新型带肋预应力管桩沉降影响的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在21世纪的今天,桩基的施工技术不断地更新和改进,正朝着低公害工法桩方向、扩孔桩方向、异型桩方向、埋入式桩方向、组合式工艺桩方向、高强度桩方向以及多种桩身材料等方向发展。在这种发展趋势下,浙江天海管桩有限公司提出了一种新型的桩基础——新型带肋预应力管桩,基于桩-土接触面积来提高单桩承载力,可以通过静压置入土体,接桩头时采用机械快速接技术取消了焊接接桩,有着施工方便、成桩质量稳定、噪音低等优点。
     作为一种相对较新的桩型,目前新型带肋预应力管桩这项新技术尽管工程实践效果明显,但整体上仍处于技术开发和推广应用阶段,理论上缺乏系统地研究。与传统预应力管桩相比,桩体外侧加设了环状凸肋和纵状凸肋。因此,研究肋部构造尺寸变化对沉降的影响规律,可以为今后工程施工、设计提供合理的依据。本文基于现场静载荷试验,结合日本的竹节桩的研究,对新型带肋预应力管桩的单桩沉降进行探讨。本文主要作了以下研究:
     1、在总结单桩沉降计算方法的基础上,结合《建筑桩基技术规范》(JGJ94-2008),考虑桩径影响的Mindlin解计算地基土附加应力,基于弹性理论法,推导出竖向荷载作用下新型带肋预应力管桩的沉降计算公式。结合浙江杭州的两个工程实例,采用15m和24m两种不同桩长的新型带肋预应力管桩的竖向抗压静载试验结果进一步验证了推荐计算方法的适用性。并且改变环状凸肋下部宽度时,在两组对比中均发现,桩顶沉降随着环状凸肋下部宽度的增大而增大,但变化幅度越来越小。每级荷载作用下的相差趋势基本不变,相对比较稳定。最后建议在实际工程应用中环状凸肋下部宽度应小于160mm。
     2、以现场静载试验的地质条件为参考,运用MIDAS/GTS软件进行数值分析,改变新型带肋预应力管桩的一些参数,并对这些参数的影响作出分析。
     (i)环状凸肋直径的影响
     荷载水平较小时,环状凸肋直径对桩顶沉降的影响不太明显;荷载水平较大时,环状凸肋直径较大的新型带肋预应力管桩沉降相对较小。相同荷载水平作用下,桩顶沉降随着环状凸肋直径的增大而减小,减小的幅度也越来越大。
     (ii)环状凸肋间距的影响
     荷载水平较小时,环状凸肋间距对桩顶沉降的影响不太明显;荷载水平较大时,桩顶沉降随着环状凸肋间距的增大而增大,环状凸肋间距小于1.5m时,增大的幅度较大。环状凸肋间距大于1.5m时,桩顶沉降随着环状凸肋间距的增大仍在增大,但增大的幅度明显变小。
     (iii)环状凸肋下部宽度的影响
     当环状凸肋下部宽度超过160mm后改变环状凸肋下部宽度已经对新型带肋预应力管桩没有意义,建议工程实际应用中环状凸肋下部宽度小于160mm。荷载水平较小时,环状凸肋下部宽度对桩顶沉降的影响不太明显;荷载水平较大时,环状凸肋下部宽度的影响越来越明显,相同荷载水平作用下,桩顶沉降随着环状凸肋下部宽度的增大而增大,增大的幅度也越来越大。该结论与本文第三章中计算公式与工程实例对比分析结果基本吻合,进一步证实了计算公式的适用性。
In the 21st century, the construction technology of pile foundation continues to be updated and improved in the direction of low-pollution, pile with reaming, special-shaped pile, submerged pile, portfolio constraction process pile, high-strength pile and a variety of pile body materials. In this development tendency, Zhejiang Tianhai Pipe Corporation put forward to a new type pile foundation—a new type ribbed prestress pipe, to improve the bearing capacity of single pile based on expland the pile-soil contact area. Dependent on static pressure, this pile push into soil then use mechanical trailer coupling pile extention instead of welding pile extention. Therefore it has those advantages: convenient construction, stability quality, low noise and so on.
     As a relatively new type pile, this prestressed ribbed pipe even though the new technology works in practice effect, but are still in the stage of technology development and application, lack of a systematic study in theory. Compared with the traditional pre-stressed pipe, pipe lateral side is added to ring-shaped convex rib and longitudinal convex rib. Therefore, researching the influence law to settlement under the change of structure dimensions can provide the reasonable basis for design and construction of future engineering. Based on the static load test,combined with the study of Japanese nodular piles, settlement of new type ribbed pretressed pipe pile is discussed in this paper. The research in this paper mainly including:
     1、Based on the summary of pile settlement calculation method, combining with《Technical Code for Building Pile Foundations》(JGJ94-2008) and calculating additional stress of foundation soil Mindlin stress factor considering piles diameter impact, using elastic theory method, the settlement of new type ribbed prestress pipe under vertical load were deduced. Using the two engineering examples from Hangzhou, Zhejiang, the vertical compression static load test results for new type ribbed prestress pipe with different lengths verified recommended calculation method of application any further. To change the under part length of annular flange rib of new type ribbed concrete pipe with calculation method, comparison in both groups,it is found that, the settlement is increase with the increase of the under part length of annular flange rib, but the increasing amplitude decreases. When the load is a certain level, the settlement is basically unchanged, the trend is relatively stable. Finally the paper puts forward the suggestion that practical engineering application of the under part length of annular flange rib is less than 160mm.
     2、Referring to geological conditions of static load test and using MIDAS/ GTS software for the numerical analysis, to change some parameters of new type ribbed concrete pipe, and to make an analysis of the influence of these parameters.
     (i)the effect of diameters of annular flange rib
     When the load level is smaller, the effect to settlement is not obvious; When the load level is higher, the settlement is relatively small if the diameter of annular flange rib is larger. Under the same load level, the deformation decreases with the increse of diameter of annular flange rib, decreasing amplitude increases.
     (ii)the effect of annular flange rib pitch
     When the load level is smaller, the effect to settlement is not obvious; When the load level is higher, the deformation increases with the increse of annular flange rib pitch,When annular flange rib pitch is less than 1.5 m, decreasing amplitude is larger. When annular flange rib pitch is larger than 1.5 m, the deformation still increases, but the decreasing amplitude is smaller.
     (iii)the effect of the under part length of annular flange rib
     It is explained that the change of the under part length of annular flange rib of new type ribbed pretressed pipe is no meaning to settlement when it is larger than 160mm. It is suggest the under part length of annular flange rib is less than 160mm in the furture engineering application. When the load level is smaller, the effect to settlement is not obvious with the increase of the under part length of annular flange rib; When the load level is higher, the effect of deformation is more and more obvious with the increase of the under part length of annular flange rib, under the same load level, the deformation decreases with the under part length of annular flange rib, increasing amplitude increases.The conclusion agrees well with the third chapter about calculation formula with the engineering example analysis, further confirms the applicability of the calculation formula.
引文
[1]邓友生,孙宝俊,邬忠强.预应力混凝土管桩的应用研究及发展前景[J].建筑技术,2003,34(4):263-266.
    [2]阮起楠.预应力混凝土管桩[M].北京:中国建筑工业出版社,2000.
    [3]Xu You-zai, S.Yabuuchi.Bearing capacity of precast nodular piles in Tianjin soft clayey soil.Fourth International Conference Piling and Deep Foundations,1991,04.
    [4]史玉良.预制节桩的荷载试验及荷载传递性能分析[J].工业建筑,1993,7:3-20.
    [5]S.Yabuuchi, Geotop Corporation.Bearing mechanisms of muti-node piles.The Proceedings of the International Offshore and Polar Engineering Conference,1994, vol 1:504-507.
    [6]Madan B.Karkee& T.Horiguchi, H.Kishida.Limit state formulation for the vertical resistance of bored PHC nodular piles based on field load test results.Eleventh Asian Regional Conference onSoil Mechanics and Geotechnical Engineering,1999:237-240.
    [7]冯忠居.大直径钻埋预应力混凝土空心桩承载性能的研究[D].西安:长安大学,2002.
    [8]黄敏.建筑基础带桩大头预应力管桩[P].中国专利:02265809,2003-08-20.
    [9]黄敏.带翼板预应力管桩承载性能的研究[D].杭州:浙江大学,2005.
    [10]Daisuke Shoda.Analysis of Ultimate Bearing Capacity for Nodal Base of Pile with Multi-Stepped Two Diameters.Proceedings of the Sixteenth International Offshore and Polar Engineering Conference,2007,6:1433-1439.
    [11]周兆弟.环筋管桩模[P].中国专利:200620107747.8,2007-11-14.
    [12]熊厚仁.竖向荷载作用下新型带肋管桩荷载传递规律的研究[D].赣州:江西理工大学,2008.
    [13]熊厚仁,牛志荣,蒋元海等.新型带肋预应力管桩承载特性试验研究[J].混凝土与水泥制品,2009年4月,(2):29-32.
    [14]史佩栋.桩基工程手册[M].北京:人民交通出版社,2008年7月.
    [15]Mindlin R D.Force at Point in the interior of a semiinfinite solid.APPIPhys,1936,Vol.7,No.5:195-202.
    [16]D’APPolonia,E.&J.P.Romualdi.Load Transfer in End-bearing Steel H-Pile[sJ].SoilMech.Foundation.Div.ASCE.1963,vol.89,No.SM2,pp:1-25.
    [17]Poulos,H.G&E.H.Davis.The Settlement Behavior of Axially-Loaded Incompressible Piles and Piers.Gotethnique.1968,vol.18,pp:351-371.
    [18]Poulos H Gand Davis,E.H.Pile foundation analysis and design,Wily,New York.1980.
    [19]Geddes J D.Stresses in foundation soils due to vertical subsurface loading.Geotechnique.1966,Vol.16:231-255.
    [20]黄绍铭等.软土中桩基沉降估算[C].第四届全国土力学及基础工程学术会议论文选集.北京:中国建筑工业出版社,1986:237-243.
    [21]Lee,K.M.&Z.R.Xiao.A New Analytical Model for Settlement Analysis of a Single Pile in Multi-Layered Soil.Soil and Foundation. 1999,vol.39,No.5,pp:131-143.
    [22]Lee,K.M.&Z.R.Xiao.A Simplified Nonlinear Approach for Pile Group Settlement Analysis in Multilayered Soils. Can,Geotech[J] . 2001,vol.38,pp:1063-1080.
    [23]杨敏,赵锡宏.分层土中的单桩分析方法[J].同济大学学报,1992,21(4): 525-532.
    [24]杨敏,Tham,L.G,cheung,Y. K.分层土中的群桩分析方法[J].同济大学学报,1993,22(2):318-325.
    [25]杨敏,王树娟,王伯钧等.使用Geddes应力系数公式求解单桩沉降[J].同济大学学报,1997,25(4):379-385.
    [26]舒翔,袁立民.基于Geddes公式计算单桩沉降的统一方法[J].工业建筑,1998,28(10):33-36.
    [27]艾智勇,杨敏.广义Mindlin解在多层地基单桩分析中的应用[J].土木工程学报,2001,34(2):89-95.
    [28]丁继辉,麻玉鹏,宇云飞.基于Mindlin应力公式的地基沉降数值计算与分析[J].水利水电技术,2002,33(5):8-11.
    [29]吕凡任,陈云敏,梅英宝.一种基于Mindlin解的直桩沉降弹塑性分析方法[J].岩石力学与工程学报,2004年9月,23(17):2988-2991.
    [30]王涛.基于Mindlin公式考虑桩径影响的应力计算方法[J].建筑结构,2006年5月,36(10):46-49.
    [31]刘金砺,邱明兵.单桩、单排桩、疏桩基础及其复合桩基的沉降计算[J].土木工程学报,2007,(40):152-158.
    [32]陈福全,黄伟达.基于Poulos弹性理论的被动桩改进算法[J].岩土力学,2008,29(4):905-910.
    [33]RandolPh , M.F.&C.P.Wroth.Analysis of Deformation of Vertically Loaded Piles.Journal of Geotechnical Enigeering Divison ASCE , vol.104 , No.GT12 ,P1465-1488,1978.12.
    [34]Cooke,R.W,GPriee&K.Tarr.Jacked Piles in London Clay: A Study of Load Transfer and Settlement under Working Conditions.Geotechnique,vol.29,No.2,Pll3-147,1979.
    [35]赵锡宏,曹名葆.考虑桩周土软化或强化对筏桩共同作用的影响的方法[C],全国岩土力学解析与数值分析方层会议论文集. 1985:l34-142.
    [36]王启铜.柔性桩的沉降(位移)特性及荷载传递规律[D].浙江:浙江大学,1991.
    [37]Mylonakis,G.&G.Gazetas.Settlement and Additional Forces of Grouped Piles in Layered.Geotechnique,vol.48,No.l,P55-72,1998.
    [38]Rehwien,W.&Z.Wang. Displacement of A Pile under Axial Load.Geotechnique,vol.49,No.4,P537-541,1999.
    [39]Seed,H.B&L.C.Reese.The Action of Soft Clay along Frietion Piles.Transaction,ASCE,P731-764.
    [40]佐藤悟.基础桩の支持の力学机构(日),土工技术,vol.20,No.l,pl-5,1965.
    [41]Kraft,L.M,Ray,R.R&T.Kagawa.Theoreticalτ?z Curve.Joural of Geotechnical Engineering Division, ASCE,vol.107,No.GT11,P1543-1561,1981.11.
    [42]曹汉志.桩的轴向荷载传递及荷载一沉降曲线的数值计算方法[J].岩土工程学报,1986年11月,8(6):37-49.
    [43]罗惟德.单桩承载机理分析与载荷-沉降曲线的理论推导[J].岩土工程学报,1990年1月,12(1):35-44.
    [44]潘时声.桩基础分层位移迭代法计算理论及应用[D].上海:同济大学,1993.
    [45]Ernesto Matta.Approximation Elastic-plastie Solution for Axially Loaded Piles.Journal of Geotechnical Engineering,ACSE,vol.120,No.9,P1616-1624,1994.09.
    [46]徐松林,吴玉山.桩土荷载传递的测试分析和模型研究[J].岩土力学,1996, 17(2):121-125.
    [47]阳吉宝.单桩沉降计算的荷载传递法讨论[J].岩土工程技术,1998,(4):31-33.
    [48]陈明中,龚晓南,严平.单桩沉降的一种解析解法[J].水利学报,2000年8月,(8):70-74.
    [49]刘杰,张可能.层状地基中单桩沉降传递规律[J].中南工业大学学报,2003年10月,34(5):571-575.
    [50]罗斌,凌辉,李熹.单桩荷载传递双曲线模型的研究[J].建筑技术开发,2004,(1).
    [51]赵明华,何俊翘,曹文贵等.基桩竖向荷载传递模型及承载力研究[J].湖南大学学报,2005年2月,32(1):37-42.
    [52]JGJ94-2008,建筑桩基技术规范[S].北京:中国标准出版社,2008.
    [53]陈雨孙,周红.纯摩擦桩荷载-沉降曲线的拟合方法及其工作机理[J].岩土工程学报,1987年3月,9(2):49-61.
    [54]沈伟跃,赵饧宏.有限元-无限元耦合单桩弹性分析法[J].工程力学,1990年8月,7(3):52-64.
    [55]安关峰,徐斌.桩(土)与承台组合结构罚有限元分析[J].工程力学,2000年11月,22(6):686-690.
    [56]吴鸣,赵明华.大变形条件下桩土共同工作及试验研究[J].岩土工程学报,2001年7月,23(4):436-440.
    [57]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700