四维时空关联成像检测胎儿左心功能和室间隔缺损的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的比较多普勒、M型与四维时空关联成像(STIC)测定胎儿左心每搏输出量的可重复性及测量者间的一致性。
     方法2名经验相当的超声科医师分别应用多普勒、M型与四维STIC测定30例26~30周正常单胎胎儿左心室搏出量,计算组内相关系数(ICC),进行Bland-Altman图分析,评估上述测量方法的可重复性和测量者间一致性。测量时,由记录者将测量结果遮盖,使测量者不知道结果。先由检查者1将本人所作的30例胎儿图像进行分析,测量计算出左心室搏出量。随后检查者2对检查者1所作的30例胎儿图像也进行分析,测量计算出左心室搏出量。
     结果①同一测量者用3种方法测定胎儿左室搏出量比较差异无显著差异(P均>0.05);②两名观察者间3种方法测量重复性比较,其ICC值STIC法最高(多普勒法ICC:0.93,95%可信区间:0.86-0.95;M型法ICC:0.89,95%可信区间:0.82-0.91;STIC法ICC:0.95,95%可信区间:0.88-0.97);③应用Bland-Altman分析观察者间一致性,STIC法的系统偏倚及一致界限较多普勒法和M型法好(多普勒法平均差值:-0.04ml,95%可信区间-0.22~0.14ml;M型法平均差值:-0.06ml,95%可信区间-0.20~0.08ml;STIC法平均差值:-0.01ml,95%可信区间-0.11~0.09ml)。
     结论3种方法均可用于测量胎儿左室搏出量,但STIC法测量的可重复性和一致性最高,值得进一步研究与应用。
     目的探讨有或无四维超声时空关联成像(STIC)操作经验的医师对胎儿室间隔缺损(VSD)检出的影响。
     方法选取来我院行产前超声筛查的连续的96例可疑CHD胎儿,由2名不同STIC操作经验的超声医师进行产前筛查。其中1名有STIC操作经验(2.5年),另1名为初学者(仅经过短时培训)。记录2名医师胎儿室间隔缺损的检出例数,对检出情况进行比较。
     结果96例胎儿中,2名医师共同检出的VSD病例39例,只有医师1单独检出的病例为3例,只有医师2单独检出的病例为1例。2名医师检测VSD的检出情况比较无显著差异(χ2 =0.25,P>0.05)。
     结论应用四维STIC检查胎儿VSD可降低对检查人员经验的依赖,与传统二维超声相比具有技术优势。
Objective To compare the reproducibility and agreement of two-dimensional (2D) ultrasonography with Doppler capability, 2D ultrasonography with M mode, four-dimensional (4D) with spatiotemporal image correlation (STIC) on the evaluation left ventricular stroke volume (LVSV) in normal fetuses.
     Methods 2D Doppler, 2D M mode, and 4D STIC were used to measure LSV of 30 normal fetuses at 26 to 30 weeks. Intraclass correlation coefficient (ICC) was used to evaluate the agreement by the three techniques, and proportionate Bland–Altman plots constructed.
     Results There was not significant difference in LSV value among the three methods within the same observer (P all >0.05). The ICC of the LVSV by the 4D STIC was the highest between the observers (2D Doppler ICC: 0.93 and 95%CI: 0.86-0.95, 2D M mode ICC: 0.89 and 95%CI: 0.82-0.91, 4D STIC ICC: 0.95 and 95%CI: 0.88-0.97). The 4D STIC was the best method demonstrated by Bland & Altman plot between the observers (2D Doppler Mean difference: -0.04ml and 95%CI: -0.22~0.14ml, 2D M mode Mean difference: -0.06ml and 95%CI: -0.20~0.08ml, 4D STIC Mean difference: -0.01ml and 95%CI: -0.11~0.09ml).
     Conclusions There is a good reproducibility among LVSV measured by 2D Doppler, 2D M mode, or by 4D STIC. But the 4D STIC represents best reproducibility and agreement to estimate fetal LVSV and promises to become the method of choice.
     Objective To determine the operation experience of four-dimensional ultrasound with spatio-temporal image correlation impacted on the detection condition of fetal ventricular septal defect (VSD).
     Methods 96 fetuses at high risk of CHD were examined by four-dimensional(4D) with spatio-temporal image correlation(STIC) were evaluated by two blinded independent examiners. One examiner had operated 4D STIC about two and a half years (examiner 1), and the other one was inexperienced (examiner 2). The detection condition of fetal VSD was calculated and compared.
     Results 42 cases of fetal VSD were detected by examiner 1, and 40 cases were detected by examiner 2. Furthermore, 3 cases were detected by examiner 1 alone, and 1 cases were detected by examiner 2 alone. Compared to the detection condition of fetal VSD by 4D STIC,inexperienced sonographers and experienced sonographer were not significantly different(χ2 =0.25,P>0.05).
     Conclusions 4D STIC shows less rely on the experience of sonographers, and represents a better technique to detect fetal VSD and promises to become the method of choice.
引文
1. Yagel S, Cohen SM, Shapiro I, Valsky DV. 3D and 4D ultrasound in fetal cardiac scanning: a new look at the fetal heart. Ultrasound Obstet Gynecol, 2007, 29: 81–95.
    2. Simpson J. Echocardiographic evaluation of cardiac function in the fetus. Prenat Diagn, 2004, 24: 1081–1091.
    3. Rizzo G, Arduini D, Romanini C. Doppler echocardiographic assessment of fetal cardiac function. Ultrasound Obstet Gynecol, 1992, 2:434-45.
    4. Simpson JM, Cook A. Repeatability of echocardiographic measurements in the human fetus. Ultrasound Obstet Gynecol, 2002, 20:332-9.
    5. Uittenbogaard LB, Haak MC, Spreeuwenberg MD,et al. Fetal cardiac function assessed with four-dimensional ultrasound imaging using spatiotemporal image correlation. Ultrasound Obstet Gynecol, 2009, 33:272-81.
    6. Molina FS, Faro C, Sotiriadis A, et al. Heart stroke volume and cardiac output by four-dimensional ultrasound in normal fetuses. Ultrasound Obstet Gynecol, 2008, 32:181-7.
    7. Ta-Shma A, Perles Z, Gavri S, et al. Analysis of segmental and global function of the fetal heart using novel automatic functional imaging. J Am Soc Echocardiogr, 2008, 21:146-50.
    8.Nii M, Roman KS, Kingdom J, et al. Assessment of the evolution of normal fetal diastolic function during mid and late gestation by spectral Doppler tissue echocardiography. J Am Soc Echocardiogr, 2006, 19:1431-7.
    9.DeVore GR. Assessing fetal cardiac ventricular function. Semin Fetal Neonatal Med, 2005, 10:515-41.
    10. Groenenberg IA, Hop WC, Wladimiroff JW. Doppler flow velocity waveforms in the fetal cardiac outflow tract: reproducibility of waveform recording and analysis. Ultrasound Med Biol, 1991, 17:583-7.
    11. Beeby AR, Dunlop W, Heads A, et al. Reproducibility of ultrasonic measurement of fetal cardiac haemodynamics. Br J Obstet Gynaecol, 1991, 98:807-14.
    12. Messing B, Cohen SM, Valsky DV, et al. Fetal cardiac ventricle volumetry in the second half of gestation assessed by 4D ultrasound using STIC combined with inversion mode. Ultrasound Obstet Gynecol, 2007, 30:142-51.
    1. Vinals F, Poblete P, Giuliano A. Spatio-temporal image correlation (STIC): a new tool for the prenatal screening of congenital heart defects. Ultrasound Obstet Gynecol, 2003, 22: 388-394.
    2. Ciach K, Grzybowski W, Wydra D, et al. Prenatal diagnosis of an atrioventricular canal in a foetus with deletion of chromosome 8 (pter-->p21). Ginekol Pol, 2008, 79:209-11.
    3. Paladini D, Palmieri S, Lamberti A, et al. Characterization and natural history of ventricular septal defects in the fetus. Ultrasound Obstet Gynecol, 2000,16:118–122.
    4. Axt-Fliedner R, Schwarze A, Smrcek J, et al. Isolated ventricular septal defects detected by color Doppler imaging: evolution during fetal and first year of postnatal life. Ultrasound Obstet Gynecol, 2006, 27:266–273.
    5. Devore GR, Sklansky MS. Three-dimensional imaging of the fetal heart: Current applications and future directions. Progress in Pediatric Cardiology, 2006, 22:9-29.
    6. Espinoza J, Gotsch F, Kusanovic JP, et al. Changes in fetal cardiac geometry with gestation: Implications for three and four-dimensional fetal echocardiography. J Ultrasound Med, 2007, 26: 437-444.
    7. CHAOUI R, HOFFMANN J, HELING, K.S. Three-dimensional (3D) and 4D color Doppler fetal echocardiography using spatio-temporal image correlation (STIC). Ultrasound Obstet Gynecol, 2004:535–545.
    8. Ghi T, Cera E, Segata M, et,al. Inversion mode spatio-temporal image correlation (STIC) echocardiography in three-dimensional rendering of fetal ventricular septal defects. Ultrasound Obstet Gynecol, 2005, 26: 679–686.
    9. Favre R, Nisand G, Bettahar K, Grange G, Nisand I. Measurement of limb circumferences with threedimensional ultrasound for fetal weight estimation. Ultrasound Obstet Gynecol, 1993, 3:176–179.
    10. Steiner H, Gregg AR, Bogner G, et al. First trimester three-dimensional ultrasound volumetry of the gestational sac. Arch Gynecol Obstet, 1994:165–170.
    11. Hughes SW, D’Arcy TJ, Maxwell DJ, et al. Volume estimation from multiplanar2D ultrasound images using a remote electromagnetic position and orientation sensor. Ultrasound Med Biol, 1996 :561–572.
    12. Gilja OH, Hausken T, Berstad A, Odegaard S. Measurements of organ volume by ultrasonography. Proc Inst Mech Eng, 1999 :247–259.
    13. Dyson RL, Pretorius DH, Budorick NE, et al. Three-dimensional ultrasound in the evaluation of fetal anomalies. Ultrasound Obstet Gynecol 2000, 16:321–328.
    14. Scharf A, Ghazwiny MF, Steinborn A, et al. Evaluation of two-dimensional versus threedimensional ultrasound in obstetric diagnostics: a prospective study. Fetal Diagn Ther 2001, 16:333–341.
    15. Xu HX, Zhang QP, Lu MD, et al. Comparison of two-dimensional and three-dimensional sonography in evaluating fetal malformations. J Clin Ultrasound 2002, 30:515–525.
    16. Merz E, Welter C. 2D and 3D Ultrasound in the evaluation of normal and abnormal fetal anatomy in the second and third trimesters in a level III center. Ultraschall Med 2005, 26:9–16.
    17.苏淇琛,吴秀明,吕国荣,等.胎儿心脏四维时空关联成像超声检查:9个切面旋转技术和远程会诊.中国超声医学杂志, 2009, 25(5): 507-511.
    18. The International Society of Ultrasound in Obstetrics and Gynecology (ISUOG). Cardiac screening examination of the fetus: guidelines for performing the‘basic’and‘extended basic’cardiac scan. Ultrasound Obstet Gynecol, 2006, 27: 107-113.
    1. Devore GR, Polanko B. Tomographic ultrasound imaging of the fetal heart: a new technique for identifying normal and abnormal cardiac anatomy. J Ultrasound Med, 2005, 24(12):1685-96.
    2. Vinals F, Poblete P, Giuliano A. Spatio-temporal image correlation (STIC): a new tool for the prenatal screening of congenital heart defects. Ultrasound Obstet Gynecol, 2003, 22: 388–394.
    3. Goncalves LF, Espinoza J, Lee W, et al. A new approach to fetal echocardiography: digital casts of the fetal cardiac chambers and great vessels for detection of congenital heart disease. J Ultrasound Med, 2005, 24: 415–424.
    4. Chaoui R, Kalache KD, Hartung J. Application of three dimensional power Doppler ultrasound in prenatal diagnosis. Ultrasound Obstet Gynecol, 2001, 17: 22–29.
    5. Chaoui R, Hoffmann J, Heling KS. Three-dimensional (3D) and 4D color Doppler fetal echocardiography using spatio-temporal image correlation (STIC). Ultrasound Obstet Gynecol, 2004, 23: 535–545.
    6.苏淇琛,吴秀明,吕国荣,等.胎儿心脏四维时空关联成像超声检查:9个切面旋转技术和远程会诊.中国超声医学杂志, 2009, 25(5): 507-511.
    7. van den Bosch BJ, Lindsey PJ, van den Burg CM, et al. Early and transient gene expression changes in pressure overload-induced cardiac hypertrophy in mice. Genomics, 2006, 88(4):480-8.
    8. Sklansky M, M iller D, Devore G, et a1. Prenatal screening for congenital heart disease using real-time three-dimensional echocardiography and a novel sweep volume acquisition technique. Ultrasound Obstet Gynecol, 2005, 25(5): 435-443.
    9. Sklansky M, Devore G, W ong P, et a1. Real-time 3-dimensional fetal echocardiography with an instantaneous volum e-rendered display: early description and pictorial essay. J Ultrasound Med, 2004, 23(2): 283-289.
    10. Yagel S, Cohen SM, Messing B. First and early second trimester fetal heart screening. Curr Opin Obstet Gynecol, 2007, 19:183-90.
    11. Yagel S, Benachi A, Bonnet D, et al. Rendering in fetal cardiac scanning: theintracardiac septa and the coronal atrioventricular valve planes. Ultrasound Obstet Gynecol, 2006, 28: 266–274.
    12. Kasliwal RR, Chouhan NS, Sinha A, et a1. Real-time three-dimensional transthoracic echocardiography. Indian Heart J, 2005, 57(2): 128-137.
    13. Acar P, Abadir S, Roux D, et a1. Ebstein’s anomaly assessed by real-time 3D echocardiography. Ann Thorac Surg, 2006, 82(2): 731—733.
    14. Araujo Júnior E, de Bussamra LC, Barros FS, et al. Prenatal diagnosis of Ebstein's anomaly using spatio-temporal image correlation (STIC) and inversion mode. Arch Gynecol Obstet, 2008, 278:387-91.
    15.梁雪村,黄国英,刘晓琴,等.节段分析法在实时三维超声心动图诊断复杂型先天性心脏病的应用.实用儿科临床杂志, 2005, 20: 46-48.
    16.潘翠珍,舒先红,刘诗珍,等.实时三维超声心动图在心脏肿瘤中的应用价值.中国超声医学杂志, 2005, 21(4): 307-310.
    17. Vinals F, Ascenzo R, Poblete P, et al. Simple approach to prenatal diagnosis of transposition of the great arteries. Ultrasound Obstet Gynecol, 2006, 28:22-5.
    18. Toshiyuki Hata, Fang Yan, Shu-Yan Dai, et al. Real-time 3-dimensional echocardiographic features of fetal cardiac tumor. Journal of Clinical Ultrasound, 2007, 35(6):338-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700