基于靶标反馈的自准直光束漂移抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超精密加工、精密和超精密装备制造和光学制造等技术的迅速发展,对光电自准直仪的测量稳定性提出了更高的要求。在实际应用中,尤其对用于实验室环境下的高精度的激光CCD自准直仪,激光光束角漂移对激光CCD自准直系统测量稳定性的影响更是致命的。
     课题“基于靶标反馈的自准直光束漂移抑制技术研究”的目的就是针对目前由于激光光束角漂移量引起的激光CCD自准直系统测量稳定性差的问题,探讨研究一种高稳定性的激光CCD自准直光束漂移抑制技术。本课题的技术难点在于激光光束角漂移量产生的实质是激光器自身产生的热漂移、空气折射率变化引起的漂移以及大气随机扰动引起的漂移这三种漂移量的综合作用结果,其随机性和不确定性使其无法用简单的数学模型进行描述,这也是当前激光CCD自准直研究领域中一直未能很好解决的重要原因之一。
     本文提出一种基于靶标反馈的自准直光束漂移抑制技术,设计并研制了基于靶标反馈的激光CCD自准直测量系统,提出并研制了一种分光式靶标探测器,采用分光式靶标探测器可在获取小角度变化量的同时分离并反馈回与测量光束特性完全相同的角漂移量反馈光束,进而结合闭环反馈控制技术抑制耦合在测量信号中的测量光束角漂移量,可实现高稳定性的激光CCD自准直测量。
     提出并建立采用透视投影变换技术的基于靶标反馈的激光CCD自准直系统数学模型,确定了系统各组成单元之间的坐标对应关系,并且分别针对理想无漂移、有漂移无反馈和有漂移有反馈控制三种情况,分析和推导了CCD图像传感器和四象限探测器接收的光斑位置、分光式靶标探测器旋转角度和激光光束角漂移量之间的对应关系,为基于靶标反馈的激光CCD自准直测量系统的参数调节及性能分析提供理论依据。
     为了提高激光CCD自准直系统的图像边缘定位精度,进而得到更高的激光光斑中心定位精度,本文提出一种基于正交傅立叶-梅林矩(OFMM’s)及其偏差补偿的亚像素边缘定位方法,通过将OFMM’s的幅值旋转不变性和更低的径向矩阶数应用于边缘检测,并根据不同阶次的OFMM’s之间的关系得出边缘亚像素位置,并对不同模板大小和实际边缘模型引入的偏差进行分析和补偿,从而达到更高的边缘定位精度,实验结果表明,相对于传统的Zernike矩亚像素边缘定位方法,光斑中心重复定位结果的峰峰值由0.29像素提高至0.13像素,而相对于灰度重心法,光斑中心重复定位结果的峰峰值由0.21像素提高至0.13像素,且光斑中心定位偏差的峰峰值由0.23像素提高到0.19像素。
     最后,本文对基于靶标反馈的激光CCD自准直测量系统进行性能测试和实验研究,测试和分析了激光光束角漂移的特性,柔性铰链的特性以及控制系统的控制特性;对基于靶标反馈的激光CCD自准直测量系统的稳定性进行了测试,实验结果表明,采用该技术后激光CCD自准直光束稳定性测量结果的峰峰值由0.46″减小到0.15″,最后,对自准直测量系统角漂移量产生的主要因素:激光器自身的热漂移、空气折射率变化以及大气的随机扰动引起的漂移进行了相关的分析。
With the development of the manufacturing technology in ultra-precision and micro-mechanical, higher requirements on the measurement stability of opto-electronic autocollimator become more and more stringent. In actual applications, the influences of laser beam shift on the measurement stability of the laser CCD autocollimator with higher accuracy are always fatal especially for the experimental conditions.
     The subject“study of the key technology for autocollimating beam shift restraining based on target feedback”aims at the measurement stability of laser CCD autocollimating system caused by the laser beam shift. The laser CCD autocollimating beam shift restraining technology to realize high measurement stability is discussed. The technical difficulty of the subject result from the laser beam shift virtually composed by three beam shifts, which are the thermal shift of the laser, the shift caused by the change of air refractive index, and the random shift caused by atmospheric disturbance. The characteristics of randomness and uncertainty of the laser beam shift synthetically composed by the three factors can not be simply mathematical modeled. That is also an important problem which still could not be well resolved in laser CCD autocollimation research.
     This paper presents a technology for autocollimating beam shift restraining based on target feedback. A laser CCD autocollimating measurement system based on target feedback is proposed, in which a beam-splitting target detector to separate and feedback the laser beam shift with the same characteristics as the measurement beam is developed. The beam shift coupled in the measurement beam could be restrained by real-time closed-loop feedback control, and then the higher stability for laser CCD autocollimating measurement is achieved.
     A mathematical model of the laser CCD autocollimating measurement system based on target feedback is researched using perspective projection transformation techniques. The relationships among every elements of the system are researched, the relationships among the beam spot location received by CCD and QPD, the rotating angle of the beam-splitting target detector, and the laser beam shift are analyzed. The establishment of the mathematical measuring system model could be used for the parameters adjusting and performance analysis of the laser CCD autocollimating measurement system based on target feedback.
     In order to improve the edge location accuracy, and then higher center location accuracy of beam spot in laser CCD autocollimating measurement system could be obtained, a new subpixel edge location method based on orthogonal Fourier-Meilin moments (OFMM's) and error compensation is proposed. The detailed information of the edge is fully extracted based on the rotation invariance and the lower radial orders of OFMM's in edge detection. Subpixel location of the edge is obtained according to the relationships among different orders of the OFMM's in vertical directions. Compensation of errors caused by templates with different sizes and the actual edge model are also provided to achieve higher edge location accuracies. Experimental results show that the peak-peak value of the repeated locations of the edge location method proposed in the paper is improved from 0.29 to 0.13 pixels compared to the traditional Zernike moments edge location method, the peak-peak value of the repeated locations is improved from 0.21 to 0.13 pixels and the peak-peak value of the edge location results is improved from 0.23 to 0.19 pixels compared to the gray-level weight center method.
     Finally, the experiment for the performance of the laser CCD autocollimating measurement system based on target feedback is performed. The performance of the laser beam shift, the flexible hinge, and the characteristics of the control system are tested. The measurement stability of the measuring system is also tested. The experimental results show that the peak-peak value of the stability of the laser CCD autocollimating measurement system is decreased from 0.46" to 0.15". At last, the main factors result in the laser beam shift is analyzed.
引文
1 T. Yandayan, S.A. Akg?z, H. Haitjema. A Novel Technique for Calibration of Polygon Angles with Non-integer Subdivision of Indexing Table. Precision Engineering. 2002, 26(4):412~424
    2 Wei Gao, Satoshi Kiyono, Tadatoshi Nomura. A New Multiprobe Method of Roundness Measurements. Precision Engineering. 1996, 19:37~45
    3 Ralf D.Geckeler, Ingolf Weingartner. Sub-nm Topography Measurment by Deflectometry: Flatness Standard and Wafer Nanotopography. Advanced Characterization Techniques for Optical, Semiconductor and Data Storage Components, Proc. of SPIE. 2002, 4779:1~12
    4 Yin Zi-Qiang, Li Sheng-Yi. High Accuracy Error Separation Technique for On-Machine Measuring Straightness. Precision Engineering. 2006, 30:192~200
    5魏仲慧.数字光电自准直仪的研究与设计.光学精密工程. 1996, 4(3):116~120.
    6 Wei Gao, Makoto Tano, Takeshi Araki, et al. Measurement and Compensation of Error Motions of a Diamond Turning Machine. Precision Engineering. 2007, 31:310~316
    7 Wei Gao, Peisen S.Huang, Tomohiko Yamada, et al. A Compact and Sensitive Two-Dimensional Angle Probe for Flatness Measurement of Large Silicon Wafers. Precision Engineering. 2002, 26:396~404
    8 Matthias Wurm, Ralf D.Geckeler. A New Method and Novel Facility for Ultra-precise 2D Topography Measurement of Large Optical Surfaces. Optical Metrology in Production Engineering, Proc. of SPIE. 2004, 5457:401~410
    9马冬梅,孙军月,张波等.高精度大口径平面镜面形角差法测试探究.光学精密工程. 2005, 13:121~126
    10 Dongmin Kim, Dongwoo Kang, Jongyeop Shim, et al. Optimal Design of a Flexure Hinge-Based XYZ Atomic Force Microscopy Scanner for Minimizing Abbe Errors. Review of Scientific Instruments. 2005, 76(073706):1~7
    11 J.Illemann, A.Just. Absolute Deflectometric Measurement of Topography– Influence of Systematic Deviations. Optical Metrology in Production Engineering, Proc. of SPIE. 2004, 5457:689~700
    12李国,董申,张景和等.大型非球曲面超精密复合加工机床.纳米技术与精密工程. 2006, 4(1):75~78
    13 Jack A Stone, Mohamed Amer, Bryon Faust, et al. Angle Metrology Using Aamacs and Two Small-Angle Measurement Systems. Recent Developments in Traceable Dimensional Measurements II, Proc. of SPIE. 2003, 5190:146~155
    14 Mark L. Schattenburg and Henry I. Smith. The Critical Role of Metrology in Nanotechnology. Workshop on Nanostructure Science, Metrology and Technology, Proc. of SPIE. 2001, 4608:5~7
    15 M.Drzik, H.Loschner, E.Haugeneder, et al. Mechanical Characterization of Membrane like Microelectronic Components. Microelectronic Engineering. 2006, 83:1036~1042
    16 Ralf K Heilmann, Carl G Chen, Paul T Konkola, et al. Dimensional Metrology for Nanometre-scale Science and Engineering: Towards Sub-nanometre Accurate Encoders. Nanotechnology. 2004, 15:504~511.
    17 N. Ikawa, R.R.Donaldson, R.Komanduri, et al. Ultraprecision Metal Cuting-the Past, the Present, and the Future. Annal of the Cirp. 1991, 40(2):587~594
    18钟志.快速超精密激光外差干涉监测系统若干关键技术.哈尔滨工业大学博士论文. 2005:1~50
    19 N. Ikawa, S.Shimada, H.Tanaka, et al. An Atomic Analysis of Tool- Work Interaction in Diamond Turing. Annals of the Cirp. 1991, 40(1):551~554
    20 Baird, E.D., Patterson, S.R, Donaldson, et al.“The Laser Interferometer System for the Large Optics Diamond Turning Machine,”Ucrl-Id-134693, Lawrence Livermore National Laboratory, 1999
    21 Hamilton, Jim.,“Large Optics Diamond Turning Machine,”Ucrl-Tb-147593, Lawrence Livermore National Laboratory, 2002
    22 Koniakhine Ia, Timofeev An, Musyakov Vl. the Optic-Electronic Systems for Control Position of the Elements Unblocked Aperture Radio Telescope. Proceedings of the 3rd International Symposium on Instrumentation Scienceand Technology. 2004, 3:1~5
    23 Jie Yuan, Long, X. CCD-Area-Based Autocollimator for Precision Small-Angle Measurement. Review of Scientific Instruments. 2003, 74(3):1362~1365
    24 B. Rose, H. Imam, S. G. Hanson, et al. A Laser Speckle Sensor to Measure the Distribution of Static Torsion Angles of Twisted Targets. Measurement Science and Technology. 1998, 9:42~49
    25 Douglas B.Leviton. Ultra-High Resolution, Absolute, Cartesian Electronic Autocollimator. Proceedings of SPIE– Recent Developments in Traceable Dimensional Measurements II. 2003, 5190:468~475
    26 Douglas B.Leviton, Bradley J.Frey. Design of a Cryogenic, High Accuracy, Absolute Prism Refractometer for Infrared through Far Ultraviolet Optical Materials. Specialized Optical Developments in Astronomy, Proc. of SPIE. 2003, 4842:259~269
    27 Douglas B.Leviton. Image Processing for New Optical Pattern Recognition Encoders. Algorithms and System for Optical Information Processing IV, Proc. of SPIE. 2000, 4113:32~40
    28 Douglas B.Leviton, Bradley J.Frey, Larry E.Madison, et al. Sub-arcsecond, Differential, Deflectometry to Measure Thermally-induced Distortions of the Swift Optical Bench. X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy, Proc. of SPIE. 2003, 4851:587~598
    29 E.D.Pankov, A.V.Prokofjev, A.N.Tymofeev. Autocollimational Optoelectronic System for Monitoring of the Position of Elements of Turbine’S Aggregates. The International Society for Optical Engineering, Proc. of SPIE. 2002, 4680:150~156
    30 Kengo Fujimaki, Kimiyuki Mitsui. Radial Error Measuring Device Based on Auto-Collimation for Miniature Ultra-High-Speed Spindles. International Journal of Machine Tools & Manufacture. 2007, 47:1677~1685
    31 Yusuke Saito, Wei Gao, Satoshi Kiyono. A Micro-Angle Sensor Based on Laser Autocollimation. Proc. of SPIE. 2005, 6052:1~9
    32 Products Manuals of Autocollimators in Moller-Wedel, German. 2002:1~16
    33 J.Illimann. Absolute High-Accuracy Deflectometric Measurement of Topography. Proc. of SPIE. 2003, 5188:308~319
    34曹向群.精密导轨的光电测试.激光与光电子学进展(增刊). 1999, 9:111~113
    35刘昱,韩德一.惯性平台水平角误差测量方法的研究.航空精密制造技术. 2003, 39(3):40~42
    36 S. J. Richman, T. J. Quinn, C. C. Speake, et al. Preliminary Determination of G Using the Bipm Torsion Strip Balance. Measurement Science and Technology. 1999, 10:460~466
    37 Meirong Zhao, Yuchi Lin, Ping Zhang, et al. Research on Improving the Measuring Accuracy of Laser Autocollimator Used Over Long Distance. The International Society for Optical Engineering, Proc. of SPIE. 2002, 4927:300~304
    38林玉池,于建.光电自准直仪现状与展望.宇航计测技术. 1999, 19(6):30~32
    39张继友,范天泉,曹学东.光电自准直仪研究现状与展望.计量技术. 2004, 7:27~29
    40朱小平,张永年,杨自本等.利用二维PSD器件测量小角度的研究.现代计量测试. 2001, 2:40~43
    41林玉池,洪昕,赵美蓉.微机械自跟踪双坐标光电自准直仪的研究.光电工程. 2002, 29(4):43~45
    42钱建强,惠梅,王东生.锁相检测式二维小角度测量装置.光学技术. 2004, 30(2):176~178
    43邹九贵,甘俊红,季国定.高精度二维自准直仪的研制.计测技术. 2006, 26(5):19~26
    44 Takamasa Suzuki, Takanori Endo, Osami Sasaki, et al. Two-Dimensional Small-Rotation-Angle Measurement Using an Imaging Method. Optical Engineering. 2006, 45(4):1~7
    45饶瑞中.湍流大气中准直激光束的Strehl比与锐度.中国激光. 2005, 32(1):53~58
    46匡萃方,冯其波,张斌等.直线导轨四自由度同时测量方法的研究.中国激光. 2005, 32(9):1266~1270
    47何为,陈庆浩,徐仁芳等.激光核聚变装置中基于像传递的激光自动准直技术研究.光学学报. 1999, 19(9):1279~1283
    48赵东峰,戴亚平,尹宪华等.高功率激光装置靶场光学系统的误差分析.中国激光. 2004, 31(12):1425~1428
    49吴秀丽.激光自准直仪.光机电信息. 1994, 8:11~13
    50 M. G. Townsley, P. C. Foote. An Autocollimator for Precise Measurement of the Flange Focal Distance of Photographic Lenses. Journal of the Optical Society of America. 1947, 37(1):42~46
    51 Iiana Glatt, Aminadav Livnat, Oded Kafri, et al. Autocollimator Based on Moire Deflectometry. Applied Optics. 1984, 23(16):2673~2674
    52 G. V. Stupakov. High-Frequency Impedance of Small-Angle Collimators. Proceedings of the 2001 Particle Accelerator Conference. Chicago. 2001:1859~1861
    53蒋本和,陈文毅,胡文斐,胡庆荣.用激光准直及CCD检测的小角度测量系统.激光与红外.1998, 28(4):233~234, 243
    54林玉池,张萍,赵美蓉,洪昕.野外使用的半导体激光自准直仪.航空精密制造技术. 2001, 37(3):35~37
    55 Yusuke Saito, Wei Gao, Satoshi Kiyono. A Micro-Angle Sensor Based on Laser Autocollimation. Proceedings of SPIE– Optomechatronic Systems Control. 2005, 6052(60520q):1~9
    56张尧禹,张明慧,乔彦峰.一种高精度CCD激光自准直测量系统的研究.光电子·激光. 2003, 14(2):168~170
    57壮舒,郝志航.面阵CCD在二维直读式数字自准直仪中的应用研究.光学精密工程. 1995, 3(4):42~46
    58 Jae Wan Kim, Jong-Ahn Kim, Chu-Shik Kang, et al. A Novel Michelson Interferometer Combined with An Autocollimator for the Simultaneous Measurement of Linear and Angular Displacement. Recent Developments in Traceable Dimensional Measurements III. Proc. of SPIE. 2005, 5879(11):1~6
    59寇欣宇,王向军. CCD增维测量原理及其在二维光电准直仪中的应用.计量技术. 2000, 7:27~30
    60 Jie Yuan, Xingwu Long, Kaiyong Yang. Temperature-Controlled Autocollimator with Ultrahigh Angular Measuring Precision. Review of Scientific Instrument. 2005, 76(125106):1~6
    61 P.Martinelli, S.Musazzi, U.Perini. An Autocollimator Based Optical System for Precise Angular Alignment Control Over Large Exploring Areas. Review of Scientific Instrument. 1994, 65(4):1012~1014
    62 Jun Lim, Seungyu Rah. Measurement of the Parallelism Error of a Double Crystal Monochromator by the Pencil Beam Interferometer. Review of Scientific Instruments. 2005, 76(0605109):1~3
    63马福禄,张志利,周召发.基于M型分划丝的单线阵CCD直线度准直仪.光学技术. 2002, 28(3):224~225, 227
    64武晋燮.几何量精密测量技术.哈尔滨工业大学出版社. 1989, 9:113~164
    65 User Manuals for Elcomat Vario Electronic Autocollimators of M?ller-Wedel, German. 2005, 6:1~34
    66 User Manuals for Elcomat Hr Electronic Autocollimators of M?ller-Wedel, German. 2005, 6:7~39
    67中国船舶工业第6354研究所九江精密测试技术研究所SZY-99型数显自准直仪中文操作手册. 2004, 9:1~10
    68 User Manuals for Ta51, Da20, Da400 Optical Autocollimators of Taylor Hobson, England. 2002:1~8
    69 Qing Cao, Ximing Deng. Corrections to the Paraxial Approximation of an Arbitrary Free-Propagation Beam. Journal of the Optical Society of America A. 1998, 15(5):1144~1148
    70 Jennifer E. Logan, Peter G. Halverson, Martin W. Regehr, et al. Automatic Alignment of a Displacement-Measuring Heterodyne Interferometer. Applied Optics. 2002, 41(21):4314~4317
    71 Lora Nugent-Glandorf, Thomas T. Perkins. Measuring 0.1-Nm Motion in 1ms in an Optical Microscope with Differential Back-Focal-Plane Detection. Optics Letters. 2004, 29(22):2611~2613
    72 Min-Seok Kim, Seung-Woo Kim. Two-Longitudinal-Mode He-Ne Laser for Heterodyne Interferometers to Measure Displacement. Applied Optics. 2002, 41(28):5938~5942
    73万德安.激光基准高精度测量技术.国防工业出版社. 1999, 6:58~78
    74方仲彦,殷纯永,梁晋文.高精度激光准直技术的研究(一).航空计测技术. 1997, 17(1):3~6
    75 Yongqi Fu, Ngoi Kok Ann Bryan. A Novel One Step Integration of Edge-Emitting Laser Diode with Micro-Elliptical Lens Using Focused Ion Beam Direct Deposition. IEEE Transaction on Semiconductor Manufacturing. 2002, 15(1):2~8
    76 Yongqi Fu. Integration of Micro-Diffractive Lens with Continuous Relief with Vertical-Cavity Surface-Emitting Lasers Using Focused Ion Beam Direct Milling. IEEE Photonics Technology Letters. 2001, 13(5):424~426
    77饶瑞中,王世鹏,刘晓春,龚知本.湍流大气中激光束漂移的实验研究.中国激光. 2000, 27(11):1011~1015
    78 B. Liu, Jianying. Fan, Ling.Yang. Simultaneous Frequency, Power and Beam Direction Stabilization of Transverse Zeeman Laser. Proc SPIE Int. Soc. Opt. Eng. 1998, 3267:304~306
    79 Le Flanchec. Vincent, Jean-Paul. Bleses, Striby. Serge. Stabilization System of A Photoinjector Drive Laser. Applied Optics. 1997, 36(33):8541~8546
    80曹军,宋文龙.基于参数自适应PID控制算法激光准直系统的研制.光电子激光. 2003, 14(12):1328~1331
    81杨友堂,曾理江,殷纯永.自适应除噪技术在激光准直中的应用研究.仪器仪表学报. 1995, 16(4):370~374
    82 Shizhou Zhang, Satoshi Kiyono, Yutaka Uda. Nanoradian Angle Sensor and In Situ Self-Calibration. Applied Optics. 1998, 37(19):4154~4159
    83于达仁,张志强,徐基豫,苏杰先.激光测量中干扰的光路自动补偿方法.仪器仪表学报. 2003, 24(2):123~126
    84冯其波,梁晋文.单模光纤激光准直仪的研制.激光技术. 1994, 18(6):357~360
    85于殿泓,郭彦珍.提高激光准直精度的一种方法.石油仪器. 1999, 13(6):18~20
    86 Qun Hao, Dacheng Li, Yongtian Wang. High-Accuracy Long Distance Alignment Using Single-Mode Optical Fiber and Phase Plate. Optics & Laser Technology. 2002:287~292
    87 K.C. Fan, Yang Zhao. A Laser Straightness Measurement System Using Optical Fiberand Modulation Techniques. International Journal of Machine Tools & Manufacture. 2000, 40:2073~2081
    88 Zhao Weiqian, Tan jiubin, Qiu Lirong, et al. Enhancing Laser Beam Directional Stability by Single-mode Optical Fiber and Feedback Control of Drifts. Review of Scientific Instruments. 2005, 76(036101):1~3
    89赵维谦,谭久彬,马洪文,邹丽敏.漂移量反馈控制式激光准直方法.光学学报. 2004, 24(3):373~377
    90李春梅.基于声光调制原理的漂移量反馈控制激光方向稳定技术.哈尔滨工业大学硕士论文. 2005:56~59
    91 Parker R.A., In-Process Analysis of Optical Component Machined on a Diamond during Turning Lathe. Proc. of SPIE. 1988, 594:382~391
    92 Mathias Johansson, Sverker Hard, Brian Robertson, et al. Adaptive Beam Steering Implemented in a Ferroelectric Liquid-Crystal Spatial-Light-Modulator Free-Space, Fiber-Optic Switch. Applied Optics. 2002, 41(23):4904~4911
    93 Andrew J. Moore, Roy Mcbride, James S. Barton, et al. Closed-Loop Phase Stepping in a Calibrated Fiber-Optic Fringe Projector for Shape Measurement. Applied Optics. 2002, 41(16):3348~3354
    94 Susumu Konno, Tetsuo Kojima, Shuichi Fujikawa, et al. Automatic Output-Beam-Collimating Configuration for High-Average-Power Multirod Resonator-Amplifier Systems. Applied Optics. 2002, 41(36):7569~7572
    95 David. Walker, Ho-Soon. Yang, Sug-Whan. Kim. Novel Hybrid Stylus for Nanometric Profilometry for Large Optical Surfaces. Optics Express. 2003, 11(5):1793~1798
    96 Shinan. Qian, Sostero. Giovanni, Peter. Z. Takacs. Precision Calibration and Systematic Error Reduction in the Long Trace Profiler. Optial Engineering. 2000, 39(1):304~310
    97裴中方,林玉池,赵美蓉.激光干涉准直技术的研究.仪器仪表学报. 2003, 24(4):203~205
    98 Bengt Edlen. The Refractive Index of Air. Metrologia. 1966, 2(2):71~80
    99 Akira Ishimaru.随机介质中波的传播和散射.科学出版社. 1986, 10:128~549
    100陈亚孚.介质传输光学.兵器工业出版社. 1995, 12:268-367
    101张逸新,迟泽英.光波在大气中的传输与成像.国防工业出版社. 1997, 7:5~215
    102冯龙龄,邓仁亮.四象限光电跟踪技术中若干问题的探讨.红外与激光工程. 1996, 25(1):15~21
    103陈青山,吕乃光,燕必希.激光准直高斯光斑中心位置计算方法分析.计算机测量与控制. 2004, 12(5):486~488
    104薛实福,李庆祥.精密仪器设计.清华大学出版社, 1991:66-98, 340~377
    105王建林.三维一体化超微定位技术及系统的研究.天津大学博士论文. 1997, 9:87~104
    106孙涛.金刚石刀具刃口轮廓三维测量技术的研究.哈尔滨工业大学博士论文. 1999, 12:39~40
    107 T.G.King, M.E.Preston. Piezoelectric Ceramic Actuators a Review of Machinery Applications. Precision Engineering. 1990, 12(2):131~136
    108万学华,张火荣.压电陶瓷谐振器.世界电子元器件. 1999, 8:17~19
    109 P.D.Atherton. Nanometre Precision Mechanisms. Measurement and Control. 1998, 31(2):37~42
    110 Sansoni G, Carocci M, Rodella R. Calibration and Performance Evaluation of A 3d Imaging Sensor Based on the Projection of Structured Light. IEEE Transactions on Instrumentation and Measurement. 2000, 49(3):628~636
    111 C.Rocchini, P.Cignoni, C.Montani, et al. A Low Cost 3D Scanner Based on Structured Light. Computer Graphics Forum. 2001, 20(3):299~308
    112于之靖.大空间立体视觉测量关键技术研究.哈尔滨工业大学博士学位论文. 2004, 9:83~101
    113 Yu Zhijing, Chen Gang, Che Rensheng, Liu Changying. Optical Probe Imaging Based Stereo Cameras 3D Coordinate Measuring System. Proceedings of Photonics Asia’2002, Shanghai, 2002. Proc. of SPIE. 2002, 4921:115~121
    114 He Haitao, Chen Mingyi, Guo Hongwei. Shape Measurement of Complex Objects Using Connection Techniques Based on Overlapping Areas. H.Philip Stahl. Processing of the Optical Manufacturing and Testing V, Proc. of SPIE. 2004, 5180:402~412
    115 Juergen Peipe, Peter andrae. Optical 3d Coordinate Measurement Using a Range Sensor and Photogrammetry. Proceeding of Videometrics Vii, Santa Clara, Ca, USA, Proc. of SPIE. 2003, 5013:110~116
    116 H. C. van Assen,M. Egmont-Petersen,J. H. C. Reiber. Accurate Object Localization in Gray Level Images Using the Center of Gravity Measure: Accuracy versus Precision. IEEE Transactions on Image Processing. 2002, 11(12):1379~1384
    117 Rongqian Yang, Sheng Cheng, Wei Yang, et al. Robust and Accurate Surface Measurement Using Structured Light. IEEE Transactions on Instrumentationand Measurement. 2008, 57(6):1275~1280
    118 Shen Shaowei, Yan Shuhua, Zhou Chunlei, et al. Research Based on the CCD Vision Thread Parameters Automatic Detection Technology. The Eighth International Conference on Electronic Measurement and Instruments. 2007, 8:969~973
    119 Y.Shan, G.W.Boon. Sub-Pixel Location of Edges with Non-Uniform Blurring: A Finite Closed-form Approach. Image and Vision Computing. 2000, 18:1015~1023
    120 D.D.Udrea, P.J.Bryanston-Cross, W.K.Lee, et al. Two Sub-Pixel Processing Algorithms for High Accuracy Particle Centre Estimation in Low Seeding Density Particle Image Velocimetry. Optics & Laser Technology. 1996, 28(5):389~396
    121 Harold S.Stone, Michael T.Orchard, Ee-Chien Chang, et al. A Fast Direct Fourier-Based Algorithm for Subpixel Registration of Images. IEEE Transactions on Geoscience and Remote Sensing. 2001, 39(10):2235~2243
    122 Teruhisa Shimada, Futoki Sakaida, Hiroshi Kawamura, et al. Application of an Edge Detection Method to Satellite Images for Distinguishing Sea Surface Temperature Fronts Near the Japanese Coast. Remote Sensing of Environment. 2005, 98:21~34
    123吴晓波,钟先信,刘厚权等.高精度图像测量系统.光学精密工程. 1995, 3(1):28~33
    124 Mike Heath, Sudeep Sarkar, Thomas Sanocki, et al. Comparison of Edge Detectors: A Methodology and Initial Study. Computer Vision and Image Understanding. 1998, 69(1):38~54
    125 F. Truchetet, O. Laligant. Subpixel Edge Detection for Dimensional Control by Artificial Vision. Proc. of SPIE. 2000, 3966:2~8
    126 Xiangdong Liu, Roger W.Ehrich. Subpixel Edge Location in Binary Images Using Dithering. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1995, 17(6):629~634
    127 Jun-Wei Hsieh, Ming-Tat Ko, Hong-Yuan Mark Liao, et al. A New Wavelet-Based Edge Detector via Constrained Optimization. Image and Vision Computing. 1997, 15:511~527
    128 R. Sundaram. Analysis and Implementation of an Efficient Edge DetectionAlgorithm. Optical Engineering. 2003, 42(3):642~650
    129 Edward P. Lyvers, Owenrobert Mitchell, Mark L.Akey, et al. Subpixel Measurements Using A Moment-Based Edge Operator. IEEE Trans. Pattern Analysis and Machine Intelligence. 1989, 11(12):1293~1309
    130丁兴号,邓善熙,杨永跃等.基于空间矩和zernike矩的亚像素边缘检测.应用科学学报. 2004, 22(2):191~194
    131 Ghosal S, Mehrotra R. Orthogonal Moment Operators for Subpixel Edge Detection. Pattern Recognition. 1993, 26(2):295~306
    132崔继文,谭久彬.基于zernike矩的亚像素边缘定位算法.光学技术. 2005, 31(5):779~782, 785
    133 Qu Y D, Cui C S, Chen S B, et al. A Fast Subpixel Edge Detection Method Using Sobel-Zernike Moments Operator. Image and Vision Computing. 2005, 23:11~17
    134 Yunlong Sheng and Lixin Shen. Orthogonal Fourier-Mellin Moments for Invariant Pattern Recognition. Journal of Optics Society of American A. 1994, 11(6):1748~1757
    135 Ziliang Ping, Yunlong Sheng, Sylvain Deschenes. Fourier-Mellin Descriptor and Interpolated Feature Space Trajectories for Three-Dimensional Object Recognition. Optical Engineering. 2000, 39(5):1260~1266
    136 Chao Kan, Mandyam D.Srinath. Invariant Character Recognition with Zernike and Orthogonal Fourier-Mellin Moments. Pattern Recognition. 2002, 35(1):143~154
    137 Stéphane Derrode, Faouzi Ghorbel. Robust and Efficient Fourier-Mellin Transform Approximations for Gray-Level Image Reconstruction and Complete Invariant Description. Computer Vision and Image Understanding. 2001, 83(1):57~78
    138孔兵,王昭,谭玉山.基于圆拟合的激光光斑中心检测算法.红外与激光工程. 2002, 31(3):275~279
    139中华人民共和国国家计量检定规程(JJG 202—2007).自准直仪.国家质量监督检验检疫总局. 2007, 8:1~19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700