基于荧光纳米颗粒标记的盐酸克伦特罗荧光免疫层析试纸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成功制备了CL免疫原和包被原,免疫小鼠后进行了细胞融合,应用杂交瘤技术筛选出了3株敏感特异的杂交瘤细胞,其中1F8细胞株的细胞培养上清的效价达到了1:1280。用1F8细胞株接种用液体石蜡处理过的小鼠,采集腹水,检测腹水的效价为1:512000,间接竞争ELISA结果显示腹水IC50为2.45ng/mL。CL-McAb的亲和常数(Ka)为4.78×1010L/mol,与其他药物的交叉反应率均小于0.08%,获得了高效价、高敏感性、高亲和力和高特异性的CL-McAb。
     采用反相微乳法制备了SiO2纳米颗粒,通过改变DDW的量得到了粒径在14~97nm之间的分散性较好、粒径均一的球形SiO2纳米颗粒。同时采用St ber法制备了SiO2纳米颗粒,通过改变TEOS的量得到了粒径在93~398nm之间的单分散、粒径均一的球形SiO2纳米颗粒。用硅烷偶联剂APTS对制备的SiO2纳米颗粒进行有水条件下的表面修饰,用傅里叶红外光谱仪检测改性结果,证明改性成功。
     选择具有优良发光性能的稀土配合物BHHCT-Eu3+为荧光材料,在反相微乳法合成SiO2的基础上,制备了共价型稀土荧光纳米颗粒,通过多次包壳,增加了荧光纳米颗粒的荧光强度。在TEM下,稀土荧光纳米颗粒呈现均匀的球状结构,粒径为59±5nm,具有较好的分散性。利用氧化后Dextran-500k的醛基成功的将带氨基的稀土荧光纳米颗粒和CL-McAb联接,将稀土荧光抗体喷涂在结合垫上,分别选择CL-BSA和SPA作为NC膜上的T线和C线印迹,将样品垫、结合垫、NC膜、吸水纸按照一定的工艺固定在支持板上,从而制成了稀土荧光检测试纸。对稀土荧光检测试纸的性能进行了鉴定,其肉眼观测完全抑制限为1.6ng/mL,通过微型荧光读条仪可以进行定量检测,定量检测范围为0.04~1.27ng/mL,LOD为0.04ng/mL,较同抗体制备的胶体金试纸灵敏许多,具有较好的特异性,与同系物几乎无交叉,具有良好的重复性、准确性,有效期至少为6个月。
     选择具有优良发光性能的FITC为荧光材料,利用St ber法制备了掺杂型的FITC-SiO2纳米颗粒,该荧光纳米颗粒具有FITC的荧光特征峰,有较好的耐光性,不易发生荧光泄露。在TEM下,FITC-SiO2纳米颗粒呈现均匀的球状结构,粒径为96±6nm,具有较好的分散性。利用氧化后Dextran-500k的醛基将带氨基的FITC-SiO2纳米颗粒和CL-McAb联接,将FITC荧光抗体喷涂在结合垫上,分别选择CL-BSA和SPA作为NC膜上的T线和C线印迹,将样品垫、结合垫、NC膜、吸水纸按照一定的工艺固定在支持板上,从而制成了FITC荧光检测试纸。对FITC荧光检测试纸的性能进行了鉴定,其肉眼观测完全抑制限为6ng/mL,通过微型荧光读条仪可进行定量检测,定量检测范围为0.16~5.18ng/mL,LOD为0.16ng/mL,较同抗体制备的胶体金试纸灵敏,具有较好的特异性,与同系物几乎无交叉,具有良好的重复性、准确性,有效期至少为6个月。
     建立了检测猪尿样品中CL残留的GC-MS方法,其线性检测范围为0.10~500ng/mL,LOD为0.1ng/mL,该法灵敏、准确、稳定,需要昂贵的仪器设备,专门的操作人员,检测周期长,费用较高,无法做到现场高通量检测。比较分析了GC-MS、稀土荧光试纸和FITC荧光试纸对实际样品的测定结果,稀土荧光检测试纸与确证方法GC-MS的符合率为100%,FITC荧光检测试纸与确证方法GC-MS的符合率为97.6%,进一步确证了稀土荧光试纸和FITC荧光试纸检测CL残留具有较好的准确性、时效性。
Two complete antigens of CL-BSA and CL-OVA were successfully prepared.BALB/c mice were immunized with CL-BSA, monoclonal antibody against CL(CL-McAb) was prepared by hybridoma technology. Three hybridoma cell lines werescreened. The hybridoma cell line1F8which the titer was1:1280in supernatant wereinoculated with liquid paraffin treated mice. CL-McAb ascites were collected and tested.The titer of hybridoma cell line1F8was1:512000of in ascites and the indirectcompetitive ELISAresults showed the half inhibitory concentration (IC50) of2.45ng/mLto CL. The affinity constant (Ka) of the CL-McAb was3.75×1010L/mol and thecross-reactivity with other drugs were less than0.08%. CL-McAb with high-titer, highsensitivity high affinity and high specificity had been produced successfully in thisexperiment.
     Spherical silica nanoparticles with good dispersion and uniform particle sizebetween14and97nm were successfully abtained by varying the amount of water in thepreparation through inverse microemulsion method. Spherical silica nanoparticles withgood dispersion and uniform particle size between93and398nm were successfullyabtained by varying the amount of TEOS in the preparation through St ber method. Asilane coupling agent APTS was used to modify the surface of the silica nanoparticlesunder the conditions of in water. The Fourier transform infrared spectroscopy resultsprove that the silica nanoparticles have been successful modification.
     Rare earth chelates BHHCT-Eu3+with excellent luminescent properties had beenselected to prepare the covalent type rare earth fluorescent nanoparticles based on thesilica nanoparticles by the reverse microemulsion method. The fluorescence intensity ofthe rare earth fluorescent nanoparticles increased through multiple cladding, and thefluorescent nanoparticles appeard good dispersion and uniform particle size of59±5nmwith homogeneous globular structures under TEM. The rare earth fluorescentnanoparticles with amino group had successfully couplied with CL-McAb through thealdehyde groups of the oxidized Dextran-500k. The rare earth fluorescent antibody hasbenn sprayed on the conjugate pad. CL-BSAand SPAwere selected as T line and C lineblot of the NC membrane. The sample pad, conjugate pad, NC membrane and theabsorbent paper were fixed on the support plate according to a certain process toproduce the rare earth fluorescence test strip. The performance of the rare earthfluorescent test strip had been identified. The limit of completely suppressed of the stripwith naked-eye is1.6ng/mL, meanwhile quantitative detection range of test strip usingthe micro-fluorescence analyzer is0.04~1.27ng/mL with the LOD0.04ng/mL that ismuch better than the colloidal gold test strip using the same CL-McAb. The preparedrare earth fluorescent test strip has good specificity, repeatability, accuracy with theshelf life at least six months.
     Fluorescein isothiocyanate (FITC) with excellent luminescent properties had beenselected to prepare the FITC-SiO2-doped nanoparticles based on the silica nanoparticles by the St ber method. The FITC-SiO2-doped nanoparticles have the fluorescencecharacteristic peaks of FITC, good lightfastness and not prone to fluorescent leak. Theyhad been appeared good dispersion and uniform particle size of96±6nm withhomogeneous globular structure under TEM. The FITC-SiO2-doped nanoparticles withamino group had successfully couplied with CL-McAb through the aldehyde groups ofthe oxidized Dextran-500k. The FITC fluorescent antibody has benn sprayed on theconjugate pad. CL-BSA and SPA were selected as T line and C line blot of the NCmembrane. The sample pad, conjugate pad, NC membrane and the absorbent paper werefixed on the support plate according to a certain process to produce the FITCfluorescence test strip. The performance of the FITC fluorescent test strip had beenidentified. The limit of completely suppressed of the strip with naked-eye is6ng/mL,meanwhile quantitative detection range of test strip using the micro-fluorescenceanalyzer is0.16~5.18ng/mL with the LOD0.16ng/mL that is better than the colloidalgold test strip using the same CL-McAb. The prepared FITC fluorescent test strip hasgood specificity, repeatability, accuracy with the shelf life at least six months.
     A GC-MS method to detect CL residue in pig urine sample had been established.The linear detection range of the GC-MS method is0.10~500ng/mL with the LOD0.1ng/mL. The method is sensitive, accurate, stability but requires expensive equipmentequipment, specialized operators, long testing cycle, cumbersome operation, high costand can not do on-site high-throughput testing. Rare earth fluorescent test strips andFITC fluorescence test strips were compared with GC-MS method by analysis the actualpig urine sample. The coincidence rate of the rare earth fluorescent test strips was100%compared with GC-MS method. The coincidence rate of the FITC fluorescent test stripswas97.6%compared with GC-MS method. All the results further confirmed that therare earth fluorescent test strips and FITC fluorescence test strips have good accuracyand timeliness in the detection of CL resude.
引文
1.殷爽,《食品安全管理体系建立与实施指南》.中国标准导报2006,(2),47-47.
    2.肖恺.中国食品安全规制研究.吉林大学,2012.
    3. Nollet, L. M.; Toldrá, F., Food analysis by HPLC. CRC Press:2012; Vol.100.
    4. Baranowska, I.; Kowalski, B., The development of SPE procedures and anUHPLC method for the simultaneous determination of ten drugs in water samples.Water, Air,&Soil Pollution2010,211(1-4),417-425.
    5. Venkatasami, G.; Sowa Jr, J. R., A rapid, acetonitrile-free, HPLC method fordetermination of melamine in infant formula. Analytica chimica acta2010,665(2),227-230.
    6. Díaz-García, M.; Obón, J.; Castellar, M.; Collado, J.; Alacid, M.,Quantification by UHPLC of total individual polyphenols in fruit juices. Foodchemistry2012.
    7. McNair, H. M.; Miller, J. M., Basic gas chromatography. John Wiley&Sons:
    2011.
    8. Amvrazi, E.; Tsiropoulos, N., Application of single-drop microextractioncoupled with gas chromatography for the determination of multiclass pesticides invegetables with nitrogen phosphorus and electron capture detection. Journal ofChromatography A2009,1216(14),2789-2797.
    9. Cagliero, C.; Bicchi, C.; Cordero, C.; Rubiolo, P.; Sgorbini, B.; Liberto, E.,Fast headspace-enantioselective GC–mass spectrometric-multivariate statistical methodfor routine authentication of flavoured fruit foods. Food Chemistry2012,132(2),1071-1079.
    10. Brutti, M.; Blasco, C.; Picó, Y., Determination of benzoylurea insecticides infood by pressurized liquid extraction and LC‐MS. Journal of separation science2010,33(1),1-10.
    11. Miao, H.; Fan, S.; Wu, Y.-N.; Zhang, L.; Zhou, P.-P.; Chen, H.-J.; Zhao, Y.-F.;Li, J.-G., Simultaneous determination of melamine, ammelide, ammeline, and cyanuricacid in milk and milk products by gas chromatography-tandem mass spectrometry.Biomedical and environmental Sciences2009,22(2),87-94.
    12. Diana Di Mavungu, J.; Monbaliu, S.; Scippo, M.-L.; Maghuin-Rogister, G.;Schneider, Y.-J.; Larondelle, Y.; Callebaut, A.; Robbens, J.; Van Peteghem, C.; DeSaeger, S., LC-MS/MS multi-analyte method for mycotoxin determination in foodsupplements. Food Additives and Contaminants2009,26(6),885-895.
    13. Zlatkis, A.; Kaiser, R. E., HPTLC-high performance thin-layerchromatography. Access Online via Elsevier:2011; Vol.9.
    14. Shawky, E., Development and validation of an HPTLC method for thesimultaneous determination of diosmin and hesperidin in different citrus fruit extractsand pharmaceutical formulations. JPC-Journal of Planar Chromatography-ModernTLC2012,25(2),138-144.
    15. Dufield, D.; Nemirovskiy, O.; Jennings, M.; Tortorella, M.; Malfait, A.;Mathews, W., An immunoaffinity liquid chromatography–tandem mass spectrometryassay for detection of endogenous aggrecan fragments in biological fluids: Use as abiomarker for aggrecanase activity and cartilage degradation. Analytical biochemistry2010,406(2),113-123.
    16. Wang, Y.; Zhang, Q.; Li, P.; Zhang, W.; Li, Y.; Ding, X., Selective samplecleanup by immunoaffinity chromatography for determination of fenvalerate invegetables. Journal of Chromatography B2011,879(30),3531-3537.
    17. Williams, P.; Norris, K., Near-infrared technology in the agricultural and foodindustries. AmericanAssociation of Cereal Chemists, Inc.:1987.
    18. Sánchez, M. T.; Flores‐Rojas, K.; Guerrero, J. E.; Garrido‐Varo, A.; Pérez‐Marín, D., Measurement of pesticide residues in peppers by near‐infraredreflectance spectroscopy. Pest management science2010,66(6),580-586.
    19. Fan, M.; Andrade, G. F.; Brolo, A. G., Areview on the fabrication of substratesfor surface enhanced Raman spectroscopy and their applications in analytical chemistry.Analytica Chimica Acta2011,693(1),7-25.
    20. Robert, B., Resonance Raman spectroscopy. Photosynthesis research2009,101(2-3),147-155.
    21. Cheng, A.-J.; Manno, M.; Khare, A.; Leighton, C.; Campbell, S.; Aydil, E.,Imaging and phase identification of Cu2 ZnSnS4 thin filmsusing confocal Raman spectroscopy. Journal of Vacuum Science&Technology A:Vacuum, Surfaces, and Films2011,29(5),051203-051203-11.
    22. Agarwal, U. P.; Reiner, R. S.; Ralph, S. A., Cellulose I crystallinitydetermination using FT–Raman spectroscopy: univariate and multivariate methods.Cellulose2010,17(4),721-733.
    23. Deckert, V., Tip‐Enhanced Raman Spectroscopy. Journal of RamanSpectroscopy2009,40(10),1336-1337.
    24. Liu, B.; Han, G.; Zhang, Z.; Liu, R.; Jiang, C.; Wang, S.; Han, M.-Y., Shellthickness-dependent Raman enhancement for rapid identification and detection ofpesticide residues at fruit peels. Analytical chemistry2011,84(1),255-261.
    25. Song, X.; Li, H.; Al-Qadiri, H. M.; Lin, M., Detection of herbicides in drinkingwater by surface-enhanced Raman spectroscopy coupled with gold nanostructures.Journal of Food Measurement and Characterization2013,1-7.
    26. Shende, C.; Inscore, F.; Sengupta, A.; Stuart, J.; Farquharson, S., Rapidextraction and detection of trace Chlorpyrifos-methyl in orange juice bysurface-enhanced Raman spectroscopy. Sensing and Instrumentation for Food Qualityand Safety2010,4(3-4),101-107.
    27. Uysal, R. S.; Boyaci, I. H.; Genis, H. E.; Tamer, U., Determination of butteradulteration with margarine using Raman spectroscopy. Food Chemistry2013.
    28. Kurz, C.; Leitenberger, M.; Carle, R.; Schieber, A., Evaluation of fruitauthenticity and determination of the fruit content of fruit products using FT-NIRspectroscopy of cell wall components. Food Chemistry2010,119(2),806-812.
    29. El-Abassy, R. M.; Donfack, P.; Materny, A., Rapid determination of free fattyacid in extra virgin olive oil by Raman spectroscopy and multivariate analysis. Journalof the American Oil Chemists' Society2009,86(6),507-511.
    30. Lakowicz, J. R., Principles of fluorescence spectroscopy. Springer:2009.
    31. Ge, F.; Chen, C.; Liu, D.; Zhao, S., Rapid Quantitative Determination ofWalnut Oil Adulteration with Sunflower Oil Using Fluorescence Spectroscopy. FoodAnalytical Methods2013,1-5.
    32. Ntakatsane, M.; Liu, X.; Zhou, P., Short communication: Rapiddetection of milk fat adulteration with vegetable oil by fluorescence spectroscopy.Journal of dairy science2013.
    33. Zhu, D.; Ji, B.; Qing, Z.; Wang, C.; Zude, M., The Detection of QualityDeterioration of Apple Juice by Near Infrared and Fluorescence Spectroscopy. InComputer and Computing Technologies in Agriculture IV, Springer:2011; pp84-91.
    34. Wang, L.; Qiao, X.-Y.; Zhang, S.; Zhao, F.-G.; Dong, Y.-E., Pesticide residuedetection by fluorescence spectral analysis based on BP neural network [J]. Journal ofApplied Optics2010,3,027.
    35. Narakathu, B.; Guo, W.; Obare, S.; Atashbar, M., Detection of picomolar levelsof toxic organophosphorus compounds by electrochemical and fluorescencespectroscopy. Sensor Letters2011,9(2),907-909.
    36. Sun, D.-W., Hyperspectral imaging for food quality analysis and control.Elsevier:2010.
    37. Del Fiore, A.; Reverberi, M.; Ricelli, A.; Pinzari, F.; Serranti, S.; Fabbri, A.;Bonifazi, G.; Fanelli, C., Early detection of toxigenic fungi on maize by hyperspectralimaging analysis. International journal of food microbiology2010,144(1),64-71.
    38. ElMasry, G.; Sun, D.-W.; Allen, P., Non-destructive determination ofwater-holding capacity in fresh beef by using NIR hyperspectral imaging. FoodResearch International2011,44(9),2624-2633.
    39. Li, J.; Xue, L.; Liu, M.; Wang, X.; Luo, C., Hyperspectral imaging technologyfor determination of dichlorvos residue on the surface of navel orange. Chinese OpticsLetters2010,8(11),1050-1052.
    40. Wiederoder, M. S.; Lefcourt, A. M.; Kim, M. S.; Lo, Y. M., Detection offresh-cut produce processing residues on food contact surface materials usinghyperspectral imaging. Journal of Food Measurement&Characterization2012,6(1-4),48-55.
    41. Al-Mazeedi, H. M.; Abbas, A. B.; Alomirah, H. F.; Al-Jouhar, W. Y.; Al-Mufty,S. A.; Ezzelregal, M. M.; Al-Owaish, R. A., Screening for tetracycline residues in foodproducts of animal origin in the State of Kuwait using Charm II radio-immunoassay andLC/MS/MS methods. Food Additives and Contaminants2010,27(3),291-301.
    42. YAN, L.; LI, Z.; ZHANG, Y., Aflatoxins in Milk by Radio ImmunoassayMethod [J]. Food Research and Development2010,1,046.
    43. Granja, R.; Montes Nino, A.; Rabone, F.; Montes Nino, R.; Cannavan, A.;Gonzalez Salerno, A., Validation of radioimmunoassay screening methods forβ-agonists in bovine liver according to Commission Decision2002/657/EC. FoodAdditives and Contaminants2008,25(12),1475-1481.
    44. Hao, Z.; Junxia, L.; Hong, Y., Determination of tetracyclines in feed byradioimmunoassay method. China Feed2011,11,012.
    45. Voller, A.; Bidwell, D. E.; Bartlett, A., The enzyme linked immunosorbent assay(ELISA). A guide with abstracts of microplate applications. Dynatech Europe, BoroughHouse, Rue du Pre.:1979.
    46. Wang, L.; Zhang, Y.; Gao, X.; Duan, Z.; Wang, S., Determination ofChloramphenicol Residues in Milk by Enzyme-Linked Immunosorbent Assay:Improvement by Biotin Streptavidin-Amplified System. Journal of agricultural andfood chemistry2010,58(6),3265-3270.
    47. Wang, Y.; Wei, D.; Yang, H.; Yang, Y.; Xing, W.; Li, Y.; Deng, A., Developmentof a highly sensitive and specific monoclonal antibody-based enzyme-linkedimmunosorbent assay (ELISA) for detection of Sudan I in food samples. Talanta2009,77(5),1783-1789.
    48. Zhou, Y.; Li, Y.-S.; Pan, F.-G.; Zhang, Y.-Y.; Lu, S.-Y.; Ren, H.-L.; Li, Z.-H.;Liu, Z.-S.; Zhang, J.-H., Development of a new monoclonal antibody based directcompetitive enzyme-linked immunosorbent assay for detection of brevetoxins in foodsamples. Food Chemistry2010,118(2),467-471.
    49. Hao, X.; Kuang, H.; Li, Y.; Yuan, Y.; Peng, C.; Chen, W.; Wang, L.; Xu, C.,Development of an enzyme-linked immunosorbent assay for the α-cyano pyrethroidsmultiresidue in Tai lake water. Journal of agricultural and food chemistry2009,57(8),3033-3039.
    50. Talkington, D. F., Real-time PCR in Food Science: Current Technology andApplications. Emerging infectious diseases2013,19(8),1352.
    51. Rodríguez, A.; Isabel Luque, M.; Andrade, M. J.; Rodríguez, M.; Asensio, M.A.; Córdoba, J. J., Development of real-time PCR methods to quantifypatulin-producing molds in food products. Food microbiology2011,28(6),1190-1199.
    52. Jeníková, G.; Pazlarová, J.; Demnerová, K., Detection of Salmonella in foodsamples by the combination of immunomagnetic separation and PCR assay.International Microbiology2010,3(4),225-229.
    53. Fuchs, M.; Cichna-Markl, M.; Hochegger, R., Development and validation of anovel real-time PCR method for the detection of celery ( Apium graveolens) infood. Food Chemistry2012,130(1),189-195.
    54.Qin, J.; Cui, Y.; Zhao, X.; Rohde, H.; Liang, T.; Wolters, M.; Li, D.; Campos, C.B.; Christner, M.; Song, Y., Identification of the Shiga toxin-producing Escherichia coliO104: H4strain responsible for a food poisoning outbreak in Germany by PCR. Journalof clinical microbiology2011,49(9),3439-3440.
    55. Martínez-Blanch, J.; Sánchez, G.; Garay, E.; Aznar, R., Development of areal-time PCR assay for detection and quantification of enterotoxigenic members ofBacillus cereus group in food samples. International journal of food microbiology2009,135(1),15-21.
    56. Holck, A. L.; Pedersen, B. O., Simple, sensitive, accurate multiplexquantitative competitive PCR with capillary electrophoresis detection for thedetermination of genetically modified maize. European Food Research and Technology2011,233(6),951-961.
    57. Dinon, A. i. Z.; Brod, F. b. C.; Mello, C. S.; Oliveira, E. M.; Faria, J. C.; Arisi,A. C., Primers and probes development for specific PCR detection of geneticallymodified common bean (Phaseolus vulgaris) Embrapa5.1. Journal of agricultural andfood chemistry2012,60(18),4672-4677.
    58. Reiting, R.; Grohmann, L.; M de, D., A testing cascade for the detection ofgenetically modified rice by real-time PCR in food and its application for detection ofan unauthorized rice line similar to KeFeng6. Journal für Verbraucherschutz undLebensmittelsicherheit2010,5(2),185-188.
    59. Lin, C.-H.; Pan, T.-M., Assessing the digestion of a genetically modifiedtomato (Solanum lycopersicum) R8DNA in simulated gastric fluid using event-specificreal-time PCR. European Food Research and Technology2011,232(6),1061-1067.
    60. Narsaiah, K.; Jha, S. N.; Bhardwaj, R.; Sharma, R.; Kumar, R., Opticalbiosensors for food quality and safety assurance—a review. Journal of Food Scienceand Technology2012,49(4),383-406.
    61.Wang, Y.; Ye, Z.; Si, C.; Ying, Y., Monitoring of Escherichia coli O157:H7in food samples using lectin based surface plasmon resonance biosensor. FoodChemistry2012.
    62. Wang, W.; Han, J.; Wu, Y.; Yuan, F.; Chen, Y.; Ge, Y., Simultaneous detectionof eight food allergens using optical thin-film biosensor chips. Journal of agriculturaland food chemistry2011,59(13),6889-6894.
    63. Lu, X.; Zheng, H.; Li, X.-Q.; Yuan, X.-X.; Li, H.; Deng, L.-G.; Zhang, H.;Wang, W.-Z.; Yang, G.-S.; Meng, M., Detection of ractopamine residues in pork bysurface plasmon resonance-based biosensor inhibition immunoassay. Food Chemistry2012,130(4),1061-1065.
    64. Chen, J.; Fang, Z.; Liu, J.; Zeng, L., A simple and rapid biosensor forochratoxin A based on a structure-switching signaling aptamer. Food Control2012,25(2),555-560.
    65. Sinha, R.; Ganesana, M.; Andreescu, S.; Stanciu, L., AChE biosensor based onzinc oxide sol–gel for the detection of pesticides. Analytica Chimica Acta2010,661(2),195-199.
    66. Fodey, T. L.; Thompson, C. S.; Traynor, I. M.; Haughey, S. A.; Kennedy, D. G.;Crooks, S. R., Development of an optical biosensor based immunoassay to screen infantformula milk samples for adulteration with melamine. Analytical chemistry2011,83(12),5012-5016.
    67. Li, Y.; Jing-qiang, F., The due of biochip on diagnose of food factor disease.Journal of Diseases Monitor&Control2010,8,007.
    68. Sauceda-Friebe, J. C.; Karsunke, X. Y.; Vazac, S.; Biselli, S.; Niessner, R.;Knopp, D., Regenerable immuno-biochip for screening ochratoxin A in green coffeeextract using an automated microarray chip reader with chemiluminescence detection.Analytica Chimica Acta2011,689(2),234-242.
    69. Zordan, M. D.; Grafton, M. M.; Park, K.; Leary, J. F. In The design of amicrofluidic biochip for the rapid, multiplexed detection of foodborne pathogens bysurface plasmon resonance imaging, Proc. of SPIE Vol,2010; pp755307-1.
    70. HU, L.; ZUO, P.; YE, B.-c., Detection of Ractopamine Residue in MeatProduct by Microbead Biochip Based on Immunization. Contemporary ChemicalIndustry2010,4,046.
    71. Kim, D.; Wang, S., A Magneto-Nanosensor Immunoassay for SensitiveDetection of Aspergillus Fumigatus Allergen Asp f1. Magnetics, IEEE Transactions on2012,48(11),3266-3268.
    72. Deng, Z.; Ge, Y.; Cao, Q.; Han, K., The detection of a transgenic soybeanbiochip using gold label silver stain technology. Bioorganic&medicinal chemistryletters2011,21(22),6905-6908.
    73. Qing, X. J. L., Overview of Bio-chip Application. Biotechnology Bulletin2010,7,017.
    74. Weller, M. G., Immunochromatographic techniques–a critical review.Fresenius' journal of analytical chemistry2000,366(6-7),635-645.
    75. Guo, A.; Sheng, H.; Zhang, M.; Wu, R.; Xie, J., Development and Evaluationof a Colloidal Gold Immunochromatography Strip for Rapid Detection of Vibrioparahaemolyticus in Food. Journal of Food Quality2012,35(5),366-371.
    76. Chen, X.-f.; Liu, S.-z., Colloidal Gold Lebelling Immunoassay and It'sApplication in Rapid Detection of Small Molecule. PHARMACEUTICALBIOTECHNOLOGY-BEIJING-2004,11,278-280.
    77. Lee, E.-H.; Kim, Y. A.; Lee, Y. T.; Hammock, B. D.; Lee, H.-S., Competitiveimmunochromatographic assay for the detection of the organophosphorus pesticideEPN. Food and Agricultural Immunology2013,24(2),129-138.
    78. Song, C.; Liu, Q.; Zhi, A.; Yang, J.; Zhi, Y.; Li, Q.; Hu, X.; Deng, R.; Casas, J.;Tang, L., Development of a lateral flow colloidal gold immunoassay strip for the rapiddetection of olaquindox residues. Journal of agricultural and food chemistry2011,59(17),9319-9326.
    79. Sun, F.; Liu, L.; Ma, W.; Xu, C.; Wang, L.; Kuang, H., Rapid on‐sitedetermination of melamine in raw milk by an immunochromatographic strip.International Journal of Food Science&Technology2012,47(7),1505-1510.
    80. Liu, B.-H.; Hsu, Y.-T.; Lu, C.-J.; Yu, F.-Y., Detecting aflatoxin B1in foods andfeeds by using sensitive rapid enzyme-linked immunosorbent assay and goldnanoparticle immunochromatographic strip. Food Control2012.
    81. Abe, K.; Nakamura, K.; Arao, T.; Sakurai, Y.; Nakano, A.; Suginuma, C.;Tawarada, K.; Sasaki, K., Immunochromatography for the rapid determination ofcadmium concentrations in wheat grain and eggplant. Journal of the Science of Foodand Agriculture2011,91(8),1392-1397.
    82.Ji, K.-M.; Chen, J.-J.; Gao, C.; Liu, X.-y.; Xia, L.-x.; Liu, Z.-G.; Li, L.; Yang, S.,A two-site monoclonal antibody immunochromatography assay for rapid detection ofpeanut allergen Ara h1in Chinese imported and exported foods. Food Chemistry2011,129(2),541-545.
    83. Kumar, R.; Singh, C. K.; Kamle, S.; Sinha, R. P.; Bhatnagar, R. K.; Kachru, D.N., Development of nanocolloidal gold based immunochromatographic assay for rapiddetection of transgenic vegetative insecticidal protein in genetically modified crops.Food Chemistry2010,122(4),1298-1303.
    84. Yonekita, T.; Fujimura, T.; Morishita, N.; Matsumoto, T.; Morimatsu, F.,Simple, Rapid, and Reliable Detection of Escherichia coli O26UsingImmunochromatography. Journal of Food Protection2013,76(5),748-754.
    85. Yang, W.; Li, X.-b.; Liu, G.-w.; Zhang, B.-b.; Zhang, Y.; Kong, T.; Tang, J.-j.;Li, D.-n.; Wang, Z., A colloidal gold probe-based silver enhancementimmunochromatographic assay for the rapid detection of abrin-a. Biosensors andBioelectronics2011,26(8),3710-3713.
    86. Guo, Y.-R.; Liu, S.-Y.; Gui, W.-J.; Zhu, G.-N., Gold immunochromatographicassay for simultaneous detection of carbofuran and triazophos in water samples.Analytical biochemistry2009,389(1),32-39.
    87. Kreyling, W. G.; Semmler-Behnke, M.; Chaudhry, Q., A complementarydefinition of nanomaterial. Nano Today2010,5(3),165-168.
    88. Chen, J.-J.; Zhu, C.-F.; Deng, H.-T.; Qin, Z.-N.; Bai, Y.-Q., Preparation andcharacterization of the waterborne polyurethane modified with nanosilica. Journal ofPolymer Research2009,16(4),375-380.
    89. Barik, T. K.; Sahu, B.; Swain, V., Nanosilica—from medicine to pest control.Parasitology research2008,103(2),253-258.
    90. Pan, L.; He, Q.; Liu, J.; Chen, Y.; Ma, M.; Zhang, L.; Shi, J., Nuclear-targeteddrug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles.Journal of the American Chemical Society2012,134(13),5722-5725.
    91. Zhai, Z.; Wang, Y.; Lu, Y.; Luo, G., Preparation of monodispersed uniformsilica spheres with large pore size for fast adsorption of proteins. Industrial&Engineering Chemistry Research2010,49(9),4162-4168.
    92. Napierska, D.; Thomassen, L. C.; Rabolli, V.; Lison, D.; Gonzalez, L.; Kirsch‐Volders, M.; Martens, J. A.; Hoet, P. H., Size‐Dependent Cytotoxicity ofMonodisperse Silica Nanoparticles in Human Endothelial Cells. Small2009,5(7),846-853.
    93.朱立平;陈学清,免疫学常用实验方法.人民军医出版社:2000.
    94. Gasilova, N.; Eremin, S., Determination of chloramphenicol in milk by afluorescence polarization immunoassay. Journal of Analytical Chemistry2010,65(3),255-259.
    95. Lippolis, V.; Pascale, M.; Valenzano, S.; Pluchinotta, V.; Baumgartner, S.;Krska, R.; Visconti, A., A rapid fluorescence polarization immunoassay for thedetermination of T-2and HT-2toxins in wheat. Analytical and bioanalytical chemistry2011,401(8),2561-2571.
    96. Tian, J.; Zhou, L.; Zhao, Y.; Wang, Y.; Peng, Y.; Zhao, S., Multiplexeddetection of tumor markers with multicolor quantum dots based on fluorescencepolarization immunoassay. Talanta2012,92,72-77.
    97.Valenzano, S.; Lippolis, V.; Pascale, M.; De Marco, A.; Maragos, C. M.; Suman,M.; Visconti, A., Determination of Deoxynivalenol in Wheat Bran and Whole-WheatFlour by Fluorescence Polarization Immunoassay. Food Analytical Methods2013,1-8.
    98. Dailly, E.; Fraissinet, F.; Deslandes, G.; Bouquié, R.; Jolliet, P., Evaluation ofthe QMS Teicoplanin Immunoassay (ThermoFisher Scientific) on Cobas8000System (Roche Diagnostics) and Comparison to Fluorescence PolarizationImmunoassay for the Determination of Teicoplanin Concentrations in Human Plasma.Journal of clinical laboratory analysis2012.
    99. Wang, Q.; Haughey, S. A.; Sun, Y.-M.; Eremin, S. A.; Li, Z.-F.; Liu, H.; Xu,Z.-L.; Shen, Y.-D.; Lei, H.-T., Development of a fluorescence polarization immunoassayfor the detection of melamine in milk and milk powder. Analytical and bioanalyticalchemistry2011,399(6),2275-2284.
    100. Xu, Z.-L.; Wang, Q.; Lei, H.-T.; Eremin, S. A.; Shen, Y.-D.; Wang, H.;Beier, R. C.; Yang, J.-Y.; Maksimova, K. A.; Sun, Y.-M., A simple, rapid andhigh-throughput fluorescence polarization immunoassay for simultaneous detection oforganophosphorus pesticides in vegetable and environmental water samples. Analyticachimica acta2011,708(1),123-129.
    101. Degan, P.; Podestà, A.; Montagnoli, G., Time-resolved fluoroimmunoassay.Molecular biotechnology1999,13(3),215-222.
    102. Niu, C.-G.; Liu, J.; Qin, P.-Z.; Zeng, G.-M.; Ruan, M.; He, H., A novelbifunctional europium chelate applied in quantitative determination of humanimmunoglobin G using time-resolved fluoroimmunoassay. Analytical biochemistry2011,409(2),244-248.
    103. Wei, S.; Le, T.; Chen, Y.; Xu, J.; He, H.; Niu, X.; Luo, J., Time-resolvedfluoroimmunoassay for quantitative determination of tylosin and tilmicosin in edibleanimal tissues. Chinese Science Bulletin2013,1-5.
    104. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P.,Semiconductor nanocrystals as fluorescent biological labels. Science1998,281(5385),2013-2016.
    105. Sukhanova, A.; Devy, J.; Venteo, L.; Kaplan, H.; Artemyev, M.; Oleinikov,V.; Klinov, D.; Pluot, M.; Cohen, J. H.; Nabiev, I., Biocompatible fluorescentnanocrystals for immunolabeling of membrane proteins and cells. Analyticalbiochemistry2004,324(1),60-67.
    106. Xiao, Y.; Barker, P. E., Semiconductor nanocrystal probes for humanmetaphase chromosomes. Nucleic Acids Research2004,32(3), e28-e28.
    107. Zhang, H.; Yee, D.; Wang, C., Quantum dots for cancer diagnosis andtherapy: biological and clinical perspectives. Nanomedicine2008,3(1),83-91.
    108. Chan, W. C.; Nie, S., Quantum dot bioconjugates for ultrasensitivenonisotopic detection. Science1998,281(5385),2016-2018.
    109. Zhou, Z.-M.; Yu, Y.; Zhao, Y.-D., A new strategy for the detection ofadenosine triphosphate by aptamer/quantum dot biosensor based on chemiluminescenceresonance energy transfer. Analyst2012,137(18),4262-4266.
    110. Gei ler, D.; Charbonnière, L. J.; Ziessel, R. F.; Butlin, N. G.;L hmannsr ben, H. G.; Hildebrandt, N., Quantum dot biosensors for ultrasensitivemultiplexed diagnostics. Angewandte Chemie International Edition2010,49(8),1396-1401.
    111. Yang, M.; Javadi, A.; Gong, S., Sensitive electrochemical immunosensorfor the detection of cancer biomarker using quantum dot functionalized graphene sheetsas labels. Sensors and Actuators B: Chemical2011,155(1),357-360.
    112. Savla, R.; Taratula, O.; Garbuzenko, O.; Minko, T., Tumor targetedquantum dot-mucin1aptamer-doxorubicin conjugate for imaging and treatment ofcancer. Journal of Controlled Release2011,153(1),16-22.
    113. Zhang, C.-y.; Hu, J., Single quantum dot-based nanosensor for multipleDNAdetection. Analytical chemistry2010,82(5),1921-1927.
    114. Chen, Y. P.; Ning, B.; Liu, N.; Feng, Y.; Liu, Z.; Liu, X.; Gao, Z. X., Arapid and sensitive fluoroimmunoassay based on quantum dot for the detection ofchlorpyrifos residue in drinking water. Journal of Environmental Science and HealthPart B2010,45(6),508-515.
    115. Qian, J.; Zhou, M.; Cao, Y.; Ai, X.; Yang, H., Template-free hydrothermalsynthesis of nanoembossed mesoporous LiFePO4microspheres for high-performancelithium-ion batteries. The Journal of Physical Chemistry C2010,114(8),3477-3482.
    116. Li, L.; Yang, H. K.; Moon, B. K.; Choi, B. C.; Jeong, J. H.; Kim, K. H.,Photoluminescent properties of Ln2 O3: Eu3+(Ln=Y, Lu and Gd) prepared by hydrothermal process and sol–gel method.Materials Chemistry and Physics2010,119(3),471-477.
    117. Lathika Devi, S.; Sudarsana Kumar, K.; Balakrishnan, A., Rapid synthesisof pure and narrowly distributed Eu doped ZnO nanoparticles by solution combustionmethod. Materials Letters2011,65(1),35-37.
    118. Mu, C.; He, J., Synthesis and luminescent properties of Rare Earth (Eu2+,Tb3+) doped Ba3(PO4)2nanowires by chemical precipitation in nanochannels.Materials Letters2012,70,101-104.
    119. Zhu, W.; Ling, J.; Xu, H.; Shen, Z., Copolymerization of trimethylenecarbonate and2,2-dimethyltrimethylene carbonate by rare earth calixarene complexes.Polymer2005,46(19),8379-8385.
    120. Brambilla, G.; Cenci, T.; Franconi, F.; Galarini, R.; Macr, A.; Rondoni, F.;Strozzi, M.; Loizzo, A., Clinical and pharmacological profile in a clenbuterol epidemicpoisoning of contaminated beef meat in Italy. Toxicology letters2000,114(1),47-53.
    121. Miller, M.; Garcia, D.; Coleman, M.; Ekeren, P.; Lunt, D.; Wagner, K.;Procknor, M.; Welsh Jr, T.; Smith, S., Adipose tissue, longissimus muscle and anteriorpituitary growth and function in clenbuterol-fed heifers. Journal of animal science1988,66(1),12.
    122. Eisemann, J.; Huntington, G.; Ferrell, C., Effects of dietary clenbuterol onmetabolism of the hindquarters in steers. Journal of animal science1988,66(2),342.
    123. Bardocz, S.; Brown, D.; Grant, G.; Pusztai, A.; Stewart, J.; Palmer, R.,Effect of the β‐adrenoceptor agonist clenbuterol and phytohaemagglutinin on growth,protein synthesis and polyamine metabolism of tissues of the rat. British journal ofpharmacology1992,106(2),476-482.
    124. Pulce, C.; Lamaison, D.; Keck, G.; Bostvironnois, C.; Nicolas, J.; Descotes,J., Collective human food poisonings by clenbuterol residues in veal liver. Veterinaryand human toxicology1991,33(5),480.
    125. Hudman, D.; Elliott, R. A.; Whitaker, P.; Terry, T. R.; Sandhu, D. P.;Norman, R. I., Inhibition of the contractile responses of isolated human and rat bladdersby clenbuterol. The Journal of urology2001,166(5),1969-1973.
    126. Li, C.; Luo, W.; Xu, H.; Zhang, Q.; Xu, H.; Aguilar, Z. P.; Lai, W.; Wei, H.;Xiong, Y., Development of an Immunochromatographic Assay for Rapid andQuantitative Detection of Clenbuterol in Swine Urine. Food Control2013.
    127. Liu, G.; Chen, H.; Peng, H.; Song, S.; Gao, J.; Lu, J.; Ding, M.; Li, L.; Ren,S.; Zou, Z., A carbon nanotube-based high-sensitivity electrochemical immunosensorfor rapid and portable detection of clenbuterol. Biosensors and Bioelectronics2011,28(1),308-313.
    128. Zhu, G.; Hu, Y.; Gao, J.; Zhong, L., Highly sensitive detection ofclenbuterol using competitive surface-enhanced Raman scattering immunoassay.Analytica chimica acta2011,697(1),61-66.
    129. Ren, X.; Zhang, F.; Chen, F.; Yang, T., Development of a sensitivemonoclonal antibody-based ELISA for the detection of clenbuterol in animal tissues.Food and Agricultural Immunology2009,20(4),333-344.
    130. Han, J.; Gao, H.; Wang, W.; Wang, Z.; Fu, Z., Time-resolvedchemiluminescence strategy for multiplexed immunoassay of clenbuterol andractopamine. Biosensors and Bioelectronics2013.
    131. Caiyun, L.; Long, W. In Research on determination of clenbuterol andsalbutamol in pork by SPE-HPLC, New Technology of Agricultural Engineering(ICAE),2011International Conference on, IEEE:2011; pp1024-1026.
    132. Zhao, L.; Zhao, J.; Huangfu, W.-G.; Wu, Y.-L., Simultaneous determinationof melamine and clenbuterol in animal feeds by GC–MS. Chromatographia2010,72(3-4),365-368.
    133. Nguyen, D. N.; Ngo, T. T.; Nguyen, Q. L., Highly sensitive fluorescenceresonance energy transfer (FRET)-based nanosensor for rapid detection of clenbuterol.Advances in Natural Sciences: Nanoscience and Nanotechnology2012,3(3),035011.
    134. Meza‐Márquez, O. G.; Gallardo‐Velázquez, T.; Osorio‐Revilla, G.;Dorantes‐álvarez, L., Detection of clenbuterol in beef meat, liver and kidney by mid‐infrared spectroscopy (FT‐Mid IR) and multivariate analysis. International Journalof Food Science&Technology2012,47(11),2342-2351.
    135. Fan, L.; Chen, Q.; Zhang, W.; Cao, C., Sensitive Determination of IllegalDrugs of Clenbuterol and Salbutamol in Swine Urine by Capillary Electrophoresis withOn-line Stacking Based on Moving Reaction Boundary. Anal. Methods2013.
    136. Wang, L.; Li, Y.-Q.; Zhou, Y.-K.; Yang, Y., Determination of Fourβ2-Agonists in Meat, Liver and Kidney by GC–MS with Dual Internal Standards.Chromatographia2010,71(7-8),737-739.
    137. Wang, H.; Zhang, Y.; Li, H.; Du, B.; Ma, H.; Wu, D.; Wei, Q., Asilver-palladium alloy nanoparticles-based electrochemical biosensor for simultaneousdetection of ractopamine, clenbuterol and salbutamol. Biosensors and Bioelectronics
    2013.
    138. Beatty, J. D.; Beatty, B. G.; Vlahos, W. G., Measurement of monoclonalantibody affinity by non-competitive enzyme immunoassay. Journal of immunologicalmethods1987,100(1),173-179.
    139. Goding, J. W., Monoclonal antibodies: principles and practice. AccessOnline via Elsevier:1996.
    140. Leung, R.; Hou, M.; Manohar, C.; Shah, D.; Chun, P. In Reaction kineticsas a probe for the dynamic structure of microemulsion, ACS Symposium Series, ACSPublications:1985; p985.
    141. Kolbe, G., Das Komlexchemische Verhahender Kieselsaure.DissertationJena:1956.
    142. St ber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silicaspheres in the micron size range. Journal of colloid and interface science1968,26(1),62-69.
    143. Van Blaaderen, A.; Van Geest, J.; Vrij, A., Monodisperse colloidal silicaspheres from tetraalkoxysilanes: particle formation and growth mechanism. Journal ofcolloid and interface science1992,154(2),481-501.
    144. Wang, L.; Estévez, M.-C.; O'Donoghu, M.; Tan, W., Fluorophore-freeluminescent organosilica nanoparticles. Langmuir2008,24(5),1635-1639.
    145. He, X.; Cao, M., Synthesis and characterization of PbCrO4and PbWO4nanorods. Nanotechnology2006,17(13),3139.
    146. Zhang, Q.; Huang, F.; Li, Y., Cadmium sulfide nanorods formed inmicroemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects2005,257,497-501.
    147.李滋,单分散二氧化硅微球的制备与表征.中国陶瓷2012,(006),12-16.
    148. Vansant, E. F.; Van Der Voort, P.; Vrancken, K. C., Characterization andchemical modification of the silica surface.Access Online via Elsevier:1995.
    149. Yuan, J.; Matsumoto, K.; Kimura, H., A new tetradentateβ-diketonate-europium chelate that can be covalently bound to proteins fortime-resolved fluoroimmunoassay. Analytical chemistry1998,70(3),596-601.
    150. Yuan, J.; Wang, G.; Kimura, H.; Matsumoto, K., Highly sensitivetime-resolved fluoroimmunoassay of human immunoglobulin E by using a neweuropium fluorescent chelate as a label. Analytical biochemistry1997,254(2),283-287.
    151. Deng, W.; Jin, D.; Drozdowicz-Tomsia, K.; Yuan, J.; Goldys, E. M.,Europium chelate (BHHCT-Eu3+) and its metal nanostructure enhanced luminescenceapplied to bioassays and time-gated bioimaging. Langmuir2010,26(12),10036-10043.
    152. Bagwe, R. P.; Yang, C.; Hilliard, L. R.; Tan, W., Optimization ofdye-doped silica nanoparticles prepared using a reverse microemulsion method.Langmuir2004,20(19),8336-8342.
    153. Sakai, S.; Murakami, H., Binding of prolactin and monoclonal antibody toprolactin receptors immobilized on a nitrocellulose membrane filter. Analyticalbiochemistry1987,167(2),406-410.
    154. Polettini, A.; Groppi, A.; Ricossa, M. C.; Montagna, M., Gaschromatographic/electron impact mass spectrometric selective confirmatory analysis ofclenbuterol in human and bovine urine. Biological mass spectrometry1993,22(8),457-461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700