基于Backstepping方法的不确定非线性系统鲁棒自适应控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在系统建模及运行过程中不可避免的会存在未知的模型误差、未建模动态、外界扰动等不确定性。在控制器设计时如果不充分考虑这些不确定性的影响,则被控系统的性能必然会变得很差,甚至可能会导致闭环系统的不稳定。此外,现代复杂的大规模控制系统可能有成百上千个执行器,系统运行过程中的执行器故障也无法避免。当执行器发生故障时,若不对其做出及时反应,则可能导致意想不到的后果。因此未知执行器故障系统的控制问题也越来越受重视,特别是充分考虑执行器自身固有特性(如常见的滞回、死区等强非线性)情况下的未知执行器故障的补偿控制研究更具有现实价值。
     本论文的研究对象为带有非三角结构不确定项的下三角非线性系统和存在滞回执行器未知故障的下三角非线性系统。首先,在控制器设计中充分考虑未知模型误差、未建模动态等引起的不确定性。这类不确定性在系统数学模型中表现为每个状态微分方程中的未知函数项。假设这些未知函数项的界函数依赖于系统所有状态(此类未知函数项被称为非三角结构不确定项),则非线性系统的下三角结构将遭到破坏,传统的Backstepping设计方法无法应用于此类系统的设计中。针对此类系统提出了新的基于Backstepping的鲁棒自适应控制器的设计方法。其次,针对滞回执行器未知故障的下三角非线性系统,分别基于Backlash-like滞回近似和滞回光滑逆,首次提出了滞回执行器未知故障的自适应补偿控制器的设计方法。主要的研究成果如下:
     (1)针对一类具有非三角结构不确定项的二阶非线性系统,提出了基于Backstepping万法的自适应控制器的设计方法。详细给出了自适应控制器存在的充分条件及控制器设计参数的选取规则。
     (2)针对一类具有非三角结构不确定项的n(n>2)阶非线性系统,提出了基于Backstepping的新的鲁棒自适应控制器的设计方法。有别于传统的Backstepping控制器设计方法,该控制器设计的关键在于通过调整虚拟函数的选取保障变换向量Z与系统状态向量χ之间的可逆线性变换关系,将所有非三角结构不确定性留到最后一步统一处理,从而提出控制器中设计参数存在的充分条件。
     (3)针对具有滞回特性执行器的非线性系统,考虑滞回执行器未知故障的自适应补偿控制问题。通过Backlash-like模型对滞回非线性进行近似,首先提出了传统的自适应控制器设计方法。由于传统自适应控制器中含有符号函数,使得该控制器不连续,这将导致可能的抖震现象。为了避免控制器抖震,构造了符号函数的光滑逼近函数,提出了连续控制器的设计方法。该连续控制器不仅能保证在滞回执行器故障情况下的系统稳定,还改善了被控系统的性能。
     (4)针对滞回执行器未知故障的非线性系统,通过构造未知滞回的光滑逆模型,利用光滑的逆消除滞回的影响,基于Backstepping方法提出了系统自适应控制器的设计方法。由于滞回光滑逆的引入,使得在控制器设计中未知滞回的结构信息被充分利用,因此改善了被控系统的性能。
Modeling errors, external disturbances, unmodeled dynamics are unavoidable during system modeling and its operation. All these uncertainties will deteriorate the control performance of the system, and even may lead it to instability. Therefore, such uncertainties should be taken into ac-count in system performance analysis and the controller design. Meanwhile, due to the complexity of modern large-scale system with hundreds of actuators, actuator failures are inevitable in actual applications. Such failures may lead to catastrophic accidents if there are no suitable measure to take. Recently, more and more experts and scholars in control society pay more attentions to the research on failure compensation, especially to the failure compensation of non-smooth nonlinear actuators, which has more realistic significance.
     In this dissertation, the lower-triangular nonlinear systems with different kinds of uncertain-ties, including non-triangular structural uncertainties and unknown failure of hysteretic actuators are considered. The uncertainties of unknown nonlinear modeling errors and unmodeled dynamics will be taken into account in the controller design. These uncertainties are always shown in un-known nonlinear functions of system states and exist in every state equation or channel, or show in mismatched form. The uncertainties can be bounded by certain known function of all sys-tem state instead of lower-triangular forms such uncertainties are called non-triangular structural uncertainties. The requirement to deal with a semi-strict feedback form of system by using ex-isting backstepping technique do no longer met. A novel robust adaptive control scheme based on backstepping is proposed for a class of nonlinear systems without lower-triangular structural uncertainties firstly. Then, two robust adaptive control schemes using backstepping technique are first proposed to compensate for the uncertain failures of hysteretic actuators of a class of nonlinear systems through backlash-like model and backlash inverse, respectively. The research results are summarized as follows,
     (1) Considering a class of second-order uncertain nonlinear systems with such non-triangular structural uncertainties, we present a novel backstepping-based robust adaptive control scheme, which establish the sufficient condition about the existence of controller and provide the guidelines of choosing the controller parameters.
     (2) A robust adaptive control scheme based on backstepping technique is presented for a class of n-order nonlinear systems with non-triangular structural uncertainties. Throughout the whole procedure in our controller design, the key point is to keep the linear relationship between the state vector x=(x1,···, xn)T and its transformed vector z=(z1,···, zn)T by adjusting virtual control αi. All effects of non-triangular structural uncertainties are accumulated to the last step for compensation by selecting appropriate control law and parameter update law. The sufficient condition about the existence of controller is also established.
     (3) Considering the compensation problem of unknown actuator failures of uncertain non-linear systems with hysteretic actuators, firstly, an adaptive control scheme is proposed by using backlash-like model. A discontinuous function sign(·) is included into this control law design, which result in chattering. Secondly, To avoid this phenomenon, a series of smooth functions are used to approximate the function sign(·) in the control law. The stability of closed-loop system can be ensured by the adaptive controllers and the performance of closed-loop system has been improved greatly.
     (4) Considering a class of uncertain nonlinear systems preceded by m hysteretic actuators which exhibit unknown backlash nonlinearity and possibly experience unknown failures, an adap-tive backstepping compensation control scheme is proposed based on smooth inverse of the actua-tor backlash. Due to the fully utilization of backlash structure information in controller design, the performances of closed-loop system have been greatly improved.
引文
[1]H. K. Khalil. Nonlinear Systems(Third Edition)[M]. Prentice-Hall, Englewood CliffS,1996.
    [2]D. P. Atherton. Early developments in nonlinear control[J]. IEEE Control Systems Magazine,1996,16(3): 34-43.
    [3]A. Isidori. Nonlinear Control Systems(Third Edition)[M]. Springer-Verlag, Berlin,1995.
    [4]A. Astolfi, R. Ortega. Immersion and invarianee:A new tool for stabilization and adaptive control of nonlinear systems[J]. IEEE Transaetions on Automatic Control,2003,48(4):590-606.
    [5]A. Astolfi, R. Ortega. Nonlinear and Adaptive Control Design with Application[M]. Springer-Verlag, Londo,2007.
    [6]柳向斌.非线性系统控制的鲁棒与自适应设计方法[D].[博士学位论文],中国,控制科学与工程系,浙江大学,2009.
    [7]I. Kanellakopoulos, P. V. Kokotovic, A. S. Morse. Systematic design of adaptive controllers for feedback linearizable systems[J]. IEEE Transaetions on Automatic Control,1991,36(11):1241-1253.
    [8]M. Krstic, I. Kanellakopoulos, P. V. Kokotovic. Nonlinear and Adaptive Control Design[M]. Wiley, New York,1995.
    [9]J. Zhou, C. Wen, Y. Zhang. Adaptive output feedback control of linear systems preceded by unknown backlash-like hysteresis[C]. Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems.2004,12-17.
    [10]J. Zhou, Y. Zhang, C. Wen. Adaptive backstepping control of aclass of uncertain nonlinear systems with unknown backlash-like hysteresis[J]. IEEE Transaetions on Automatic Control,2004,49(10):1751-1757.
    [11]C. Wen, J. Zhou. Decentralized adaptive stabilization in the presence of unknown backlash-like hystere-sis[J]. Automatica,2007,43(3):426-440.
    [12]B. B. Ren, P. P. San, S. Z. S. Ge, T. H. Lee. Adaptive dynamic surface control for a class of strict-feedback nonlinear systems with unknown backlash-like hysteresis[C]. Proceedings of the 2009 American Control Conference.2009,4482-4487.
    [13]Z. P. Jang, L. Praly. Design of robust adaptive controllers for nonlinear systems with dynamic uncertain-ties[J]. Automatica,1998,34(7):825-840.
    [14]B. Yao, M. Tomizukai. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form[J]. Automatica,1997,33(5):893-900.
    [15]B. Yao, M. Tomizukai. Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms[J]. Automatica,2001,37(9):1305-1321.
    [16]M. M. Polycarpou. Stable adaptive neural control scheme for nonlinear systems[J]. IEEE Transaetions on Automatic Control,1996,41(3):447-451.
    [17]M. M. Polycarpou, M. J. Mears. Stable adaptive tracking of uncertain systems using nonlincarly parame-terized on-line approximators[J]. International Journal of Control,1998,70(3):363-384.
    [18]T. Zhang, S. S. Ge, C. C. Hang. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design[J]. Automatica,2000,36(2):1835-1846.
    [19]J. P. Cai, C. Y. Wen, H. Y. Su, Z. T. Liu, X. B. Liu. Robust adaptive failure compensation of hysteretic ac-tuators for parametric strict feedback systems[C]. Proceedings of 2011 50th IEEE Conference on Decision and Control and European Control Conference,2011,7988-7993.
    [20]S. S. Ge, C. Wang. Adaptive NN control of uncertain nonlinear pure-feedback systems[J]. Automatica, 2002,38(4):671-682.
    [21]D. Wang, J. Huang. Adaptive neural network control lor a class of uncertain nonlinear systems in pure-feedback form[J]. Automatica,2002,38(8):1365-1372.
    [22]H. W. Yang, Z. P. Li. Adaptive backstepping control for a class of semistrict feedback nonlinear systems using neural networks[J]. J Control Theory Appl,2011,9(2):220-224.
    [23]R. J. Veillette, J. V. Medanic, W. R. Perkins. Design of reliable control systems[J]. IEEE Transactions on Automatic Control,1992,37(3):290-304.
    [24]Q. Zhao, J. Jiang. Reliable state feedback control system design against actuator failurcs[J]. Automatica, 1998,34(10):1267-1272.
    [25]F. Liao, J. L. Wang, G. H. Yang. Reliable robust flight tracking control:an LMI approach[J]. IEEE Transactions on Control Systems Technology,2002,10(1):76-89.
    [26]M. Benosman, K. Y. Lum. Application of passivity and cascade structure to robust control against loss of actuator effectiveness [J]. International Journal of Robust and Nonlinear Control,2010,20(6):673-693.
    [27]D. P. Looze, J. L. Weiss, F. S. Eterno, N. M. Barrett. An automatic redesign approach for restructurable control systems[J]. IEEE Control System Magazine,1985,5(2):16-22.
    [28]J. D. Boskovic, R. K. Mehra. Multiple-model adaptive flight control scheme for accommodation of actu-ator failures[J]. Journal of Guidance, Control, and Dynamics,2002,25(4):715-724.
    [29]J. D. Boskovic, J. A. Jackson, R. K. Mehra, N. T. Nguyen. Multiple-model adaptive fault-tolerant control of a planetary lander[J]. Journal of Guidance, Control, and Dynamics,2009,32(6):1812-1826.
    [30]M. Bodson, J. E.Groszkiewicz. Multivariable adaptive algorithms for reconfigurable flight control[J]. IEEE Transactions on Control Systems Technology,1997,5(2):217-229.
    [31]J. Jiang. Design of reconfigurable control systems using eigenstructure assignment[J]. International Jour-nal of Control,1994,59(2):395-410.
    [32]M. L. Corradini, G. Orlando. Actuator failure identification and compensation through sliding modes[J]. IEEE Transactions on Control Systems Technology,2007,15(1):184-190.
    [33]Y. Diao, K. M. Passino. Stable fault tolerant adaptive/fuzzy/neural control for a turbine engine[J]. IEEE Transactions on Control Systems Technology,2001,9(3):494-509.
    [34]M. M. Polycarpou. Fault accommodation of a class of multivariable nonlinear dynamical systems using a learning approach[J], IEEE Transactions on Automatic Control,2001,46(5):736-742.
    [35]X. D. Zhang, T. Parisini, M. M. Polycarpou. Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach[J]. IEEE Transactions on Automatic Control,2004,49(8): 1259-1274.
    [36]Y. Zhang, S. J. Qin. Adaptive actuator/component fault compensation for nonlinear systems[J]. AIChe Journal,2008,54(9):2404-2412.
    [37]J. D. Boskovic, S. H. Yu, R. K. Mehra. Stable adaptive fault-tolerant control of over actuated aircraft using multiple models, switching and tuning[C]. Proc.1998 AIAA Guidance, Navigation and Control Conference.1998,739-749.
    [38]J. D. Boskovic, R. K. Mehra. Stable multiple model adaptive flight control for accommodation of a large class of control effector failures[C]. Proc.1999 American Control Conference.1999,1920-1924.
    [39]M. Gopinathan, J. D. Boskovic, R. K. Mehra, etal. A multiple model predictive scheme for fault-tolerant flight control design[C]. Proc.37th IEEE Conference on Decision and Control.1998,1376-1381.
    [40]G. H. Yang. Reliable H∞ controller design for linear systems[J]. Automatica,2001,37(3):717-725.
    [41]S. W. Kim, C. J. Seo, B. K. Kim. Robust and reliable H infinity controllers for discrete-time systems with parameter uncertainty and actuator failure[J]. International Journal of System Science,1999,30(12): 1249-1258.
    [42]J. S. H. Tsai, Y. Y. Lee, P. Cofie, L. S. Shienh, X. M. Chen. Active fault tolerant control using state-space self-tuning control approach[J]. International Journal of Systems Science,2006,37(11):785-797.
    [43]F. Ahmed-Zaid, P. Ioannou, K. Gousman, etal. Accommodation of failures in the F-16 aircraft using adaptive control[J]. IEEE Control System Magzine,1991,11(1):73-78.
    [44]G. Tao, S. M. Joshi, X. L. Ma. Adaptive State Feedback and Tracking Control of Systems with Actuator Failures[J]. IEEE Transactions on Automatic Control,2001,46(1):78-95.
    [45]Y.W.Liang, S. D. Xu. Reliable Control of Nonlinear Systems via variable structure scheme[J]. IEEE Transactions on Automatic Control,2006,51(10):1721-1726.
    [46]X. D. Tang, G. Tao, S. M. Joshi. Adaptive actuator failure compensation for parametric strict feedback systems and an aircraft application[J]. Automatica,2003,39(11):1975-1982.
    [47]X. D. Tang, G. Tao, S. M. Joshi. Adaptive output feedback actuator failure compensation for a class of nonlinear systems[J]. International Journal of Adaptive Control and Signal Processing,2005,19(6): 419-444.
    [48]X. D. Tang, G. Tao, S. M. Joshi. Adaptive actuator failure compensation for nonlinear MEMO systems with an aircraft control application[J]. Automatica,2007,43(11):1869-1883.
    [49]P. Kabore, H. Wang. Design of fault diagnosis filters and fault tolerant control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control,2001,46(11):1805-1810.
    [50]W. Wang, C. Wen, G. H. Yang. Stability Analysis of Decentralized Adaptive Backstepping Control Sys-tems with Actuator Failures[C]. Proceedings of the 27th Chinese Control Conference.2008,497-501.
    [51]W. Wang, C. Wen. A New Approach to Adaptive Actuator Failure Compensation in Uncertain Systems[C]. Proceedings of 2009 IEEE International Conference on Control and Automation.2009,47-52.
    [52]W. Wang, C. Wen. Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance[J]. Automatica,2010,46(12):2082-2091.
    [53]W. Wang, C. Wen. Adaptive compensation for infinite number of actuator failures or faults[J]. Automatica, 2011,47(10):2197-2210.
    [54]张绍杰,刘春生,胡寿松.多输入多输出最小相位系统的执行器故障自适应容错控制[J].控制理论与应用,2010,27(9):1190-1194.
    [55]Y. Y. Guo, B. Jiang. Multiple model-based adaptive reconfiguration control for actuator fault[J]自动化学报,2009,35(11):1452-1458.
    [56]L. L. Fan, Y. D. Song. Fault-tolerant control of dynamic systems with actuator failures and external disturbances[J]自动化学报,2010,36(11):1620-1625.
    [57]霍星,胡庆雷,肖冰,等.带有饱和受限的挠性卫星变结构姿态容错控制[J].控制理论与应用,2011,28(9):1063-1068.
    [58]肖冰,胡庆雷,马广富.航天器执行机构部分失效故障的鲁棒容错控制[J].控制与决策,2011,26(1):802-805.
    [59]M. S. Hatwell, etal. The development of a model reference adaptive controller to control the knee joint of paralegics[J]. IEEE Transactions on Automatic Control,1991,36,683-691.
    [60]A. J. Kurdila, G. Webb. Compensation for distrubuted hysteresis operators in active structural systems[J]. Journal of Guidance Control and Dynamics,1997,20,1133-1140.
    [61]D. Recker, et al. Adaptive nonlinear control of systems containing a dead-zone[C]. Proseedings of the 30th IEEE Conference on Decision and Control,1991,2111-2115.
    [62]F. L. Lewis, et al. Dead-zone compensation in motion control systems using adaptive fuzzy logic con-trol[J]. IEEE Transactions on Control System Technology,1999,7,731-741.
    [63]M. Tian, G. Tao. Adaptive control of a class of nonlinear systems with unknown dead-zones[C]. Proceed-ings of the 13th World Congress of IFAC,1996,209-213.
    [64]H. Cho, E. W. Bai. Convergence results for an adaptive dead zone inverse[J]. International Journal of Adaptive Control and Signal Process,1998,12,451-66.
    [65]X. S. Wang, H. Hong, C. Y. Su. Model reference adaptive control of continuoustime systems with an unknown input dead-zone[C]. IEE Proceedings on Control Theory Applications,2003,261-266.
    [66]J. Zhou, C. Wen, Y. Zhang. Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity[J]. IEEE Transactions on Automatic Control,2006,51,504-511.
    [67]J. Zhou, C. Wen, Y. Zhang. Adaptive backstepping control of a class of uncertain nonlinear systems with unknown dead-zone[C]. Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, 2004,513-518.
    [68]S. Ibrir, W. F. Xie, C. Y. Su. Adaptive tracking of nonlinear systems with non-symmetric dead-zone input[J]. Automatica,2007,43,522-530.
    [69]H. J. Ma, G. H. Yang. Adaptive output control of uncertain nonlinear systems with non-symmetric dead-zone input[J]. Automatica,2010,46,413-420.
    [70]Y. J. Liu, N. Zhou. Observer-based adaptive fuzzy-neural control fora class of uncertain nonlinear systems with unknown dead-zone input[J]. ISA Transactions,2010,49,462-469.
    [71]P. Li, F. J. Jin. Adaptive fuzzy control for unknown nonlinear systems with perturbed dead-zone inputs[J]. ISA Transactions,2010,36(4):573-579.
    [72]S. H. Park, S. I. Han. Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller[J]. IET Control Theory and Applications,2011,12(5):1397-1417.
    [73]C. Y. Su, et al. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis [J]. IEEE Transactions on Automatic Control,2000,45(12):2427-2432.
    [74]N. J. Ahmad, F. Khorrami. Adaptive control of systems with backlash hysteresis at the inputfC]. Proceed-ings of the American Control Conference,1999,3018-3022.
    [75]X. Sun, W. Zhang, Y. Jin. Stable adaptive control of backlash nonlinear systems with bounded distur-bance[C]. Proceedings of the IEEE Conference on Decision and Control,1992,274-275.
    [76]J. Zhou, C. J. Zhang, C. Wen. Robust adaptive output control of uncertain nonlinear plants with unknown backlash nonlinearity[J]. IEEE Transactions on Automatic Control,2007,52,503-509.
    [77]J. Zhou, C. Wen, C. J. Zhang. Robust output control of nonlinear systems with unknown backlashfC]. Proceedings of American Control Conference,2007,498-503.
    [78]J. Guo, B. Yao, Q. W. Chen, X. B. Wu. High performance adaptive robust control for nonlinear system with unknown input backlash[C]. Proceedings of 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference,2009,7675-7679.
    [79]J. Guo, B. Yao, J. Jiang, Q. W. Chen. Adaptive robust control for a class of nonlinear uncertain system with unknown input backlash[C]. Proceedings of the ASME 2009 Dynamic Systems and Control Conference, 2009,1-6.
    [80]V. Agrawal, W. J. Peine, B. Yao, S. W. Choi. Control of Cable Actuated Devices using Smooth Backlash Inverse[C]. Proceedings of 2010 IEEE International Conference on Robotics and Automation Anchorage Convention District,2010,1074-1079.
    [81]T. E. Pare, J. P. How. Robust stability and performance analysis of systems with hysteresis nonlineari-ties[C]. Proceedings of the American Control Conference,1998,1904-1908.
    [82]G. Tao, F. L. Lewis. Adaptive Control of Nonsmooth Dynamic Systems[M]. Springer, London,2001.
    [83]G. Tao, P. V. Kokotovic. Adaptive control of plants with unknown hysteresis[J]. IEEE Transactions on Automatic Control,1995,40,200-212.
    [84]J. Zhou, C. Wen. Robust adaptive control of uncertain nonlinear systems in the presence of input satura-tion[C]. Proceedings of 14th 1FAC Symposium on System Identification,2006,498-503.
    [85]J. Zhou, C. Wen, W. Cai, Adaptive control of a base isolated system for protection of building structuresfJ]. Journal of Vibration and Acoustics-Transactions of the ASME,2006,128,261-268.
    [86]J. Y. Favez, P. Mullhaupt, D. Bonvin. Enhancing tokamak control given power supply voltage satura-tion[C]. Proceedings of ICALEPCS,2003,40-42.
    [87]M. Pachter, R. B. Miller. Manual flight control with saturating actuators[J]. IEEE Control Systems Magazine,1998,18,10-20.
    [88]J. Zhou, M. J. Era, J. M. Zurada. Adaptive neural network control of uncertain nonlinear systems with nonsmooth actuator nonlinearities[J]. Neurocomputing,2007,70,1062-1070.
    [89]R. R. Selmis, F. L. Lewis. Dead-zone compensation in motion control systems using neural networks[J]. IEEE Transactions on Automatic Control,2000,45,602-613.
    [90]R. R. Selmis, F. L. Lewis. Deadzone compensation in nonlinear systems using neural networks[C]. Pro-ceeding of IEEE Conference on Decision and Control,1998,513-519.
    [91]R. R. Selmis, F. L. Lewis. Backlash compensation in nonlinear systems using dynamic inversion by neural networks[C]. Proceeding of International Conference on Control Applications,1999,1163-1168.
    [92]D. Seidl, et al. Neural network compensation of gear backlash hysteresis in position-controlled mecha-nisms[J]. IEEE Transactions on Industrial Application,1995,31,1475-1483.
    [93]M. Polycarpou, J. Farrell, M. Sharma. On-line approximation control of uncertain nonliner systems:Issues with control input saturation[C]. Proceedings of the American Control Conference,2003,543-548.
    [94]Y. H. Kim, F. L. Lewis. Reinforcement adaptive control of a class of neural-netbased friction compensation control for high speed and precision[J]. IEEE Transactions on Control System Technology,2000,8,118-126.
    [95]J. Kim, et al. A two layered fuzzy logic controller for systems with deadzones[J]. IEEE Control Systems, 1994,41,155-162.
    [96]F. Lewis, et al. Adaptive fuzzy logic compensation of actuator deadzones[J]. Journal of Robotic Systems, 1997,14,501-511.
    [97]K. Woo, et al. A fuzzy system compensator forbacklash[C]. Proceedings of IEEE International Confer-ence on Robotics Automation,1998,181-186.
    [98]M. L. Corradini, G. Orlando. Robust stabilization of nonlinear uncertain plants with backlash or dead zone in the actuator[J]. IEEE Transactions on Control Systems Technology,2002,10,158-166.
    [99]X. S. Wang, C. Y. Su. Robust adaptive control of a class of nonlinear system with unknown dead zone[C]. Proceedings of the 40th IEEE Conference on Decision and Control,2001,1627-1632.
    [100]A. Azenha, J. Machado. Variable structure control of robots with nonlinear friction and backlash at the joints[C]. Proceedings of IEEE International Conference on Robotics Automation,1996,366-371.
    [101]M. L. Corradini, G. Orlando. Robust practical stabilization of nonlinear uncertain plants with input and output nonsmooth nonlinearities[J]. IEEE Transactions on Control System Technology,2003,11,196-203.
    [102]G. Tao, P. Kokotovic. Continuous-time adaptive control of systems with unknown backlash[J]. IEEE Transaction on Automatic Control,2003,40(6):1083-1087.
    [103]袁惠群,孙华刚.超磁致伸缩材料磁滞回非线性特性分析[J].兵工学报,2009,30(2):180-184.
    [104]陈铁艳,范树迁,杜平安.精密行星伺服减速器滞回曲线测试系统[J].仪表技术与传感器,2010,第一期,106-110.
    [105]李宝山,朱志刚,李国荣,等.铌锰锆钛酸铅铁电陶瓷电滞回线的温度和频率响应[J].物理学报,2005,54(2):939-943.
    [106]阎石,李小林,张雨烨.形状记忆合金超弹性的Preisach滞回模型[J].华中科技大学学报,2008,25(4):43-46.
    [107]J. Zhou, C. Wen. Adaptive Backstepping Control of Uncertain Systems[M]. Verlag Berlin Heidelberg, Springer,2007.
    [108]S. H. Kim, Y. S. Kim, C. A. Song. Robust adaptive nonlinear control approach to missile autopilot design[J]. Control Engineering Practice,2004,12(2):149-154.
    [109]L. Xu, B. Yao. Adaptive robust control of mechanical systems with non-linear dynamic friction compen-sation[J]. International Journal of Control,2007,81(2):167-176.
    [110]S. H. Kim, Y. S. Kim, C. A. Song. Robust adaptive nonlinear control approach to missile autopilot design[J]. Control Engineering Practice,2004,12(2):149-154.
    [111]L. Xu, B. Yao. Output feedback adaptive robust precision motion control of linear motors[J]. Automatica, 2001,37,1029-1039.
    [112]K.M. Zang, X.J. Ma and C.B. Li. Modern Tank Gun Control System[M]. Beijing, National Defence Industry Press,2007. (in Chinese).
    [113]C. Y. Wen, Y. Zhang, Y. C. Soh. Robustness of an adaptive backstepping controller without modication[J]. Systems & Control Letters,1999,36,87-100.
    [114]C. Y. Wen, J. Zhou, W. Wang. Decentralized adaptive backstepping stabilization of interconnected systems with dynamic input and output interactions [J]. Automatica,2009,45,55-67.
    [115]M. A. Rahman, R. F. Qin. A permanent magnet hysteresis hybrid synchronous motor for electric vehi-cles[J]. IEEE Transations on Industrial Electronics,1997,44,46-53.
    [116]D. C. Meeker, A. V. Filatov, E. H. Maslen. Effect of magnetic hysteresis on rotational losses in heteropolar magnetic bearings[J]. IEEE Transations on Magnetics,2004,40,3302-3307.
    [117]G. Tao. Adaptive control design and analysis[M]. Wiley & Sons, Hoboken, NJ,2003.
    [118]J. P. Cai, C. Y. Wen, H. Y. Su, X. D. Li, Z. T. Liu. Adaptive failure compensation of hysteretic actuators in controlling uncertain nonlinear systems[C]. Proceedings of the 2011 American Control Conference, 2011,2320-2325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700