食源性单核细胞增多性李斯特菌:肽核酸原位荧光检测与LMO1847蛋白免疫原性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单核细胞增多性李斯特菌(Listeria monocytogenes,以下简称Lm或单增李斯特菌)为短小的革兰氏阳性无芽胞兼性厌氧杆菌,是食源性人畜共患病原菌。孕妇、小孩、老年人及免疫力低下人群易感,常表现为脑膜脑炎、脑炎、脓血症、流产等。在主要食源性致病菌中,单增李斯特菌引起的死亡率最高,20世纪90年代以来,WHO将其列为四大食源性疾病致病菌之一。该菌在食品加工和生产过程中可以通过多种途径污染食品,对消费者健康构成潜在威胁。因此,建立快速、敏感、特异、简单的方法用于食品及其加工环境中该菌的检测,对控制和提高食品的卫生质量具有重要意义。
     本研究选择单增李斯特菌表面蛋白LMO1847为研究对象,设计其编码基因的特异性引物,PCR扩增目的片段后插入原核表达载体pET30a,获得的重组质粒命名为pLMO1847,重组质粒转化大肠杆菌BL21感受态细胞,诱导表达并分析其产物。结果表明,LMO1847基因片段获得了融合表达,可溶性分析发现该蛋白以可溶性和包涵体两种形式存在。大量表达并纯化该蛋白后,免疫家兔制备多克隆抗体,该多抗的效价高达1:25600,表明该蛋白具有良好的免疫原性。
     以纯化的LMO1847蛋白作为包被抗原,鼠源抗单增李斯特菌全菌多抗作为一抗,ELISA结果显示纯化蛋白与全菌多抗具有良好的反应性。以单增李斯特菌全菌作为包被抗原,LMO1847的多抗作为一抗,也呈现良好的反应活性。Western-blotting检测显示,纯化蛋白制备的多抗能够与单增李斯特菌外膜蛋白提取物中的LMO1847发生特异性反应。DOT-ELISA结果表明该多抗可与李斯特菌属的不同种发生交叉反应,但不与其它属细菌发生交叉反应,提示该蛋白可能为李斯特菌属特异性蛋白。单增李斯特菌在高盐、酸性、以及高温或低温的短期应激后(3小时),除5.5-NaCl处理组在1小时后LMO1847表达量略有下降外,42℃、pH5.5、pH3.0处理组表达基本稳定。但酸处理后,DOT-ELISA检测不到菌体表面的LMO1847蛋白。高盐(NaCl 5.5%-8%)条件下生长时,虽然细菌外膜蛋白LMO1847表达量有所下降,但仍可通过DOT-ELISA检测到。低温(4-15℃)条件下生长时,该蛋白表达量明显降低,DOT-ELISA显示4℃时可能由于表达量太低而无法在菌体表面检测到该蛋白。该蛋白可作为高盐腌制及高温消毒食品中李斯特菌的检测靶抗原,但不适宜检测低温保存或酸性食品中李斯特菌的污染。
     微生物快速检测的另一领域为针对特异性基因的分子检测。本试验基于近几年发展的PNA(肽核酸)技术,结合FISH(荧光原位杂交)技术,初步建立了食品中常见致病性微生物,单增李斯特菌的快速检测方法。首先通过生物信息学的方法,从NCBI数据库下载李斯特菌属23S rDNA序列,运用DNASTAR软件进行比较分析,结合PNA探针设计的原则,设计了两条针对李斯特菌23SrRNA的N末端标记荧光素的PNA探针,利用其中一条PNA探针建立了液相和固相两种模式的荧光原位杂交检测方法,并优化了两种模式下的杂交条件。液相杂交最佳条件为,50:50酒精/PBS固定,浓度为107CFU/ml的菌体于(20mM Tris pH9.0,100 mM NaCl,0.5%SDS,300pmol/mlPNA)的杂交缓冲液中55。C杂交1.5小时,洗涤后涂片观察。固相杂交的最佳条件为,浓度为106-107CFU/ml的菌体涂片,火焰固定后于80%酒精中浸泡15min,风干,用含500pmol/ml PNA (0.2%TritonX-100)的杂交缓冲液55℃杂交1.5小时。分别用两种检测模式对李斯特菌属及部分其他属细菌进行检测,其中2株单增李斯特菌参考株、10株分离株,6个不同种的非单增李斯特菌各1株,其他属细菌4株,共22株。两种模式检测结果一致,与分离鉴定结果吻合,但不同分离株杂交效率存在差异。该探针可与李斯特菌属的5个种杂交,不与其它属细菌杂交,与理论预测符合,对李斯特菌属细菌的检测具有一定的应用价值。
     本研究为开发基于特异、高亲和力的抗体包被磁珠,通过免疫磁珠快速分离、富集食品中单增李斯特菌,结合PNA荧光原位杂交技术或其它方法,为食品中单增李斯特菌快速检测系统的构建奠定了基础。
Listeria monocytogenes is a Gram-positive, rod-shaped, facultative anaerobic, non-spore-forming bacterium. As a facultative intracellular pathogen it can cause listeriosis, a severe food-borne infection in humans and animals leading to sydromes such as meningitis, encephalitis, and sepsis in immunocompromised individuals, neonates, the eldly, or spontaneous abortion in pregnant women. Listeia monocytogenes was reported to cause the highest mortality among the food-borne pathogens. World health organization considered it as one of the four most severe food-borne pathogens from 1990S. Contamination of foodstuff by L. monosytogenes can be due to the processing environments. So it is important to set up a rapid, sensitive, differential, and simple detection method to supervise and control its contamination in foods and processing environments.
     In this study, we selected the surface protein LMO1847 of Listeria monocytogenes as the target based on the research of cell wall subproteome of listeria monocytogenes. The whole gene fragment LMO1847 was amplified from Listeia monocytogenes genome and was inserted between EcoR I and Xho I sites of prokaryotic expression vector pET30a to construct the recombinant plasmid pLMO1847 which was then transferred into E.coli BL21. Expression of the recombinant protein was induced by IPTG and analysed by SDS-PAGE. Polyclonal antibody was prepared by immunizing the rabbits with the purified protein and the antibody titer was as high as 1:25600.
     Prokaryotic expression product LMO1847 reacted with the antibody of the whole Listeria monocytogenes from mice. The polyclonal antibody of LMO1847 could also react with the whole cells of Listeria monocytogenes. The cellullar LMO1847 extracts from Listeria monocytogenes could be recognized by rabbit polyclonal antibody of LMO1847 by western blotting without any non-special bands. The cross reaction of polyclonal antibody of LMO1847 was analysed by DOT-ELISA, and the polyclonal antibody could react with all Listeria species but not with any unrelated bacterium. The protein LMO1847 might be the specific protens in the Listeria genus. Listeria monocytogenes was held in stressful environments such as salt, temperature, and acid for a short duration (3 hours), the expression of LMO1847 were investigated by reaction with its antibody by ELISA or blotting. Expression of LMO1847 was not affected under stress conditions such as 42℃, pH5.5 and pH3.0. Reduced expression was seen upon its exposure to 5.5%NaCl for an hour. During short period exposure to acid stress environment, LMO1847 in the surface of whole cells was not detectable. Expression of LMO1847 was reduced and be detectable by DOT-ELISA when L. monocytogenes grown in high salt concentration (5.5%-8% NaCl). The expresson was also reduced when grown at low temperature (4-15℃). We suppose that the antibody of LMO1847 could detect Listeria from osmotically and high temperature stressed environments, but might not be suitable to detect cells from cold and acid stressed envioments.
     The other area for rapid detection of pathogens is moleculer detection targeting special genes. In this study, a new rapid detection method for Listeria monocytogenes was approached based on the technology of peptide nucleic acid (PNA) and fluorescence in situ hybridization (FISH). Two peptide nucleic acid probes labelled with fluorescein at N terminal were designed according to the probe designing principle and sequence analysis of 23S rRNA of Listeria spp. Two hybridization forms, liquid-phase PNA FISH and slide-based PNA FISH, were set up using one PNA probe. The probe reactivity was evaluated against 16 Listeria strains and 4 closely related strains base on the two hybridization forms after optimization of the hybridization conditions. The two hybridization forms were accordant with each other and also agreed with theoretical prediction. This probe could be used to detect 5 Listeia species and had no cross reaction to any other strains tested.
     Our study provides some foundations for enrichment of listerial cells using specific antibodies for quick identification of L. moncytogenes by PNA-FISH or other methods.
引文
1. Lecuit M, Cossart P. Genetically-modified-animal models for human infections:the Listeria paradigm. Trends Mol Med,2002,8(11):537-542.
    2. Low JC, Donachie W. A review of Listeria monocytogenes and listeriosis. Vet J,1997,153 (1):9-29.
    3. Yamamoto K, Kawamura I,Tominaga, Tet al., Listeriolysin O derived from Listeria monocytogenes inhibits the effector phase of an experimental allergic rhinitis induced by ovalbumin in mice. Clin Exp Immunol,2006,144(3):475-484.
    4. Cossart P, Lecuit M. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement:bacterial factors, cellular ligands and signaling. Embo J, 1998,17(14):3797-3806.
    5. Cabanes D, Lecuit M. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol,2002,10(5):238-245.
    6. Wang L, Lin M. Identification of IspC, an 86-kilodalton protein target of humoral immune response to infection with Listeria monocytogenes serotype 4b, as a novel surface autolysin. J Bacteriol,2007,189(5):2046-2054.
    7. Fischetti VA, Pancholi V, Schneewind O. Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol Microbiol,1990,4(9): 1603-1605.
    8. Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev,1999,63(1):174-229.
    9. Kuroda M, Ohta T, Uchiyama I, et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet,2001,357(9264):1225-1240.
    10. Ferretti JJ, McShan WM, Ajdic D, et al. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A,2001,98(8):4658-4663.
    11. Hoskins J, Alborn WE, Arnold J, et al. Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol,2001,183(19):5709-5717.
    12. Takami H, Nakasone K, Takaki Y, et al. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res,2000,28(21):4317-4331.
    13. Cole ST, Eiglmeier K, Parkhill J, et al. Massive gene decay in the leprosy bacillus. Nature, 2001,409(6823):1007-1011.
    14. Gaillard JL, Berche P, Frehel C, et al. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell, 1991,65(7):1127-1141.
    15. Dramsi S,'Dehoux P, Lebrun M, et al. Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD. Infect Immun,1997,65(5):1615-1625.
    16. Raffelsbauer D, Bubert A, Engelbrecht F, et al. The gene cluster inlC2DE of Listeria monocytogenes contains additional new internalin genes and is important for virulence in mice. Mol Gen Genet,1998,260(2-3):144-158.
    17. Behrens S, Meyer U, Schankin H, et al. Identification of two genes encoding putative new members of the ECF subfamily of eubacterial RNA polymerase sigma factors in Clostridium acetobutylicum. J Mol Microb Biotech,2000,2(3):265-269.
    18. Kajava AV, Kobe B, Assessment of the ability to model proteins with leucine-rich rep eats in light of the latest structural information. Protein Sci,2002,11(5):1082-1090.
    19. Lecuit M, Ohayon H, Braun L, et al. Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect Immun,1997, 65(12):5309-5319.
    20. Marino M, Braun L, Cossart P, et al. Structure of the lnlB leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen L. monocytogenes. Mol Cell,1999, 4(6):1063-1072.
    21. Schubert WD, Gobel G, Diepholz M, et al. Internalins from the human pathogen Listeria monocytogenes combined three distinct folds into a contiguous internalin domain. J Mol Biol,2001,312(4):783-794.
    22. Lecuit M, Nelson DM, Smith SD, et al. Targeting arid crossing of the human maternofetal barrier by Listeria monocytogenes:role of internalin interaction with trophoblast E-cadherin. Proc Natl Acad Sci USA,2004,101 (16):6152-6157.
    23. Khelef N, Lecuit M, Bierne H, et al. Species specificity of the Listeria monocytogenes InlB protein. Cell Microbiol,2006,8(3):457-470.
    24. Ooi A, Hussain S, Seyedarabi A, et al., Structure of internalin C from Listeria monocytogenes. Acta Crystallogr D Biol Crystallogr,2006,62(11):1287-1293.
    25. Huan Y, Adelsberg JV. Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J Clin Invest,1999.104(10):1459-468.
    26. Clark EA, Brugge JS. Integrins and signal transduction pathways:the road taken. Science, 1995,268(5208):233-239.
    27. Finlay BB, Cossart P. Exploitation of mammalian host cell functions by bacterial pathogens. Science,1997,276(5313):718-725.
    28. Mazmanian SK; Liu G, Jensen ER, et al. Staphylococcus aureus sortase mutant defective in the display of surface proteins and in the pathogenesis of animal infections. Proc Natl Acad Sci U S A,2000,97(10):5510-5515.
    29. Bierne H, Mazmanian SK, Trost M, et al. Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol Microbiol, 2002,43(4):869-881.
    30. Mazmanian SK, Ton-That H, Su K, et al. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc Natl Acad Sci U S A, 2002,99(4):2293-2298.
    31. Jonquieres R, Pizarro-Cerda J, Cossart P. Synergy between the N-and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes. Mol Microbiol,2001,42(4):955-965.
    32. Domann E, Wehland J, Rohde M, et al. A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. Embo J,1992,11(5):1981-1990.
    33. Rafelski SM, Theriot JA. Mechanism of polarization of Listeria monocytogenes surface protein ActA.. Mol Microbiol,2006,59(4):1262-1279.
    34. Borezee E, Pellegrini E, Beretti JL, et al. SvpA, a novel surface virulence-associated protein required for intracellular survival of Listeria monocytogenes. Microb,2001,147(11): 2913-2923.
    35. Kuhn M, Goebel W. Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun,1989,57(1): 55-61.
    36. Schubert K, Bichlmaier AM, Mager E, et al. P45, an extracellular 45 kDa protein of Listeria monocytogenes with similarity to protein p60 and exhibiting peptidoglycan lytic activity. Arch Microbiol,2000,173(1):21-28.
    37. Aliprantis AO, Yang RB, Mark MR, et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science,1999,285(5428):736-739.
    38. Ozoren N, Masumoto J, Franchi L,et al. Distinct roles of TLR2 and the adaptor ASC in IL-1 beta/IL-18 secretion in response to Listeria monocytogenes. J Immunol 2006.176(7): 4337-4342.
    39. Sanderson S, Campbell DJ, Shastri N. Identification of a CD4+T cell-stimulating antigen of pathogenic bacteria by expression cloning. J Exp Med,1995,182(6):1751-1757.
    40.Lowe AM, Lambert PA, Smith AW. Cloning of an Enterococcus faecalis endocarditis antigen:homology with adhesins from some oral streptococci. Infect Immun,1995,63(2): 703-706
    1. Nielse PE, Egholm M, Berg RH, et al. sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science,1991,245(5037):1497-1500.
    2. Tedeschi T, Chiari M, Galaverna G, et al. Detection of the R553X DNA single point mutation related to cystic fibrosis by a "chiral box" D-lysine-peptide nucleic acid probe by capillary electrophoresis. Electrophoresis,2005,26(22):4310-4316.
    3. Taback B, Bilchik AJ, Saha S, et al. Peptide nucleic acid clamp PCR:a novel K-ras mutation detection assay for colorectal cancer micrometastases in lymph nodes. Int J Cancer,2004,111(3):409-414.
    4. Pellestor F, Paulasova P. PRINS combined with peptide nucleic.acid labeling. Methods Mol Biol,2006,334:15-22.
    5. Pesce CD, Bolacchi F, Bongiovanni B, et al. Anti-gene peptide nucleic acid targeted to proviral HIV-1 DNA inhibits in vitro HIV-1 replication. Antiviral Res,2005; 66(1):13-22.
    6. Kurtzman CP, Robnett CJ, Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek,1998,73,331-371
    7. Drobniewski FA, More PG., Harris GS, Differentiation of Mycobacterium tuberculosis complex and nontuberculous mycobacterial liquid cultures by using peptide nucleic acid-fluorescence in situ hybridization probes. Clin. Microbiol,2000,38,444-447
    8. Pellestor F. In situ aneuploidy assessment in human sperm:the use of primed in situ and peptide nucleic acid-fluorescence in situ hybridization techniques. Asian J Androl,2006, 8(4):387-392.
    9. Perry-O'Keefe H, Stender H, Broomer A, et al. Filter-based PNA in situ hybridization for rapid detection, identification and enumeration of specific micro-organisms. J Appl Microbiol,2001.90(2):180-189
    10. Stender H, Broomer A, Oliveira K, et al. Rapid detection, identification, and enumeration of Pseudomonas aeruginosa in bottled water using peptide nucleic acid probes. J Microbiol Methods,2000.42(3):245-253.
    11. Stender H, Broomer AJ, Oliveira K, et al. Rapid detection, identification,and enumeration of Escherichia coli cells in municipal water by chemiluminescent in situ hybridization. Appl Environ Microbiol,2001,67(1):142-147.
    12. Perry-O'Keefe. H, Rigby S, Sorensen DS, et al. Multicolor multiplex microbial identification using PNA probes targeting rRNA. Clin Chem,2000,46(11):1878-1878.
    13. Seitz O. Solid-phase synthesis of doubly labeled peptide nucleic acids as probes for the real-time detection of hybridization. Angew Chem Int Ed,2000,39(18):3249-3256.
    14. Nielson PE, Christensen L. Strand displacement binding of a duplex forming homopurine PNA to a homopryrimidine duplex DNA target. Amer chem. Soc,1996,118:2287-2288
    15. Lohse J, Dahl O, Nielsen PE. Double duplex invasion by peptide nucleic acid:a general principle for sequence-specific targeting of double-stranded DNA. Proc Natl. Acad. Sci. USA 1999,96:11-804-11808.
    16. Gildea BD, Coull JM, Hyldig-Nielsen JJ, et al. Methods, kits and compositions pertaining to linear beacons.1999, PCT WO 99/21881
    17. Seitz O, Bergmann F, Heindl D. A convergent strategy for the modification of peptide nucleic acids:novel mismatch-specific PNA-hybridization probes. Angew Chem Int Ed, 1999,38:2203-2206.
    18. Fiandaca MJ, Gildae BD, Coull JM. Self-reporting PNA/DNA primers for PCR analysis. Genome Res.2001,11:609-613.
    19. Nielsen PE, Egholm M, Berg RH, et al. Sequence specific inhibition of DNA restriction enzyme cleavage by PNA. Nucleic Acids Res,1993.21(2):197-200:
    20. Nielsen PE, Egholm M, Berg RH, et al. Peptide nucleic acids (PNAs):potential antisense and anti-gene agents. Anticancer Drug Des,1993.8(1):53-63.
    21. Egholm M, Buchardt O, Christensen L, et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen bonding rules.Nature 1993,365: 556-568.
    22. Gambari R. peptide nucleic acid (PNA):a tool for development of gene expression modifiers. Curr Pharm Des,2001,7(17):1839-1862
    23.何为,马立人肽核酸[M].北京:化学工业出版社,2003.110-111
    24. Mokhir AA, Kraemer R. Conjugates of PNA with naphthalene diimide derivatives having a broad range of DNA affinities. Bioconjug Chem,2003,14(5):877-883.
    25. Ganesh KN, Nielsen PE. Peptide nucleic acids:Analogs and derivatives. Curr Organic Chem,2000,4(9):931-943.
    26. Ross PL, Lee K, Belgrader P. Discrimination of single-nucleotide polymorphisms in human DNA using peptide nucleic acid probes detected by MALDI-TOF mass spectrometry. Anal Chem,1997,69(20):4197-4202.
    27. Baker ES, Hong JW, Gaylord BS, et al. PNA/dsDNA complexes:site specific binding and dsDNA biosensor applications. J Am Chem Sot,2006,128(26):8484-8492.
    28. Kumar VA, Ganesh KN. Conformationally constrained PNA analogues:structural evolution toward DNA/RNA binding selectivity. Ace Chem Res,2005,38(5):404-412.
    29. Lundin, K.E., et al., Increased stability and specificity through combined hybridization of peptide nucleic acid (PNA) and locked nucleic acid (LNA) to supercoiled plasmids for PNA-anchored "Bioplex" formation. Biomol Eng,2005.22(5-6):p.185-92.
    30. Kuhn H, Hasan M, Moreno PM, et al. Artificial site-specific DNA-nicking system based on common restriction enzyme assisted by PNA openers. Biochemistry,2003,42(17): 4985-4992.
    31. Kambhampati D, Nielsen PE, Knoll W. Investigating the kinetics of DNA-DNA and PNA-DNA interactions using surface plasmon resonance-enhanced fluorescence spectroscopy. Biosens Bioelectron,2001,16(9-12):1109-1118.
    32. Wittung P, Nielson PE, Norden B. Direct observation of strand invasion by peptide nucleic acid into double-stranded DNA. Am Chem Soc 1996,118:7049-7054
    33. Cherney DY, Belotserkovskii BP. DNA unwinding upon strand displacement binding of a thymine-substituted polyamide to double strand DNA. Proc Natl Acad Sci USA,1993,90: 10648-10652
    34. Erikesson M, Christensen L, Schmidt J, et al. Sequence dependent N-termianal rearrangement and degradation of peptide nucleic acid in aqueous solution. Chem,1998,1055-1059
    35. Hyrup B, Nielson PE. Peptide.nucleic acid(PNA)synthesis, properties and potential applications.Bioorg med chem.,1996,4:5-23
    36. Petraccone L, Erra E, Messere A, et al. Targeting duplex DNA with DNA-PNA chimeras?Physico-chemical characterization of a triplex DNA-PNA/DNA/DN A. Biopolymers,2004,73(4):434-442.
    37. Nikiforov TT, Jeong S. Detection of hybrid formation between peptide nucleic acids and DNA by fluorescence polarization in the presence of polylysine. Anal Biochem,1999, 275(2):248-253.
    38. Gildea BD, Coull JM, Hyldig-Nielsen JJ, et al. Methods, kits and compositions pertaining to linear beacons.1999, PCT WO 99/21881
    39. Kuhn H, Demidov VV, Gildea BD, et al. PNA beacons for duplex DNA. Antisense Nucleic Acid Drug Dev,2001,11(4):265-270.
    40. Igloi G.L. Variability in the stability of DNA-peptide nucleic acid (PNA) single-base mismatched duplexes:real time hybridization during affinity electrophoresis in PNA-containing gels. Proc Natl Acad Sci USA,1998,95:8562-8567
    41. Privat E, Melvin T, Asseline U, et al. Oligonucleotide-conjugated thiazole orange probes as "light-up" probes for messenger ribonucleic acid molecules in living cells. Photochem Photobiol,2001,74(4):532-541.
    42. Svanvik N,Nygren J, Westman G, et al. Free-probe fluorescence of light-up probes. J Am Chem Soc,2001,123(5):803-809.
    43. Giesen U, Kleider W, Berding C, Nielsen PE, et al. A formula for thermal stability (Tm) prediction of PNA/DNA duplexes. Nucleic Acids Res.1998,26:5004-5006.
    44. Wolffs P, Knutsson R, Sjoback R, et al. PNA-based light-up probes for real-time detection of sequence-specific PCR products. Biotechniques,2001,31(4):766,769-771.
    45. Galbiati S, Restagno G, Foglieni B, et al. Different approaches for noninvasive prenatal diagnosis of genetic diseases based on PNA-mediated enriched PCR. Ann N Y Acad Sci, 2006,1075:137-143.
    46. Rossi S, Lesignoli F, Germini A, et al. Identification of PCR-amplified genetically modified organisms (GMOs) DNA by peptide nucleic acid (PNA) probes in anion-exchange chromatographic analysis. J Agric Food Chem,2007,55(7):2509-2516.
    47. Fiandaca MJ, Hyldig-Nielsen JJ, Coull JM. PNA blocker probes enhance specificity in probe assays. Peptide Nucleic Acids:Protocols and Applications.. Horizon Scientific Press, Wymondham, UK,1999,129-141
    48. Doyle DF, Braasch DA, Simmons CG, et al. Inhibition of gene expression inside cells by peptide nucleic acids:Effect of mRNA target sequence, mismatched bases, and PNA length. Biochemistry,2001,40(1):53-64.
    49. Just T, Burgwald H, Broe MK. Flow cytometric detection of EBV (EBER snRNA) using peptide nucleic acid probes. J Virol Methods,1998,73(2):163-174.
    50. Hultdin M, Gronlund E, Norrback K, et al. Telomere analysis by fluorescence in situ hybridization and flow cytometry. Nucleic Acids Res,1998,26(16):3651-3656.
    51. Stender H, Mollerup TA, Lund K et al. Direct detection and identification of Mycobacterium tuberculosis in smear-positive sputum samples by fluorescence in situ hybridization (FISH) using peptide nucleic acid (PNA) probes. Int J Tuberc Lung Dis,1999, 3(9):830-837.
    52. Stender H., Broomer A.J., Oliveira K., et al.. Rapid detection, identification, and enumeration of Escherichia coli cells in municipal water by chemiluminescent in situ hybridization [J].Appl. Environ. Microbiol.2001,67:142-147
    53. Fiandaca M.J., Hyldig-Nielsen J., Gildae B.D., et al. Self-reporting PNA/DNA primers for PCR analysis [J]. Genome Res.2001,11:609-613
    54. Perry-O'Keefe H., Stender H., Broomer A., Oliveira K., et al. Filter-based PNA in situ hybridization for rapid detection, identification and enumeration of specific microorganisms [J] Appl. Microbiol.2001,90:180-189
    55. Stender H, Oliveira K, Rigby S, et al. Rapid detection, identification, and enumeration of Escherichia coli by fluorescence in situ hybridization using an array scanner. Microbiol Methods,2001,45:31-39
    56. Stender H, Petersen KH, Hongmanee P, et al. Direct detection and identification of Mycobacterium tuberculosis in smear-positive sputum samples by fluorescence in situ hybridization (FISH) using peptide nucleic acid (PNA) probes. Int J Tuberc Lung Dis,1999, 3(9):830-837.
    57. Padilla E, Manterola JM; Rasmussen OF, et al. Evaluation of a fluorescence hybridisation assay using peptide nucleic acid probes for identification and differentiation of tuberculous and non-tuberculous mycobacteria in liquid cultures. Eur J Clin Microbiol Infect Dis,2000, 19(2):140-145.
    58. Drobniewski FA, More PG, Harris G.S. Differentiation of Mycobacterium tuberculosis complex and nontuberculous mycobacterial liquid cultures by using peptide nucleic acid-fluorescence In situ hybridization probes. J Clin Microbiol,2000,38(1):444-447.
    59. Hongmanee P, Stender H, Rasmussen OF. Evaluation of a fluorescence in situ hybridization assay for differentiation between tuberculous and non-tuberculous Mycobacterium species in smears of LJ and MGIT cultures using peptide nucleic acid probes.Clin Microbiol,2001, 39:1032-1035
    60. Lefmann M, Schweickert B, Buchholz P,et al., Evaluation of peptide nucleic acid-fluorescence in situ hybridization for identification of clinically relevant mycobacteria in clinical specimens and tissue sections. J Clin Microbiol,2006,44(10):3760-3767.
    61. Oliveira K, Haase G., Kurtzman C, Differentiation of Candida albicans and Candida dubliniensis by Fluorescent In Situ Hybridization with Peptide Nucleic Acid Probes. Clin Microbiol,2001,39(11):4138-4141
    62. Forrest GN, Mankes K, Jabra-Rizk MA, et al., Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J Clin Microbiol,2006,44(9):3381-3383.
    63. Alexander BD, Ashley ED, Reed SD,et al. Cost savings with implementation of PNA FISH testing for identification of Candida albicans in blood cultures. Diagn Microbiol Infect Dis, 2006,54(4):277-282.
    64. Wilson DA, Joyce MJ, Hall LS, et al. Multicenter evaluation of a Candida albicans peptide nucleic acid fluorescent in situ hybridization probe for characterization of yeast isolates from blood cultures. J Clin Microbiol,2005,43(6):2909-2912
    65. Gonzalez V, Padilla E, Gimenez M, Rapid diagnosis of Staphylococcus aureus bacteremia using S. aureus PNA FISH. Clin Microbiol Infect Dis.2004,23:396-398
    66. Forrest GN, Mehta S, Weekes E, et al. Impact of rapid in situ hybridization testing on coagulase-negative staphylococci positive blood cultures. J Antimicrob Chemother,2006, 58(1):154-158.
    67. Radwanska M, Magez S, Perry-O'Keefe H. Direct Detection and Identification of African Trypanosomes by Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes. Clin Microbiol,2002,40(11):4295-4297
    68. Perry-O'Keefe H, Rigby S, Sorensen DS. et al. Multicolor multiplex microbial Identification using PNA probes targeting rRNA (abstract).CLCHAU 46 (S11), A23,2000.
    69. Byron F, Hyldig-Nielsen JJ, Johnson EA. et al. Design and Evaluation of 16S rRNA-Targeted Peptide Nucleic Acid Probes for Whole-Cell Detection of Members of the Genus Listeria. Appl Environ Microbiol,2005,71(9):5451-5457
    70. Lenaerts J, Lappin-Scott HA, Porter J. Improved fluorescent in situ hybridization method for detection of bacteria from activated sludge and river water by using DNA molecular beacons and flow cytometry.Appl Environ Microbio,2007,73(6):2020-2023.
    71. Ngundi MM, Kulagina NV, Anderson GP, et al., Nonantibody-based recognition:alternative molecules for detection of pathogens. Expert Review of Proteomics,2006,3(5):511-524.
    1. 陆承平,黄青云,吴润,等.兽医微生物学[M].第三版,北京:中国农业出版社,2001.7
    2. Low JC, Donachie W. A review of Listeria monocytogenes and listeriosis. Vet J,1997,153 (1):9-29.
    3. Gellin BG, Broome CV. Listeriosis. Jama,1989,261(9):1313-1320.
    4. Dramsi S, Kocks C, Forestier C, et al. Internalin-mediated invasion of epithelial cells by Listeria monocytogenes is regulated by the bacterial growth state, temperature and the pleiotropic activator prfA. Mol Microbiol,1993,9(5):931-941.
    5. Sokolovic Z, Riedel J, Wuenscher M, et al. Surface-associated, PrfA-regulated proteins of Listeria monocytogenes synthesized under stress conditions. Mol Microbiol,1993,8(2): 219-227.
    6. Buncic S, Avery SM. Relationship between variations in pathogenicity and lag phase at 37 degrees C of Listeria monocytogenes previously stored at 4 degrees C. Lett Appl Microbiol, 1996,23(1):18-22.
    7. Schaumburg J, Diekmann O, Hagendorff P, et al. The cell wall subproteome of Listeria monocytogenes. Proteomics,2004.4(10):p.2991-3006.
    8. 王海艳,刘中学,石新华,等。单增李斯特菌及其表面蛋白的研究进展[J].检验检疫科学,2006,2:76-80
    9. Cabanes D, Dehoux P, Dussurget O, et al. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol,2002,10(5):238-245
    10. Michetti P, Mahan MJ, Slauch JM, et al. Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infect Immun,1992,60(5):1786-1792.
    11. Geng T, Kim KP, Gomez R, et al. Expression of cellular antigens of Listeria monocytogenes that react with monoclonal antibodies C11E9 and EM-7G1 under acid-, salt-or temperature-induced stress environments. J Appl Microbiol,2003,95(4):762-772.
    12. Ryser ET, Marth EH. "New" food-borne pathogens of public health significance. J Arn Diet Assoc,1989,89(7):948-954.
    13. Buncic S, Avery SM, Rogers AR. Listeriolysin O production and pathogenicity of non-growing Listeria monocytogenes stored at refrigeration temperature. Int J Food Microbiol,1996,31(1-3):133-147..
    14. Becker LA, Evans SN, Hutkins RW, et al. Role of sigma (B) in adaptation of Listeria monocytogenes to growth at low temperature. J Bacteriol,2000,182(24):7083-7087.
    15. Vasseur C, Labadie J, Hebraud M. Differential protein expression by Pseudomonas fragi submitted to various stresses. Electrophoresis,1999,20(11):2204-2213.
    16. Rouquette C, Ripio MT, Pellegrini E, et al. Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes. Mol Microbiol,1996,21(5): 977-987.
    17. Sleator RD, Gahan CGM, O'Driscoll B, et al. Analysis of the role of betL in contributing to the growth and survival of Listeria monocytogenes LO28. Int J Food Microbiol,2000, 60(2-3):261-268.
    18. Phan-Thanh L, Mahouin F, Alige S. Acid responses of Listeria monocytogenes. Int J Food Microbiol,2000,55(1-3):121-126.
    19. Wiedmann M, Arvik TJ, Hurley RJ, et al. General stress transcription factor sigmaB and-its role in acid tolerance and virulence of Listeria monocytogenes. J Bacteriol,1998,180(14): 3650-3656.
    20. Bayles DO, Annous BA, Wilkinson BJ. Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures. Appl Environ Microbiol,1996.62(3):1116-1119.
    21. Bashir R, Gomez R, Sarikaya A, et al. Adsorption of avidin on microfabricated surfaces for protein biochip applications. Biotechnol Bioeng,2001,73(4):324-328.
    22. Sokolovic Z, Goebel W. Synthesis of listeriolysin in Listeria monocytogenes under heat shock conditions. Infect Immun,1989.57(1):295-298.
    23. Duffy G., Kilbride B, Sheridan JJ, et al. A membrane-immunofluorescent-viability staining technique for the detection of Salmonella spp. from fresh and processed meat samples. J Appl Microbiol,2000,89(4):587-594.
    24. Solve M, Boel J, Norrung B. Evaluation of a monoclonal antibody able to detect live Listeria monocytogenes and Listeria innocua. Int J Food Microbiol,2000,57(3):219-224.
    25. Clark AG, McLaughlin J. Simple color tests based on an alanyl peptidase reaction which differentiate Listeria monocytogenes from other Listeria species. J Clin Microbiol,1997, 35(8):2155-2156.
    26. Volokhov D, George J, Anderson C, et al. Discovery of natural atypical nonhemolytic Listeria seeligeri isolates. Appl Environ Microbiol,2006,72(4):2439-2448.
    27. McLauchlin J. The identification of Listeria species. Int J Food Microbiol,1997.38(1): 77-81.
    28. Frye DM, Zweig R, Sturgeon J, et al. An outbreak of febrile gastroenteritis associated with delicatessen meat contaminated with Listeria monocytogenes. Clin Infect Dis,2002,35(8):. 943-949.
    29. Hegde V, Leon-Velarde CG, Stam CM, et al. Evaluation of BBL CHROMagar Listeria agar for the isolation and identification of Listeria monocytogenes from food and environmental samples. J Microbiol Methods,2007,68(1):82-87.
    30. Nadal A, Coll A, Cook N, et al. A molecular beacon-based real time NASBA assay for detection of Listeria monocytogenes in food products:Role of target mRNA secondary .structure on NASBA design. J Microbiol Methods,2007,68(3):623-632.
    31. Rola JG, Korpysa-Dzirba W, Wojton B. Detection of Listeria monocytogenes in powdered milk by VIDAS LMO 2-Collaborative study. J Rapid Methods Auto Microbiol,2006, 14(4):362-368.
    32. Nielse PE, Egholm M, Berg RH, et al. sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. science,1991,245 (7):1497-1500.
    33. Hyrup B, Nielson PE. Peptide nucleic acid(PNA):synthesis, properties and potential applications.Bioorg.med.chem.1996,4:5-23.
    34. Gildea BD, Casey S. PNA solution enhancers.Terahedron Lett.1998,39:7255-7258.
    35. Radwanska M, Magez S, Perry-O'Keefe H, et al. Direct detection and identification of African trypanosomes by fluorescence in situ hybridization with peptide nucleic acid probes. J Clin Microbiol,2002.40(11):4295-4297.
    36. Byron F, Hyldig-Nielsen JJ, Johnson EA;. et al. Design and Evaluation of 16S rRNA-Targeted Peptide Nucleic Acid Probes for Whole-Cell Detection of Members of the Genus Listeria. Appl Environ Microbiol,2005,71(9):5451-5457.
    37. Woese R, Gibson J, Fox GE. Do genealogical patterns in purple photosynthetic bacteria reflect interspecific gene transfer? Nature,1980,283 (5743):212-214.
    38. Norton DM. Polymerase chain reaction-based methods for detection of Listeria monocytogenes:toward real-time screening for food and environmental samples. J AOAC Int,2002,85(2):505-515.
    39. Stender H, Fiandaca M, Hyldig-Nielsen JJ, et al. PNA for rapid microbiology. J Microbiol Methods,2002,48(1):1-17.
    40. Moter A, Gobel UB. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods,2000,41(2):85-112.
    41. Wagner M, Schmid M, Juretschko S, et al. In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiol Lett,1998,160(1):159-168.
    42. Bohnert J, Hubner B, Botzenhart K. Rapid identification of Enterobacteriaceae using a novel 23S rRNA-targeted oligohucleotide probe. Int J Hyg Environ Health,2000,203(1): 77-82.
    43. Anderson ML. M. Solution hybridization:reaction conditions, In Nucleic acid hybridization. BIOS Scientific Publishers, Oxford, United Kingdom.1999,51.
    44. Brehm-Stecher BF, Hyldig-Nielsen JJ, Johnson EA. Design and evaluation of 16S rRNA-targeted peptide nucleic acid probes for whole-cell detection of members of the genus Listeria. Appl Environ Microbiol 2005,71(9):5451-5457.
    45. Lin M, Todoric D, Mallory M, et al., Monoclonal antibodies binding to the cell surface of Listeria monocytogenes serotype 4b. J Med Microbiol,2006,55(3):291-299.
    46. Mukhopadhyay A, Mukhopadhyay UK. Novel multiplex PCR approaches for the simultaneous detection of human pathogens:Escherichia coli 0157:H7 and Listeria monocytogenes. J Microbiol Methods,2007,68(1):193-200.
    47. Nadal A, Coll A, Pla M,et al. A molecular beacon-based real time NASBA assay for detection of Listeria monocytogenes in food products:role of target mRNA secondary structure on NASBA design. J Microbiol Methods,2007,68(3):623-632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700