plasma by TaqMan probe real-time PCR and analysis the RASSFIA levels before and after methylation-sensitive restriction enzymes digestion. The aims of the detection of hypermethylated RASSFIA gene in maternal plasma from all three trimesters of pregnancy were to show its feature of cell free fetal DNA and to make up defieients of genetie markers. This study also aimed at investigating of its application value in pre-eclampsia.
     Methods:80 pregnant women(7-41 gestational weeks) including pregnancy of first trimester (20 cases), second trimester (20 cases), third trimester (20 cases), mild pre-eclampsia (10 cases) and severe pre-eclampsia (10 cases) were selected as study groups,20 normal non-pregnant women were selected as control group. Free DNA of plasma samples was extracted, The methylation-sensitive restriction enzymes were specifically cutting the maternally derived background hypomethylated sequences but leaving the intact hypermethylated sequences, RASSFIA levels before and after double methylation-sensitive restriction enzymes digestion of HinP1I and Hhal were determined using fluorescence quantitative polymerase chain reaction (FQ-PCR) to measure total and fetal cell-free DNA, respectively. At the same time,β-actin gene was detected as a control to confirm complete enzymes digestion.
     Results:(1) Hypermethylated RASSFIA sequences in maternal plasma were detected in 77 of 80 pregnant women, and were not detected in the plasma of non-pregnant women. They can be detected in maternal plasma as early as at 7+3 th week of gestation. The sensitivity and specificity of fetal gene detection by post-digestion RASSFIA measurement were 96.25% and 100%. (2) The concentrations of hypermethylated RASSFIA in maternal plasma increased as pregnancy progresses, the mean concentrations of hypermethylated RASSFIA gene were 55.52copies/ml in first trimester,112.46copies/ml in second trimester,557.50copies/ml in third trimester, respectively. We futher observed the post-digestion RASSFIA concentrations as a fraction of the total RASSFIA concentrations obtained without enzymes digestion RASSFIA which corresponded to1.78%,2.91%, and 9.45% in the three trimesters. (3) The mean concentrations of hypermethylated RASSFIA gene were 3.72-fold higher in maternal plasma of pre-eclamptic pregnancies than in controls. There was positive correlation between fetal-derived hypermethylated RASSFIA levels and the severity of pre-eclampsia. (4) The post-digestion RASSFIA was completely cleared at 24h after delivery in 10 pregnant women of the third trimester, it still can be detectable in 8 of 10 pre-eclamptic pregnant women, which was cleared after a week.
     Conclusion:Hypermethylated RASSFIA gene may be considered as a epigenetic marker to detect the fetal DNA in maternal plasma. It is easy and precise to detect the hypermethylated RASSFIA gene in maternal plasma by TaqMan probe real-time PCR. Our study shows the correlation of maternal plasma hypermethylaed RASSFIA concentrations with pre-eclampsia. The elevated amounts of maternal plasma hypermethylaed RASSFIA can forecast the process and prognosis of pre-eclampsia and eclampsia. The quantitative detection of the placental epigenetic signature of the RASSFIA gene in maternal plasma expand the clinic application of cell free fetal DNA in noninvasive prenatal diagnosis.
引文
[1]Lo YMD, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum[J]. Lancet,1997,350(9076):485-487
    [2]Wataganara T, Chen AY, LeShane ES, et al. Cell-free fetal DNA levels in maternal plasma after elective first trimester termination of pregnancy [J]. Fertil Steril,2004,81(3):638-644
    [3]Costa JM, Benachi A, Gautier E, et al. First-trimester fetal sex determination in maternal serum using real-time PCR[J]. Prenat Diagn,2001,21(12):1070-1074
    [4]Muller SP, Bartels I, Stein W, et al. The determination of the fetal D status from maternal plasma for decision making on Rh prophylaxis is feasible [J]. Transfusion,2008,48(11):2292-2301
    [5]Aragones AB, Tiebas MJT, Merlo JG, et al. Prenatal diagnosis of Huntington disease in maternal plasma:direct and indirect study[J]. Eur J Neurol,2008,15(12):1338-1344
    [6]Li Y, Naro ED, Vitucci A, et al. Detection of paternally inherited fetal point mutations for β-thalassemia using size-fractionated cell-free DNA in maternal plasma [J]. JAMA,2005,293(7): 843-849
    [7]Lo YMD, Lun FMF, Chan KCA, et al. From the cover:Digital PCR for the molecular detection of fetal chromosomal aneuploidy[J]. Proc Natl Acad Sci USA,2007,104(32):13116-13121
    [8]Tong YK, Ding C, Chiu RWK, et al. Noninvasive prenatal detection of fetal trisomy 18 by epigenetic allelic ratio analysis in maternal plasma:theoretical and empirical considerations [J]. Clin. Chem.,2006,52(12):2194-2202
    [9]Sekizawa A, Farina A, Sugito Y, et al. Proteinuria and hypertension are independent factors affecting fetal DNA values:a retrospective analysis of affected and unaffected patients[J]. Clin. Chem.,2004,50(1):221-224
    [10]Farina A, LeShane ES, Romero R, et al. High levels of fetal cell-free DNA in maternal serum:a risk factor for spontaneous preterm delivery[J]. Am J Obstet Gynecol,2005,193(2): 421-425
    [11]Picchiassi E, Coata G, Fanetti A, et al.The best approach for early prediction of fetal gender by using free fetal DNA from maternal plasma [J]. Prenat Diagn,2008,28(6):525-530
    [12]Vodicka R, Vrtel R, Dusek L, et al. Refined fluorescent STR quantification of cell-free fetal DNA during pregnancy in physiological and Down syndrome fetuses[J]. Prenat Diagn,2008, 28(5):425-433
    [13]Dhallan R, Guo X, Emche S, et al. A non-invasive test for prenatal diagnosis based on fetal DNA present in maternal blood:a preliminary study[J]. Lancet,2007,369(9560):474-481
    [14]Go AT, Visser A, Mulders MAM, et al.44 single-nucleotide polymorphisms expressed by placental RNA:assessment for use in noninvasive prenatal diagnosis of trisomy 21 [J]. Clin. Chem.,2007,53(12):2223-2224
    [15]Lo YMD, Tsui NBY, Chiu RWK, et al. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection[J]. Nat Med,2007,13(2):218-223
    [16]Chim SSC, Tong YK, Chiu RWK, et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma[J]. Proc Natl Acad Sci USA,2005,102(41):14753-14758
    [17]Chan KCA, Ding C, Gerovassili A, et al. Hypermethylated RASSF1A in maternal plasma:A universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis[J]. Clin. Chem.,2006,52(12):2211-2218
    [18]Chiu RWK, Chim SSC, Wong IHN, et al. Hypermethylation of RASSF1A in human and rhesus placentas[J]. Am. J. Pathol.,2007,170(3):941-950
    [19]Lo YMD, Tein MS, Lau TK, et al. Quantitative analysis of fetal DNA in maternal plasma and serum:implications for noninvasive prenatal diagnosis[J]. Am J Hum Genet,1998,62(4): 768-775
    [20]Gitan RS, Shi H, Chen CM, et al. Methylation-specific oligonucleotide microarray:a new potential for high-throughput methylation analysis[J]. Genome Res.,2002,12(1):158-164
    [21]Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing:systematic investigation of critical experimental parameters [J]. Nucleic Acids Res.,2001,29(13):e65
    [22]Soussan AA, Bossers B, Tissoudali A, et al. RASSF1A is applicable as universal fetal identifier in RQ-PCR-based non-invasive prenatal genotyping assays[J]. Blood,2008,112:289
    [23]Wright CF, Burton H. The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis[J]. Hum. Reprod. Update,2009,15(1):139-151
    [24]Picchiassi E, Coata G, Fanetti A, et al. The best approach for early prediction of fetal gender by using free fetal DNA from maternal plasma[J]. Prenat Diagn,2008,28(6):525-530
    [25]Tjoa ML, Davies TC, Boskovic OS, et al. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am. J. Pathol.,2006,169(2):400-404
    [26]Lau TW, Leung TN, Chan LYS, et al. Fetal DNA clearance from maternal plasma is impaired in preeclampsia[J]. Clin. Chem.,2002,48(12):2141-2146
    [27]Tsui DWY, Chan KCA, Chim SSC, et al. Quantitative aberrations of hypermethylated RASSF1A gene sequences in maternal plasma in pre-eclampsia[J]. Prenat Diagn,2007,27(13): 1212-1218
    [28]Smith SC, Baker PN, Symonds EM, et al. Placental apoptosis in normal human pregnancy[J]. Am J Obstet Gynecol,1997,177(1):57-65
    Aicha AS, Bernadette B, Ahmed T, et al. RASSF1A is applicable as universal fetal identifier in RQ-PCR-based non-invasive prenatal genotyping assays. Blood, 2008,112: 289.
    Caroline FW, Hilary B. The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Hum Reprod Update, 2009, 15(1): 139-151
    Chan KCA, Ding C, Gerovassili A, et al. Hypermethylated RASSF1A in maternal plasma: a universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis.Clin Chem, 2006, 52(12): 2211- 2218.
    Chim SSC, Tong YK, Chiu RWK, et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc Natl Acad Sci USA, 2005,102(41): 14753-14758.
    Chim SSC, Jin S, Lee TYH, et al. Systematic search for placental DNA-methylation markers on chromosome 21: toward a maternal plasma-based epigenetic test for fetal trisomy 21. Clin Chim, 2008, 54(3): 500-511
    Chiu RWK, Chim SSC, Wong IHN, et al. Hypermethylation of RASSF1A in human and rhesus placentas. Am. J. Pathol, 2007, 170(3): 941- 950.
    Farina A, LeShane ES, Romero R, et al. High levels of fetal cell-free DNA in maternal serum: A risk factor for spontaneous preterm delivery. Am J Obstet Gynecol, 2005, 193(2): 421- 425.
    Geifman-Holzman O, Grotegut CA, Gaughan JP. Diagnostic accuracy of noninvasive fetal Rh genotyping from maternal blood-a meta-analysis. Am J Obstet Gynecol, 2006, 195(4): 1163-1173
    Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res, 2001, 29(13): e65
    Hahn S, Huppertz B, Holzgreve W. Fetal cells and cell free fetal nucleic acids in maternal blood:new tools to study abnormal placentation? Placenta, 2005, 26(7): 515- 526
    Li Y, Di NE, Vitucci A, et al. Detection of paternally inherited fetal point mutations for β-thalassemia using size-fractionated cell-free DNA in maternal plasma. JAMA, 2005, 293(7):843-849
    Lo YMD, Tein MS, Lau TK, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet, 1998, 62(4): 768-775.
    Lo YMD, Lun FMF, Chan KCA, et al. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci USA, 2007,104(32): 13116-13121.
    Picchiassi E, Coata G, Fanetti A, et al. The best approach for early prediction of fetal gender by using free fetal DNA from maternal plasma. Prenat Diagn, 2008, 28(6): 525- 530.
    Tjoa ML, Cindrova DT, Spasic BO, et al. Trophoblastic Oxidative Stress and the release of Cell-Free Feto-Placental DNA. Am. J. Pathol,2006,169(2):400-404.
    Tsui DWY, Chan KCA, Chim SSC, et al. Quantitative aberrations of hypermethylated RASSFIA gene sequences in maternal plasma in pre-eclampsia. Prenat Diagn,2007,27(13):1212-1218.
    Vodicka R, Vrtel R, Dusek L, et al. Refined fluorescent STR quantification of cell-free fetal DNA during pregnancy in physiological and Down syndrome fetuses. Prenat Diagn,2008, 28(6):425-433
    [1]Simpson JL, Elias S. Isolating fetal cells from maternal blood:Advances in prenatal diagnosis through molecular technology[J]. JAMA,1993,270(19):2357-2361
    [2]Lo YMD, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum[J]. Lancet,1997,350(9076):485-487
    [3]Alberry M, Maddocks D, Jones M, et al. Free fetal DNA in maternal plasma in anembryonic pregnancies:confirmation that the origin is the trophoblast[J]. Prenat Diagn,2007,27(5):415-418
    [4]Wataganara T, Chen AY, Leshane ES, et al. Cell-free fetal DNA levels in maternal plasma after elective first trimester termination of pregnancy [J]. Fertil Steril,2004,81(3):638-644
    [5]Costa JM, Benachi A, Gautier E, et al. First-trimester fetal sex determination in maternal serum using real-time PCR[J]. Prenat Diagn,2001,21(12):1070-1074
    [6]Chan KCA, Zhang J, Hui ABY, et al. Size distributions of maternal and fetal DNA in maternal plasma[J]. Clin. Chem.,2004,50(1):88-92
    [7]Angert RM, LeShane ES, Lo YMD, et al. Fetal cell-free plasma DNA concentrations in maternal blood are stable 24 hours after collection:analysis of first-and third-trimester samples[J]. Clin. Chem.,2003,49(1):195-198
    [8]Zhang Y, Li Q, Hui N, et al. Effect of formaldehyde treatment on the recovery of cell-free fetal DNA from maternal plasma at different processing times[J]. Clin Chim Acta,2008, 397(1-2):60-64
    [9]Koide K, Sekizawa A, lwasaki M, et al. Fragmentation of cell-free fetal DNA in plasma and urine of pregnant women[J]. Prenat Diagn,2005,25(7):604-607
    [10]Bischoff FZ, Dang DX, Do DM, et al. Detecting fetal DNA from dried maternal blood spots: another step towards broad scale non-invasive prenatal genetic screening and feasible testing[J]. Reprod Biomed Online,2003,6(3):349-351
    [11]Jimenez DF, Tarantal AF. Quantitative analysis of male fetal DNA in maternal serum of gravid rhesus monkeys[J]. Pediatr Res,2003,53(1):18-23
    [12]Khosrotehrani K, Wataganara T, Bianchi DW, et al. Fetal cell-free DNA circulates in the plasma of pregnant mice:relevance for animal models of fetomaternal trafficking[J]. Hum. Reprod.,2004,19(11):2460-2464
    [13]Vodicka R, Vrtel R, Dusek L, et al. Refined fluorescent STR quantification of cell-free fetal DNA during pregnancy in physiological and Down syndrome fetuses[J]. Prenat Diagn,2008, 28(5):425-433
    [14]Dhallan R, Guo X, Emche S, et al. A non-invasive test for prenatal diagnosis based on fetal DNA present in maternal blood:a preliminary study[J]. Lancet,2007,369(9560):474-481
    [15]Chim SSC, Tong YK, Chiu RWK, et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma[J]. Proc Natl Acad Sci USA,2005,102(41):14753-14758
    [16]Chan KCA, Ding C, Gerovassili A, et al. Hypermethylated RASSF1A in maternal plasma:A universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis [J]. Clin. Chem.,2006,52(12):2211-2218
    [17]Old RW, Crea F, Puszyk W, et al. Candidate epigenetic biomarkers for non-invasive prenatal diagnosis of Down syndrome[J]. Reprod Biomed Online,2007,15(2):227-235
    [18]Chim SSC, Jin S, Lee TYH, et al. Systematic search for placental DNA-methylation markers on chromosome 21:towards a maternal plasma-Based epigenetic test for fetal trisomy 21[J]. Clin. Chem.,2008,54(3):500-511
    [19]杜颖颖,张进,陈雅婷等.未甲基化的DSCR4是胎源性DNA[J].国际遗传学杂志,2009,32(4):102
    [20]Fan HC, Blumenfeld YJ, Chitkara U, et al. From the cover:Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood[J]. Proc Natl Acad Sci USA,2008, 105(42):16266-16271
    [21]Chiu RWK, Chan KCA, Gao Y, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma[J]. Proc Natl Acad Sci USA,2008,105(51):20458-20463
    [22]Chu TJ, Bunce K, Hogge WA, et al. Statistical model for whole genome sequencing and its application to minimally invasive diagnosis of fetal genetic disease[J]. Bioinformatics,2009, 25(10):1244-1250
    [23]Sekizawa A, Farina A, Sugito Y, et al. Proteinuria and hypertension are independent factors affecting fetal DNA values:a retrospective analysis of affected and unaffected patients [J]. Clin. Chem.,2004,50(1):221-224
    [24]Yin AH, Ng EHY, Zhang XZ, et al. Correlation of maternal plasma total cell-free DNA and fetal DNA levels with short term outcome of first-trimester vaginal bleeding[J]. Hum. Reprod., 2007,22(6):1736-1743
    [25]Picchiassi E, Coata G, Fanetti A, et al.The best approach for early prediction of fetal gender by using free fetal DNA from maternal plasma [J]. Prenat Diagn,2008,28(6):525-530
    [26]Muller SP, Bartels I, Stein W, et al. The determination of the fetal D status from maternal plasma for decision making on Rh prophylaxis is feasible [J]. Transfusion,2008,48(11):2292-2301
    [27]Lo YMD, Lun FMF, Chan KCA, et al. From the cover:Digital PCR for the molecular detection of fetal chromosomal aneuploidy [J]. Proc Natl Acad Sci USA,2007,104(32):13116- 13121
    [28]Tong YK, Ding C, Chiu RWK, et al. Noninvasive prenatal detection of fetal trisomy 18 by epigenetic allelic ratio analysis in maternal plasma:theoretical and empirical considerations [J]. Clin. Chem.,2006,52(12):2194-2202
    [29]Aragones AB, Tiebas MJT, Merlo JG, et al. Prenatal diagnosis of Huntington disease in maternal plasma:direct and indirect study[J]. Eur J Neurol,2008,15(12):1338-1344
    [30]Li Y, Naro ED, Vitucci A, et al. Detection of paternally inherited fetal point mutations for β-thalassemia using size-fractionated cell-free DNA in maternal plasma[J]. JAMA,2005,293(7): 843-849

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700