负载金属钌卟啉、BINOL及其衍生物诱导的不对称反应研究及N_2S_2型化合物与DNA相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属卟啉配合物能有效地、高产率、高选择性地催化简单烯烃环氧化,但催化剂稳定性差,重复使用困难。负载的金属卟啉克服了这一难题,并已经广泛用于绝大多数烯烃的催化环氧化,但用于对天然化合物的环氧化则不多。本文成功设计并合成了无机载体(3-氨基丙基硅胶(APS))负载五氟苯基钌卟啉[APS-Ru(Ⅱ)(tfpp)CO],并对该负载的金属卟啉进行了详细的表征。
     5B,6B-甾族环氧化物是合成其它甾族化合物的重要中间体。由于C-10上的B-甲基的影响,通常的环氧化方法只得到以a-环氧化物为主的混合物。本文以3-氨基丙基硅胶(APS)负载的五氟苯基钌卟啉[APS-Ru(Ⅱ)(tfpp)CO]为催化剂,成功用于不饱和甾族环氧化反应,并取得比较好的结果:(1)催化△~5-甾族衍生物环氧化,高转化率(100%)、高产率(97%)、高选择性(99%)地获得了B-环氧化物,而五氟苯基钌卟啉催化只得到了81%的B-选择性。(2)催化△~4-甾族衍生物环氧化,虽然产率相对比较低,但也能得到99%的B-选择性。(3)负载后的五氟苯基钌卟啉表现出了高的稳定性。重复使用五次后,其催化活性没有明显下降,催化乙酰胆固醇环氧化仍能得到93%的产率和92%的B-选择性。(4)反应产物比较单一,后处理简单,过滤就能回收催化剂,滤液除去溶剂,干燥后,直接加入标样利用核磁分析得到催化反应的转化率、产率和选择性。(5)分析方法简单,反应过程达到了绿色化的要求。
     N_2S_2配体由于其特殊的结构,已在配位化学、放射性元素的标记、放射性诊断和治疗以及放射性药物的合成等方面得到广泛的应用和发展。本文成功设计并合成了N_2S_2配体哌啶衍生物NEPDDD、NEMPDDD、NEMMPDDD、NNEPDD、NNEMPDD,并将三种单取代的哌啶衍生物NEPDDD、NEMPDDD、NEMMPDDD成功用于DNA的切割,获得了比较好的结果:(1)三种单取代的哌啶衍生物都能对超螺旋DNApUC19产生有效的切割作用而生成FormⅡ,其中,NEMPDDD的切割作用最强。(2)以NEMPDDD为例,研究了时间、浓度和pH值对切割作用的影响,结果表明:在37℃、pH=7.0的条件下,0.286mM的NEMPDDD能将超螺旋DNA(FormⅠ)在24h内完全转化为FormⅡ。(3)以NEMPDDD为例,对切割机理进行了初步的探索,结果发现,催化断裂DNA是按氧化途径进行的。(4)首次将N_2S_2自由配体用于DNA的切割实验,同金属人工核酸酶相比,N_2S_2配体哌啶衍生物自由配体同样具有人工核酸酶的作用。
     Diels-Alder反应是有机化学中构建六员环和碳碳键形成最为重要的反应之一。其中,硅醚二烯与羰基化合物的不对称Hetero-Diels-Alder(HDA)反应合成光学活性的二氢吡喃酮衍生物的研究尤为引人注目。本文用简单的TICl_4和(R)-BINOL、以简单的醇钠为添加剂,成功催化了芳香醛与Trans-4-methoxy-2-trimethylsiloxy-penta-1,3-diene的不对称Hetero-Diels-Alder反应,获得一系列的研究成果:(1)通过对不同醇钠作为添加剂进行考察,结果发现:在0℃时,以仲丁醇钠作为添加剂,在CH_2Cl_2中反应48 h后,TiCl_4和(R)-BINOL能有效地催化对硝基苯甲醛与Trans-4-methoxy-2-trimethylsiloxy-penta-1,3-diene的不对称Hetero-Diels-Alder反应,并得到86%收率和94%的对映选择性。(2)通过实验证明,该催化体系也能成功催化其它芳香醛与二烯的HDA反应。(3)实验结果表明,芳香醛的取代基位置对反应的产率和选择性影响较大,取代基的电子效应对反应的产率和选择性影响较小。(4)成功找到了一种简单而有效的方法、高对映选择性地合成2,6-二取代二氢吡喃酮衍生物。
     同时,我们又成功设计并合成了3-和33′-联萘酚咪唑长链烷基鎓盐。并探索了联萘酚咪唑长链烷基鎓盐在不对称催化反应中的应用。结果发现:在催化直接Aldol反应、azo-Diels-Alder反应、氧杂-Diels-Alder反应和苯甲酰甲酸乙酯的羟基化反应中,虽然没有得到我们所期望的结果,但体现了该类化合物仍然具有一定的催化活性。只要选择合适的反应,在一定的条件下,这种手性联萘酚咪唑长链烷基翁盐还是能在不对称催化合成中发挥应有的作用。
Metalloporphyrins have been applied to catalyze the epoxidation of unfunctionalized alkenes. In recent years emphasis has been put on the stability and reuse of the metalloporphyrins. Therefore, many supported metalloporphyrins have been synthesized with high stability. The ruthenium(Ⅱ) 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin(tfpp) carbonyl complex has been covalently attached to a 3-aminoporpyl functionalized silica gel(APS).
     Steroid epoxides are an important class of oxysterols (derivatives of cholesterol) that regulate cell proliferation and cholesterol homeostasis in organism. They are also versatile intermediates for steroid synthesis, playing increasingly important roles in the biochemical studies of enzymes, this supported ruthenium porphyrin(APS-Ru(Ⅱ)(tfpp)CO) was applied to catalyze the epoxidation ofΔ~5- andΔ~4-unsaturated steroids, and the encouraging results are obtained. Firstly, the epoxidation ofΔ~5-steroids obtained high yield (up to 99%) andβ-selectivity(up to 99%). Secondly, this supported metalloporphyrin could also catalyzeΔ~4- steroids and the catalytic reactions obtained 99%β-selectivity, though the yields were low. Thirdly, this supported metalloporphyrin had high stability, and the activity didn't decrease after being reused five times. Finally, the analysis of the reaction results was simple by ~1H-NMR, and the catalyst can easily be reused.
     Ligands with N_2S_2 structures, especially 2, 9- dimethyl-4, 7-diazadecane-2, 9-dithiol (DDD), have been studied in recent years. DDD is a strong chelating agent and can form stable lipophilic chelate complex with technetium or rhenium in high yields. The derivatives of N_2S_2 ligands have been employed in diagnostic imaging, radiopharmaceuticals, nuclear medicine and so on. Five N_2S_2 piperidine derivatives, NEPDDD, NEMPDDD, NEMMPDDD, NNEPDDD, NNEMPDDD, were synthesized. Three derivatives(NEPDDD, NEMPDDD, NEMMPDDD) were selected to catalyze DNA cleavage, and obtained a series of encouraging results. First, the three free ligands could cleave plasmid DNA(pUC 19) efficiently, especially NEMPDDD. Second, for the cleavage reaction catalyzed by NEMPDMDD, FormⅠDNA could convert to FormⅡcompletely in 24 h at 37℃under physiological condition(pH 7.0). Third, the DNA-cleavage mechanism involved an oxidative pathway. Eventually, the free N_2S_2 piperidine derivatives were employed in DNA cleavage for the first time. The results show that these free ligands have the same catalysis activity as restriction enzymes.
     Diets-Alder reaction is one of the important reactions in organic chemistry for the construction of six-membered rings and the formation of carbon-carbon bonds. Asymmetric Hetero-Diets-Alder reaction (HDA) between electron-rich diene with aldehydes can provide a series of dihydropyrans and dihydropyranones which are among the most important intermediates in the synthesis of many natural products. The Hetero-Diels-Alder reactions of trans-4-methoxy-2-trimethylsiloxy-penta-1,3-diene with aromatic aldehyde were studied and the encouraging results were obtained. Firstly, optically active 2,6-disubstituted dihydropyrones were available by hetero-Diels-Alder (HDA) reaction of aldehydes and diene in presence of MCl_4 (M=Wi~(4+), Sn~(4+)) and (R)-BINOL with sodium alcoholates as additives under mild reaction conditions. Secondly, all the reaction products catalyzed by TiCl_4 and BINOL with NaOCH -(CH_3)CH_2CH_3 as an additive were obtained up to 88% yield and 94% ee. Finally, the substituent positions of aromatic ring affected the yield and enantioselectivity of HAD reactions, but the electric effects of substituent were not significant.
     At the same time, the 3- and 3,3'-BINOL imidazonium were synthesized successfully, and were used to catalyze direct Aldol reaction, HDA reaction and the hydroacylation of a-keto ester with aldehyde. Although the catalytic reactions has no results, this imidazonium will be employed in some reaction under capable conditions.
引文
1. Knowles W. S. Asymmetric Hydrogenations (Nobel Lecture). Angew. Chem. Int. Ed. 2002, 41, 1998-2007.
    2. Noyori R. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture). Amgew. Chem. Int. Ed. 2002, 41, 2008-2022.
    3. Sharpless K. B. Searching for New Reactivity (Nobel Lecture). Angew. Chem. Int. Ed. 2002, 41, 2024-2032.
    4. Buchler J. W. Porphyrins and Metalloporphyrins Elsevier Scientific Publishing Company. 1975, p157.
    5. Collman J. P., Gagne R. R., Reed. C.A. Picket Fence Porphyrins. Synthetic Modelfor Oxygen Binding Hemoproteins. J. Am. Chem. Soc. 1975, 97, 1433.
    6.徐丰 对模拟细胞色素P—450的卟啉类化合物的研究.无机化学学报 1989,5(2),133-143
    7.吴越,叶兴凯,张长安 金属卟啉类化合物的催化作用.化学通报 1988,1,1-8.
    8.吴越,张岱山 单加氧酶细胞色素P—450及其模拟 生物化学与生物物理进展.19834,10-19.
    9. Shultz D. A., Knox D. A., Morgan L. W., Sandberg K., Tew G. N. Preparation of meso-tetra(4-galvinoiphenyl)porphyrin—A building block for molecular magnetic materials Tetrahedron Lett. 1993, 34(25), 3975-3978.
    10. Lavallee D. K., White A., Diaz A., Battioni J. P., Mansuy D. Efficient metalloporphyrin synthesis under mild conditions using N-benzylporphyrins. Tetrahedron Lett. 1986, 27(30), 3521-3524.
    11. Campbell L. A., Kodadak T. Enabtioselective Catalysis of Epoxidation by Metalloporphyrins: Application to Enantioselective Synthesis. J. Mol. Catal. A: Chemical1996, 113(1-2), 293-310.
    12. Poriel C., Ferrand Y., Maux P. L. Syntheses of Manganese and Iron Tetraspirobifl-uorene Porphyrins as New Catalysts for Oxidation of Alkenes by Hydrogen Peroxide and Iodosylbenzene. Tetrahedron Lett. 2003, 44(9), 1759-1761.
    13.蓝仲薇,陈江涛 某些新型冠醚-卟啉化合物的合成.有机化学 1994,14(5),516-521.
    14. Kuroda Y., Hiroshige T., Ogoshi H. Epoxidation Reaction Catalysed by Cyclodextrin Sandwiched Porphyrin in Aqueous Buffer Solution J. Chem. Soc., Chem. Commun. 1990. 1594-1595.
    15. Bauer L. J., Gutsche C. D. Calixarenes. 15. The Formation of Complexes of Calixarenes with Neutral Organic Molecules in Solution J. Am. Chem. Soc. 1985, 107(21), 6063-6069.
    16.蓝仲薇,余孝其 长链烷氧取代金属卟啉的合成及催化性能研究.有机纪学 1995,15(1),47-51.
    17.李后强,李东红 雌甾-金属卟啉的合成及其催化性质的研究.无然产物研究与开发1993,5(4),15-21.
    18.(a) 余孝其,游劲松 疏水性金属卟啉的合成及催化性能研究.有机化学 1997,17(2),153-158.
    (b) 袁立华,宁永成杯芳烃化金属卟啉及其苯乙烯环氧化的催化性能.分子催化 1997,11(4),283-296.
    19.(a) 余孝其,魏廷贤,蓝仲薇,游劲松,赵华明.键联聚乙二醇高分子担载锰(Ⅲ)卟啉的合成及催化烯烃环氧化反应性能研究.分子催化 1995,9(4),244-250
    (b) 游劲松,蓝仲薇,余孝其.负载化金属卟啉研究进展.石油化工 1996,25(1),56-61.
    20. Mansuy D. Biomimetic catalysts for selective oxidation in organic chemistry. Pure Appl. Chem. 1990, 62(4), 741-746.
    21. Moreira M. S. M., Martins P. R., Cud R. B., Nascimento O. R., Iamamoto Y. Iron porphyfins immobilised on silica surface and encapsulated in silica matrix: a comparison of their catalytic activity in hydrocarbon oxidation. J. Mol. Catal. A: Chem. 2005, 233(1-2), 73-81.
    22. de Lima O. J., de Aguirre D. P., de Oliveira D. C., et al. Porphyrins entrapped in an alumina matrix. J. Mater. Chem. 2001, 11(10), 2476-2481.
    23. (a) Barloy L., Battioni F., Mansuy D. Manganese porphyrins supported on montmorillonite as hydrocarbon mono-oxygenation catalysts: particular efficacy for linear alkane hydroxylation. J. Chem. Soc. Chem. Commun. 1990, 1365-1367.
    (b) Crestini C., Pastorini A., Tagliatesta P. Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model eompounds. J. Mol. Catal. A: Chem. 2004, 208(1-2), 195-202.
    24. Battioni P., Lallier J. P., Barloy L., et al. Mono-oxygenase-like oxidation of hydrocarbons using supported manganese-porpnyrin catalysts: beneficial effects of a silica support for alkane hydroxylation. J. Chem. Soc. Chem. Commun.1989, 1149-1151.
    25.索继栓,李树本.担载金属卟啉模拟细胞色素P—450的催化丙烯环氧化.物理化学学报 1995,11(2),101-106.
    26. (a) Battion P., Iwanejko R. I., Mansuy D., et al. Reactivity of polyhalogenated and zeolite-encapsulated metalloporphyrins in oxidation with dioxygen. J. Mol. Catal A: Chem. 1996, 109, 91-98.
    (b) Skrobot F. C., Valente A. A., Neves G., Rosa I., Rocha J., Cavaleiro J. A. S. Monoterpenes oxidation in the presence of Y zeolite-entrapped manganese(Ⅲ) tetra(4-N-benzylpyridyl)porphyrin. J. Mol. Catal. A: Chem. 2003, 201 (1-2), 211-222.
    27.王杏乔,高爽 诱捕在沸石超笼内的金属卟啉的催化性能.Chinese Journal of Catalysis.1996,17(4),342-345.
    28. (a) Tangestaninejad S., Moghadam M. Efficient olefin epoxidation and alkane hydroxylation using sulfonated manganese(Ⅲ) porphyrin supported on IRA-900 ion-exchange resin. Synth. Commun. 1998, 28 (3), 427-432.
    (b) Mirkhani V., Tangestaninejad S., Moghadam M. Mild and efficient alkene epoxidation and alkane hydroxylation by manganese(Ⅲ) porphyrin supported on IRA-400 ion-exchange resin. J. Chem. Res.-S 1999, (12), 722-723.
    29. Viana Rosa I. L., Manso C. M. C. I., Serra O. A., et al. Biomimetical catalytic activity of iron(Ⅲ) porphyrins encapsulated in the zeolite. J. Mol. Catal. A: Chem. 2000, 160(2), 199-208.
    30. Tasumi T., Nakamura M., Tominaga H. Hydroxylation of alkanes catalyzed by manganese tetraphenylporphyrin immobilized on imidazole-modified silica gel. Catal. Today 1989, 6(1-2), 163-170.
    31. Iamamoto Y., Ciuffi K. J., Sacco H. C., Iwamoto L. S., Nascimento O. R., Prado C. M. C. Characterization and catalytic activity of 2, 6-dichlorophenyl substituted iron(Ⅲ) porphyrin supported on silica gel and imidazole propyl gel. J. Mol. Catal.A:Chem. 1997, 116(3), 405-420.
    32. Becker D. S., Hayes R. G. Complexation of zinc tetraphenylporphyrin by adsorbed poly(4-vinylpyddine): equilibrium studies. Inorg. Chem. 1983.20(21), 3050-3053.
    33.李守贵,房铭,庞文琴等.钌卟啉/MCM-41催化剂的制备、表征及性质.催化学报1999,20(2),161-165.
    34. Liu C. J., Yu W.Y., Li S. G., et al. Ruthenium meso-Tetrakis(2,6-dichlorophenyl)porphyrin Complex Immobilized in Mesoporous MCM-41 as a Heterogeneous Catalyst for Selective Alkene Epoxidations. J. Org. Chem. 1998, 63(21), 7364-7369.
    35. Zhan B. Z., Li X. Y. A novel 'build-bottle-around-ship' method to encapsulate metalloporphyrins in zeolite-Y. An efficient biomimetic catalyst. Chem. Commun. 1998, 3, 349-350.
    36. Haber J., Klosowski M., Poltowicz J. Co-oxidation of styrene and iso-butyraldehyde in the presence of polyaniline-supported metalloporphyrins. J. Mol. Catal. A: Chem. 2003, 201(1-2), 167-178.
    37. Leznoff C. C., Svirskaya P. I. The Synthesis of Unsymmetrical Tetraarylporphyrins on Solid Phases. Angew. Chem. Int. Ed. 1978, 17(12), 947-947.
    38. (a) Rollmann L. D. P. polymer-bonded metalloporphyrins. J. Am. Chem. Soc. 1975, 97(8), 2132-2136.
    (b) Mirkhani V., Tangestaninejad S., Moghadam M., Karimian Z. Efficient oxidative decarboxylation of carboxylic acids with sodium periodate catalyzed by supported manganese(Ⅲ) porphyrin. Bioorg. Med. Chem. Lett. 2003, 13(20), 3433-3435.
    39. Sherrington D. C. Polymer-supported metal complex oxidation catalysts. Pure Appl. Chem. 1988, 60(3), 401-414.
    40. Potapov G. P., Krupenskii V. I., Alieva M. I. Metalloporphyrin Anchored to Polymeric Supports as New Catalysts for Aldose Dehydration, React. Kinet. Catal. Lett. 1985, 28(2), 331.
    41.(a) 黄冠,刘飞鸽,郭灿城 高分子多糖载体对四苯基金属卟啉催化性能影响.化学学报 2006, 64(7), 662-666.
    (b) Jin Y. W., Lu X. F., Wang C. Fabrication of discontinuous fibers of poly (N-vinylpyrrolidone) containing metalloporphyrin molecules. J. Appl. Polym. Sci. 2006, 102(6), 6017-6022.
    42.许正辉,奚祖威.金属卟啉-聚乙二醇催化烯烃环氧化反应.分子催化 1992,6(3),213-219.
    43. Zhang J. -L., Che C. -M. Soluble Polymer-Supported Ruthenium Porphyrin Catalysts for Epoxidation, Cyclopropanation and Aziridination of Alkenes Org. Lett. 2002, 4(11), 1911-1914.
    44.俞善信,钟为标,郭灿城.卟啉化合物的合成及其对细胞色素P—450的模拟.催化学报 1994,15(3),232-235.
    45.程坦,李翔.负载金属卟啉氧化异丙苯的研究.工业催化1993,1(2),37-41.
    46. Yu X.-Q., Huang J.-S., Yu W.-Y., Che C.-M. Polymer-Supported Ruthenium Porphyrins: Versatile and Robust Epoxidation Catalysts with Unusual Selectivity. J. Am. Chem. Soc. 2000, 122(22), 5337-5342.
    47. Du C. P., Li Z. K., Wen X. M., Wu J., Yu X. Q. Yang M., Xie R. G. Highly diastereoselective epoxidation of cholest-5-ene derivatives catalyzed by polymer-supported manganese(Ⅲ) porphyrins. J. Mol. Catal. A: Chem. 2004, 216(1), 7-12.
    48. Battioni P., Bartoli J.F., Mansuy D., Byun Y.S., Traylor T.G. An easy access to polyhalogenated metalloporphyrins covalently bound to polymeric supports as efficient catalysts for hydrocarbon oxidation. J. Chem. Soc. Chem. Commun. 1992, 15, 1051-1053.
    49. Kamachi M. Cheng X. S., Aota H., Mori W., Kishita M. Preparation and Properties of Magnetically-interacting Polymer with Copper(Ⅱ) and Vanadyl(Ⅱ) Poporphyrins. Chem Lett. 1987, 16(12), 2331-2334.
    50. Guillet J. E., Takahashi Y., McIntosh A. R., Bolton J. R. A new polymeric model for the active site in artificial photosynthesis. Macromolecules 1985, 18(9), 1788-1790.
    51. Nestler O., Severin K. A Ruthenium Porphyrin Catalyst Immobilized in a Highly Cross-linked Polymer. Org. Lett. 2001, 3(24), 3907-3909.
    52. Mori T., Santa T., Hirobe M. Synthesis and cytochrome P-450-like reactivity of polypeptide-bound porphinatoiron(Ⅲ). Tetrahedron Lett. 1985, 26(45), 5555-5558.
    53. Turk H, Ford W. T.. Epoxidation of styrene with aqueous hypochlorite catalyzed by a manganese(Ⅲ) porphyrin bound to colloidal anion-exchange particles. J. Org. Chem. 1991, 56(3), 1253-1260.
    54. Leanord D. R., Lindsay Smith J. R. Model systems for cytochrome P450 dependent mono-oxygenases. Part 7. Alkene epoxidation by iodosylbenzene catalysed by ionic iron(Ⅲ) tetraarylporphyrins supported on ion-exchange resins. J. Chem. Soc. Perkin Trans. 2 1990, 1917-1923.
    55. Leanord D. R., Lindsay Smith J. R. Model systems for cytochrome P450 dependent monooxygenases. Part 8. A study of the epoxidation of (Z)-cyclooctene by iodosylbenzene catalysed by cationic iron(Ⅲ) tetra(N-methylpyridyl)porphyrins adsorbed on Dowex MSC1. J. Chem. Soc. Perkin Trans. 2. 1991, 25-30.
    56.周维善,庄治平 甾体化学进展 科学出版社,2002,p45.
    57.胡永洲,刘滔,姚爱平,杨大为.福美司坦的合成方法改进.浙江大学学报(医学版)2001,30(1),19-21.
    58. Camerino B. 4-Hydroxy-17-methyltestosterones[P] US: 306020103, 1959-06-06.
    59.韩广甸,马兆扬.我国利用剑麻皂素合成甾体药物的研究进展.中国攻药工业杂志 2002,33(9),459-464
    60. Bednarki P. J., Nelson S. D. Interactions of thiol-containing androgens with human placental aromatase. J. Med. Chem. 1989, 32(1), 203-213.
    61. Mann J., Pietrzak B. The synthesis of 4-hydroxyandrost-4-ene-3,17-dione and other potential aromatase inhibitors. J. Chem.Soc. Perkin Trans. 1 1983, (10), 2681-2685.
    62. Burnet R. D., Kirk D. N. Some observations on the preparation of 2-hydroxy-steroid 4-En-3-ones. J. Chem. Soc. Perkin Trans. 1 1973, (7), 1830-1836.
    63. Hrycho S., Morand P. Participation of the 19-substituent in the conversion of 19-hydroxyandrost-4-ene-3,17-dione into the corresponding 4,5-diosphenol. J. Chem. Soc. Perkin Trans. 1 1990, (11), 2899-2904.
    64. Salvador J. A. R., Sáe Melo M. L., Campos Neves A. S. Oxidations with potassium permanganate-metal sulphates and nitrates, β-Selective epoxidation of Δ~5-unsaturated steroids. Tetrahedron Lett. 1996, 37(5), 687-690.
    65. Syamala, M. S., Das J., Baskaran S., Chandracekaran S. A novel and highly beta-selective epoxidation of DELTA 5-unsaturated steroids with permanganate ion. J. Org. Chem. 1992, 57(6), 1928-1930.
    66. Muto T., Urnehara J., Masumori h., Miura T., Kimura M. On the Mode of Epoxidation by the Tetraphenylporphinatoiron(Ⅲ)-Iodosylbenzene System. Chem. Pharm. Bull. 1985, 33(11), 4749-4754.
    67. Marchon J. C., Ramasseui R. Stereospecific Epoxidation by Air of Cholest-5-ene Derivatives Catalysed by a Ruthenium Porphyrin J. Chem. Soc. Chem. Commun. 1988, 298-299.
    68. Murahashi S.I., Maota T., Komoiya N. Metalloporphyrin-Catalyzed Oxidation of Alkanes with Molecular Oxygen in the Presence of Acetaldehyde. Tetrahedron Lett. 1995, 36(44), 8059-8062.
    69.大冢齐之助,田房不二男,陈海生.N,O,O′-二(对甲苯磺酰基)双(2-羟乙基)胺的合成.化学试剂 1995,17(3),141-143
    70. Blatter G., et al, The Use of 2-deoxy-2-trichloroacetamido-D-glucopyranose Derivatives in Syntheses of Oligosaccharides. Carbohydr. Res. 1994, 260, 189-194.
    71. George. W., et al, Synthesis of the enantiomers of 6-epicastanospermine and 1,6-diepicastanospermine from D- and L-gulonolactone Carbohydr. Res. 1990, 205, 269-275.
    72.中级有机化学实验(有机合成部分) 四川联合大学化学系,1998,p20.
    73. Zhao Z-. Z. The Protect Group in The Organic Chemistry Science Press: Beijin, 1984, 89.
    74. Rouseau R. J., Robins R. K. Synthesis of Varins Chlorimidazo[4,5-C]-pyddines and related Derivs. J. Heterocycl. Chem. 1965, 2, 196-201.
    75. (a) Kandutsch A. A., Chen H. W., Heiniger H. J. Biological activity of some oxygenated sterols. Science 1978, 201(4355), 498-501.
    (b) Smith L. L., Johnson B. H. Biological activities of oxysterols. Free Radical Biol. Med. 1989, 7(3), 285-332.
    (c) Hwang P. L. Biological activities of oxygenated sterols: Physiological and pathological implications. Bio. Essays. 1991, 13(11), 583-589.
    76. (a) Blackburn G. M., Rashid A., Thompson M. H. Interaction of 5α,6α-cholesterol oxide with DNA and other nucleophiles. J. Chem. Soc. Chem. Commun 1979, 9, 420-421.
    (b) Raaphorst G. P., Azzam E. I., Langlois R., Vanlier J. E. Effect of cholesterol a and β epoxides on cell killing and transformation. Biochem. Pharmacology 1987, 36(14), 2369-2372.
    (c) Smith L. L. Cholesterol Autoxidation Plenum Press: New York, 1981.
    77. (a) Scallen T. J., Dhar A. K.; Loughran E. D. Isolation and Characterization of C-4 Methyl Intermediates in Cholesterol Biosynthesis after Treatment of Rat Liver in Vitro with Cholestan-3β,5α,6β-triol. J. Biol. Chem. 1971, 246, 3168-3174.
    (b) Watable T., Kanai M., Isobe M., Ozawa N. The hepatic microsomal biotransformation of delta 5-steroids to 5 alpha, 6 beta-glycols via alpha- and beta-epoxides. J. Biol. Chem. 1981, 256, 2900-2907.
    78. (a) Bowers A, Ringold H. J. Steroids. XCV.1 Synthesis of 6α-Methyl-21-desoxycortisone. A New Route to 6α-Methylcortisone. J. Am. Chem. Soc. 1958, 80(12), 3091-3093.
    (b) Ringold H. J., Mancera O., Djerassi C., Bowers A., Batres E., Martinez H., Necoechea E., Edwards J. A., Velasco M., Campillo C. C., Dorfman R. I. A New Class of Potent Cortical Hormones.~1 6α-Chloroticoids. J. Am. Chem. Soc. 1958, 80(23), 6464-6465.
    (c) Bowers A., Ringold H. J. Steroids. CⅢ.~1 A New Class of Potent Cortical Hormones.~1 6α-Chloroticoids. J. Am. Chem. Soc. 1958, 80, 4423-4424.
    79. (a) Bok J. W., Lermer L., Chilton J., Klingeman H. G., Towers G. H. N. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 1999, 51,891-895.
    (b) Tschesche R., Schwang H., Legler G. Inhaltsstoffe aus jaborosa integrifolia LAM.-Ⅰ: Isolierung und chemische charakterisierung der jaborosalactone-A and -BTetrahedron 1966, 22(3), 1121-1127.
    (c) Gamoh K., Hirayama M., Ikekawa N. Stereocontrolled synthesis of withanolide D and related compounds. J. Chem. Soc. Perkin Trans. 1 1984, 449-454.
    80. Liu. C. -J., Yu. W. -Y., Li. S. -G., Ruthenium meso-Tetrakis(2,6-dichlorophenyl)porphyrin Complex Immobilized in Mesoporous MCM-41 as a Heterogeneous Catalyst for Selective Alkene Epoxidations J. Org. Chem. 1998, 63, 7364-7369.
    81. Banfi. S., Montanari. F., Quici. S. Investigation on Factors Ruling Catalytic Efficiency and Chemical Stability of Manganese(Ⅲ) porphyrins in Hypochlorous Zcid-olefin Epoxidation: Conditions for Practical Application J. Org. Chem. 1989, 54, 1850-1859.
    82. (a) Cross A. D. Steroids. CC.~1 Spectra and Stereochemistry, Part Ⅲ.~2 Steroidal 5,6 - poxides. J. Am. Chem.Soc. 1962, 84(16), 3206-3207.
    (b) Yang D. Jiao G. S. Highlyβ-Selective Epoxidation of Δ~5-Unsaturated Steroids Catalyzed by Ketones Chem. Rur. J. 2000, 6, 3517-3521.
    (c) Li Z. K., Wen X. M., Wu J., Yu X. Q., Yang M. Xie R. G.负载锰卟啉催化乙酰胆固醇的选择性环氧化.(Chin) Chem. Res. Appl. 2003, 15(3), 359-360.
    (d) Marchon J. C., Ramasseul R. A Convenient Synthesis of 5,6β-Epoxides of Some Cholesteryl Esters and Δ~5-Ketosteroid Derivatives by Catalytic β-Stereoselective Epoxidation. Synthesis 1989,1989(5), 389-391.
    1. Corbin J. L., Work D. E. 1-Alkyl-(or aryl-)amino-2-methylpmpane-2-thiols. Some Bi- and Tetradentate Nitrogen-Sulfur Ligands from Shiff's Base Disulfides J. Org. Chem. 1976, 41(3), 489-491.
    2. (a) Rampersad M. V., Jeffery S. P., Golden M. L, Lee J., Reibenspies J. H., Darensbourg D. J., Darensbourg M. Y. Characterization of Steric and Electronic Properties of Ni N_2SJ_2 Complexes as S-Donor Metallodithiolate Ligands J. Am. Chem. Soc. 2005, 127, 17323-17334.
    (b) Linck R. C., Spahn C. W., Rauchfuss T. B., Wilson S. R. Structural Analogues of the Bimetallic Reaction Center in Acetyl CoA Synthase: A Ni-Ni Model with Bound CO J. A.. Chem. Soc. 2003, 125, 8700-8701.
    (c) Zheng Y. Y., Saluja S., Yap G. P. A., Blumenstein M., Rheingold A. L., Francesconi L.C. Gallium and Indium Complexes of Bis(amino thiol) (N_2S_2) Ligands Inorg. Chem. 1996, 35, 6656-6666.
    (d) Grapperhaus C. A., Mullins C. S., Mashuta M. S. Structural comparison of alkylated derivatives of (bmmp-dmed)Ni and (bmmp-dmed)Zn Inorganica Chimica Acta 2005, 358, 623-632.
    3. (a) Papadopoulos M., Stathaki S., Mastrostamatis S., Varvarigou A., Chiotellis E. ~(99m)Tc-DADT complexes .substituted with heterocyclic amines: Effect of substitution on in vivo reactivity. Nucl. Med. Biol. 1993, 20, 105-115.
    (b) Scheffel U., Goldfarb H. W., Lever S. Z., Gungon R. L., Bums H. D., Wagner H. N. Comparison of Technetium-99m Aminoalkyl Diaminodithiol (DADT) Analogs as Potential Brain Blood Flow Imaging Agents. J. Nucl. Med. 1988, 29, 73-82.
    (c) Schultze L. M., Todaro L J., Baldwin R. M., Byme E. F., McBride B. J. Synthesis, Characterization, and Crystal Structure of Neutral Rhenium(Ⅴ) Complexes with S-Substituted N2S2 Ligands. Inorg. Chem. 1994, 33, 5579-5585.
    (d) Kung H. F., Molnar M., Billings J., Wicks R., Blau M. Synthesis and Biodistribution of Neutral Lipid-Soluble Tc-99m Complexes that Cross the Blood-Brain Barrier. J. Nucl.Med. 1984, 25, 326-332.
    (e) Kung H. F., Guo Y.-Z., Yu C.-C., Billings J., Subramanyam V., Calabrese J. C. New brain perfusion imaging agents based on technetium-99m bis(aminoethanethiol) complexes: stereoisomers and biodistribution. J. Med. Chem. 1989, 32, 433-437.
    (f) Francesconi L. C., Graczyk G., Wehrli S., Shaikh S. N., McClinton D., Liu S., Zubieta J., Kung H. F. Synthesis and characterization of neutral MVO (M=technetium, rhenium) amine-thiol complexes containing a pendant phenylpiperidine group. Inorg. Chem. 1993, 32, 3114-3124.
    (g) Walovitch R. C., Hill T. C., Garrity S. T., Cheesman E. H., Burgess B. A., O'Leary D. H., Watson A. D., Ganey M. V., Morgan R. A., Williams S. J. Characterization of Technetium-99m-L,L-ECD for Brain Perfusion Imaging, Part 1: Pharmacology of Technetium-99m ECD in Nonhuman Primates, J. Nucl. Med. 1989, 30, 1892-1901.
    (h) Leveille J., Demonceau G., De Roo M., Rigo P., Taillefer R., Morgan R. A., Kupranick D., Walovitch R. C. Characterization of Technetium-99m-L,L-ECD for Brain Perfusion Imaging, Part 2: Biodistribution and Brain Imaging in Humans. J. Nucl. Med. 1989, 30, 1902-1910.
    4. (a) Deutsch E., Bushong W.,. Sodd V. J., Scholz K. L., Fortman D. L., Lukes S. J. Heart imaging with cationic complexes of technetium. Science 1981,214, 85-86.
    (b) Holman B. L., Jones A. G., Lister-James J., Davison A., Abrams M. J., Kirshenbaum J. M., Tumeh S. S., English R. J. A new Tc-99m-labeled myocardial imaging agent, hexakis(t-butylisonitr-ile)-technetium(Ⅰ)[Tc-99m TBI]: initial experiences in human. J. Nucl. Med. 1984, 25, 1350-1355.
    (c) Jones A. G., Abrams M. J., Davison A., Brodack J. W., Toothaker A.K., Adelstein S. J., Kassia A. I., Biological studies of a new class of technetium complexes: the hexakis(alkylisonitrile)technetium(Ⅰ) cations Int. J. Nucl. Med. Biol. 198, 411, 225-234.
    (d) Herzog K. M., Deutsch E., Deutsch K., Silberstein E. B., Sarangarajan R., Cacini W. Synthesis and renal excretion of technetium-99mlabeled organic cations J. Nucl. Med. 1992, 33, 2190-2195.
    (e) Blauenstein P., Pfeiffer G., Schubiger P. A., Anderegg G., Zollinger K., May K., Proso Z., Ianovici E., Lerch P., Chemical and biological properties of a cationic Tc-tetraamine complex. Int. J. Appl. Radiat. Isot. 1985, 36, 315-317.
    (f) Thomback J. R., Theobald A. E., Technetium-99m-ethylendiamine: a new cationic complex of technetium. Int. J. Appl. Radiat. Isot. 1981, 32, 833-838.
    (g) Troutner D. E., Simon J., Ketring A. R., Volkert W., Holmes R. A. Complexing of Tc-99m with cyclam: concise communication J. Nucl. Med. 1980, 21,443-448.
    5. Sun Y. Z., Anderson C. J., Pajeau T. S., Reichert D. E., Hancock R. D., Motekaitis R. J., Martell A. E., Welch M. J. Indium(Ⅲ) and Gallium(Ⅲ) Complexes of Bis(aminoethanethiol) Ligands with Different Denticities: Stabilities, Molecular Modeling, and in Vivo Behavior. J. Med. Chem. 1996, 39, 458-470.
    6. Chryssou K., Pelecanou M., Papadopoulos M. S., Raptopoulou C. P., Pirmettis I. C., Chiotellis E., Stassinopoulou C. I. Synthesis and structural characterization of the [2,9-dimethyl-4,7-diaza-2,9-decanedithiolato]oxorhenium (Ⅴ) complex Inorganica Chimica Acta 1998, 268, 169-175.
    7. Jeong J. M., Lee Y. S., Kim Y. J., Lee D. S., Chung J. K., Sub Y. G., Lee M. C. Cationic complex: 99m Tc-N,N-dimethyldiaminedithiol Nucl. Med. Bio. 2002, 29, 711-717.
    8. Oya C., P16ssl K, Kung M. P., Stevenson D. A., Kung H. F. Small and Neutral Tc~vO BAT, Biaaminoethanethiol(N_2S_2) Complexes for Developing New Brain Imaging Agents Nucl. Med. Bio. 1998, 25, 135-140.
    9. Lever S. Z., Burns H. D., Kervitsky T. M., Goldfarb H. W., Woo D. V., Wong D. E, Epps L. A., Kramer, A. V, Wanger H. N. Design, Preparation, and Biodistribution of a Technetium-99m Triaminedithiol Complex to Assess Regional Cerebral Blood Flow J. NucL Med. 1985, 26, 1287-1294.
    10. DiZio J. P., Fiaschi R., Davison A., Jones A. G., Katzenellenbogen J. A. Progestin-Rhenium Complexes: Metal-Labeled Steroids with High Receptor Binding Affinity, Potential Receptor-Directed Agents for Diagnostic Imaging or Therapy. Bioconlugte Chem. 1991, 2, 353-366.
    11. Jeong J. M., Kim Y. J., Lee Y. S., Ko J. I., Son M., Lee D. S., Chung J.-K., Park J. H., Lee M. C. Lipiodol Solution of a lipophilic agent, 188Re-TDD, for the treatment of liver cancer Nucl. Med. Biol. 2001, 28, 197-204.
    12.严骏华,李德有,陈兰福 脑显像剂二胺基二硫醇类化合物的~(99)Tc~m标记及其初步动物实验 同位素 1997,10(2),78-83
    13.(a) 王文进,罗顺忠,何佳恒,王关全等~(188)Re-NEPTDD的制备及生物分布研究 核技术 2005,28(4),305-308.
    (b) 王文进,罗顺忠,何佳恒,王关全等 ~(188)Re-NEMMPTDD 的制备及生物分布研究 核化学与放射化学 2005,27(1),57-60.
    14. Cheesman E. H., Blanchette M. A., Ganey M. V., et al. Characterization of Technetium-99m-L,L-ECD for Brain Perfusion Imaging, Part 1: Pharmacology of Technetium-99m ECD in Nonhuman Primates. J. Nucl. Med. 1989, 30(11), 1892-1901.
    15.潘中允,陈涤明,朱绍莉,等.~(99)Tc~m-ECD SPECT rCBF显像的动物实验临床研究 中华核医学杂志 1989,9(4),210-212.
    16. Walovitch R. C., Hill T. C., Garrity S. T., et al. Characterization of Technetium-99m-L ,L-ECD for Brain Perfusion Imaging, Part Ⅰ: Pharmacology of Technetium-99m ECD in Nonhuman Primates J. Nucl. Med. 1989, 30(11), 1892-1901.
    17. Leveille J., Demonceau G., De Roo M., et al. Characterization of Technetium 99m-L ,L -ECD for Brain Perfusion Imaging in Humans J. Nucl. Med. 1989, 30, 1902-1910.
    18. Mazza S., Soucy J.P., Gravel P., Michaud M., Postuma R., Massicotte-Marquez J., Decary A., Montplaisir J. Assessing whole brain peffusion changes in patients with REM sleep behavior disorder. Neurology 2006, 67, 1618-1622.
    19. Christopher H. van Dyck, C. Huie Lin, Eileen O. Smith, Gary Wisniewsld, Janet Cellar, Rhonda Robinson, Meena Narayan, Alexandre Bennett, Richard C. Delaney, Richard A. Bronen, and Paul B. Hoffer Comparison of Technetium-99m-HMPAO and Technetium-99m-ECD Cerebral SPECT Images in Alzheimer's Disease. J. Nucl. Med. 1996, 37, 1749-1755.
    20. Oku N., Matsumoto M., Hashikawa K., Moriwaki H., Ishida M., Seike Y., Terakawa H., Watanabe Y., Uehara T., Nishimura T. Intra-Individual Differences Between Technetium-99m-HMPAO and Technetium-99m-ECD in the Normal Medial Temporal Lobe. J. Nucl. Med. 1997 38. 1109-1111.
    21. Trawick B. N., Daniher A. T, Bashkin J. K. Inorganic Mimics of Ribonucleases and Ribozymes: From Random Cleavage to Sequence-Specific Chemistry to Catalytic Antisense Drugs. Chem. Rev. 1998, 98(3), 939-960.
    22. Sigman D. S. Chemical nucleases. Biochemistry 1990, 29(39), 9097-9105.
    23. (a) Sigman D. S., Mazumder A., Perrin D. M. Chemical nucleases. Chem. Rev.; 1993, 93(6), 2295-2316.
    (b) David S. Sigman, Thomas W. Bruice, Abhijit Mazumder, Christopher L. Sutton Targeted chemical nucleases. Acc. Chem. Res. 1993, 26(3), 98-104.
    24.白春礼,方哗,唐有祺 三链核酸的结构与生物化学科学出版社,1996,176-183
    25. Sigman D. S., Chen C. B. Chemical Nucleases: New Reagents in Molecular Biology. Ann. Rev. Biochem. 1990, 59, 207-236.
    26. (a) Rajski S. R., Williams R. M. Photocleavage of Nucleic Acids. Chem. Rev. 1998, 98, 1171-1200;
    (b) Rajski S. R., Williams R. M. DNA Cross-Linking Agents as Antitumor Drugs Chem. Rev. 1998, 98, 2723-2795;
    (c) McMillin D. R., McNett K. M. Photoprocesses of Copper Complexes That Bind to DNA Chem. Rev. 1998, 98, 1201-1219;
    (d) David S. S., Williams S. D. Chemistry of Glycosylases and Endonucleases Involved in Base-Excision Repair Chem. Rev. 1998, 98, 1221-1261;
    (e) Burger R. M. Cleavage of Nucleic Acids by Bleomycin Chem. Rev. 1998, 98, 1153-1169;
    (f) Pogozelski W. K., Tullius T. D. Oxidative Strand Scission of Nucleic Acids: Routes Initiated by Hydrogen Abstraction from the Sugar Moiety Chem. Rev. 1998, 98, 1089-1107;
    (g) Aoki S., Kimura E. Zinc-Nucleic Acid Interaction Chem. Rev. 2004, 104, 769-787.
    27. Alexander, V. Design and Synthesis of Macrocyclic Ligands and Their Complexes of Lanthanides and Actinides Chem. Rev. 1995, 95, 273-342.
    28. Caravan, P., Ellison, J. J., McMurry, T. J., Lauffer, R. B. Gadolinium(Ⅲ) Chelates as MRI Contrast Agents Structure, Dynamics, and Applications. Chem. Rev. 1999, 99, 2293-2352.
    29. (a) Llobet A., Reibenspies J. H., Martell A. E. Oxydiacetic Acid and Copper(Ⅱ) Complexes of a New Hexaaza Macrocyclic Dinucleating Ligand. Inorg. Chem. 1994, 33(25), 5946-5951.
    (b) Motekaitis k. J., Martell A. E. Molecular recognition by protonated O-BISDIEN and its metal complexes. Inorg. Chem. 1992, 31(26), 5534-5542.
    30. (a) Lu O., Motekaitis R. J., Martell A. E. Molecular Recognition by the Protonated Hexaaza Macrocyclic Ligand 3,6,9,16,19,22-Hexaaza-27,28-dioxatricyclo[22.2.1.111,14]octacosa-1 (26), 11,13,24-tetraene Inorg. Chem. 1995, 34(20), 4958-4964.
    (b) Kurnira E. Model Studies for Molecular Recognition of Carbonic Anhydrase and Carboxypeptidase. Acc. Chem. Res. 2001, 34(2), 171-179.
    31. Caravan P., Ellison J. J., McMurry T. J., Lauffer R. B. Gadolinium(Ⅲ) Chelates as MRI Contrast Agents Structure, Dynamics, and Applications. Chem. Rev. 1999, 99,2293-2352
    32. Bianchi A., Calabi L., Corana E, Fontana S., Losi P., Maiocchi A., Paleari L, Valtancoli B. Thermodynamic and structural properties of Gd(III) complexes with polyaminopolycarboxylic ligands: basic compounds for the development of MRI contrast agents. Coord. Chem. Rev. 2000,204,309-393.
    33. Reany O., Gunnlaugsson T., Parker D. Selective signalling of zinc ions by modulation of terbium luminescence Chem. Commun. 2000,473-474.
    34. Lim N. C, Yao L. L., Freake H. C; Bruckner C. Synthesis of a fluorescent chemosensor suitable for the imaging of zinc(II) in live cells Bioorg. Med. Chem. Lett. 2003,2251-2254
    35. Shionoya M, Kimura E., Shiro M. A new ternary zinc(II) complex with [12]aneN4 (1,4,7,10-tetraazacyclododecane) and AZT (3'-azido-3'-deoxythymidine). Highly selective recognition of thymidine and its related nucleosides by a zinc(II) macrocyclic tetraamine complex with novel complementary associations J. Am. Chem. Soc. 1993,115,6730-6737.
    36. Shionoya M., Ikeda T., Kimura E., Shiro M. Novel "Multipoint" Molecular Recognition of Nucleobases by a New Zinc(II) Complex of Acridine-Pendant Cyclen (1,4,7,10-Tetraazacyclododecane)J. Am. Chem. Soc. 1994,116, 3848-3859.
    37. Epstein D. M., Chappell L. L, Khalili H., Supkowski R. M., Horrocks W. D., Morrow J. R. Eu(III) Macrocyclic Complexes Promote Cleavage of and Bind to Models for the 5'-Cap of mRNA. Effect of Pendent Group and a Second Metal Ion Inorg. Chem. 2000, 39, 2130-2134.
    38. Kimura E., Shionoy M., Hoshino A., Ikeda T., Yamada Y. A model for catalytically active zinc(II) ion in liver alcohol dehydrogenase: a novel "hydride transfer" reaction catalyzed by zinc(II)-macrocyclic polyamine complexes J .Am. Chem. Soc. 1992,114(26), 10134-10137.
    39. Zhang X., Eldik R. A functional model for carbonic anhydrase: thermodynamic and kinetic study of a tetraazacyclo dodecane complex of zinc(II) Inorg. Chem. 1995, 34(22), 5606-5614.
    40. Reichert D. E., Lewis J. S., Anderson C. J. Metal complexes as diagnostic tools. Coord. Chem. Rev. 1999,184, 3-66.
    41. Wan S. H., Liang E, Xiong X. Q., Yang L., Wu X. J., Wang P., Zhou X., Wu C. T. DNA hydrolysis promoted by l,7-dimethyl-l,4,7,10-tetraazacyclododecane Bioorg. Med. Chem. Lett. 2006, 16, 2804-2806.
    42. Arya D. P., Jebaratnam D. J. DNA Cleaving Ability of 9-Diazofluorenes and Diary1 Diazomethanes: Implications for the Mode of Action of the Kinamycin Antibiotics J. Org. Chem. 1996,60, 3268-3269.
    43. Maiya B. G., Ramana C. V., Arounaguiri S., Nagarajan M. DNA Cleavage by Photoexcited Diazoarenes Bioorg. Med. Chem. Lett. 1997, 7, 2141-2144.
    44. Burr S. J., Mselati A. Thomas E. W. Photochemical DNA cleavage by a Berenil analog Tetrahedron Lett. 2003, 44, 7307-7309.
    45. Schmid N. Behr J. P. Location of Spermine and Other Polyamines on DNA As Revealed by Photoaffinity Cleavage with Polyaminobenzenediazonium Saltst Biochemistry 1991, 30, 4357-4361.
    46. (a) Mitra K., Kim, W., Daniels J. S.,Gates K. S. Oxidative DNA Cleavage by the Antitumor Antibiotic Leinamycin and Simple 1,2-Dithiolan-3-one 1-Oxides: Evidence for Thiol-Dependent Conversion of Molecular Oxygen to DNA-Cleaving Oxygen Radicals Mediated by Polysulfides. J. Am. Chem. Soc. 1997, 119(48), 11691-11692.
    (b) Behroozi S. B., Kim W., Gates, K. S. Reaction of n-Propanethiol with 3H-1,2-Benzodithiol-3-one 1-Oxide and 5,5-Dimethyl-1,2-dithiolano3-one 1-Oxide: Studies Related to the Reaction of Antitumor Antibiotic Leinamycin with DNA. J. Org. Chem. 1995, 60(13), 3964-3966.
    (c) Behroozi, S. J.; Kim W., Dannaldson J., Gates K. S. 1,2-Dithiolan-3-one 1-Oxides: A Class of Thiol-Activated DNA-Cleaving Agents That Are Structurally Related to the Natural Product Leinamycin. Biochemistry 1996, 35(6), 1768-1774.
    (d) Asai A., Hara M., Kakita S., Kanda Y., Yoshida M., Saito H., Saitoh Y. Thiol-Mediated DNA Alkylation by the Novel Antitumor Antibiotic Leinamycin. J. Am. Chem. Soc. 1996, 118(28), 6802-6803.
    47. Kim W. Gates K. S. Evidence for Thiol-Dependent Production of Oxygen Radicals by 4-Methyl-5-pyrazinyl-3H-1,2-dithiole-3-thione (Oltipraz) and 3H-1,2-Dithiole-3-thione: Possible Relevance to the Anticarcinogenic Properties of 1,2-Dithiole-3-thiones Chem. Res. Toxicol. 1997, 10, 296-301.
    48. Asai A., Saito H., Saitoh Y. Thiol-independent DNA Cleavage by a Leinamycin Degradation Product. Bioorg. Med. Chem. 1997, 5(4), 723-729.
    49. Breydo L., Gates K. S. Thiol-Dependent DNA Cleavage by 3H-1,2-Benzodithiol-3-one 1,1-dioxide. Bioorg. Med. Chem. Lett. 2000, 10, 885-889.
    50. (a) Lee A. H. F., Chan A. S. C., Li T. H. Acid-accelerated DNA-cleaving activities of antitumor antibiotic varacin Chem. Commun. 2002, 2112-2113.
    (b) Lee A. H. F., Chen J., Liu D. S., Leung T. Y. C., Chan A.S.C., Li T. H. Acid-Promoted DNA-Cleaving Activities and Total Synthesis of Varacin C J. Am. Chem. Soc. 2002, 124, 13972-13973.
    51. Liu C. L., Wang M., Zhang T. L., Sun H. Z. DNA hydrolysis promoted by di-and multinuclear metal complexes Coord. Chem. Rev. 2004, 248, 147-168.
    52. Molenveld P., Kapsabelis S., Engbersen J.F. J., Reinhoudt D. N. Highly Efficient Phosphate Diester Transesterification by a Calix[4]arene-Based Dinuclear Zinc(Ⅱ) Catalyst. J. Am. Chem. Soc. 1997, 119(12), 2948-2949.
    53. Sissi C., Rossi P., Felluga F., Formaggio F., Palumbo M., Tecilla P., Toniolo C., Scrimin P. Dinuclear Zn~(2+) Complexes of Synthetic Heptapeptides as Artificial Nucleases J. Am. Chem. Soc. 2001, 123(13), 3169-3170
    54. Xiang Q. X., Zhang J., Liu P. Y., Xia C. Q., Yu X. Q. Dinuclear macrocyclic polyamine zinc(Ⅱ) complexes linked with Xexible spacers: synthesis, characterization, and DNA cleavage J. Inorg. Biochem. 2005, 99(8), 1661-1669.
    55. (a) Xiang Q.X., Zhang J. Liu P. Y., Xia C. Q., Yu X. Q. Dinudear macrocyclic polyamine zinc(Ⅱ) complexes linked with Xexible spacers: synthesis, characterization, and DNA cleavage. Inorg. Biochem. 2005, 99(8), 1661-1669.
    (b) Xia C.-Q., Jiang N., Zhang J., Chen S.-Y., Lin H.-H., Tan X.-Y., Yue Y., Yu X.-Q. The conjugates of uracil-cyclen Zn(Ⅱ) complexes: Synthesis, characterization, and their interaction with plasmid DNA. Bioorg. Med. Chem. 2006, 14, 5756-5764.
    56. (a) Huang Q., Liu L., Xiao C., Xu Y., Oian X. Photolarvicidal effect of thienyl 1,3,4-thia(oxa)diazoles and their potential DNA photocleavage Pesticide Biochemistry and Physiology 2004, 79, 42-48.
    (b) Dedon P. C., Jiang Z. W., Goldberg I. H. Neocarzinostatin-Mediated DNA Damage in a Model AGTeACT Site: Mechanistic Studies of Thiol-Sensitive Partitioning of C4' DNA Damage Products Biochemistry 1992, 31, 1917-1927.
    (c) Chatterji T., Gates K. S. DNA Cleacage by 7-Methylbenzopenathiepin: A Simple Analog of the Antitumor Antibiotic Varacin Bioorg. Med. Chem. Lett. 1998, 8,535-538.
    57.(a)何忠效,张树政 电泳第二版);科学出版社,1999,p.227.
    (b) 蔡良琬 核酸研究技术(上册),科学出版社,1987,p.116.
    58. Gates K. S. Mechanisms of DNA damage by Leinamycin Chem. Res. Toxicol. 2000, 13, 953-956.
    1.杜灿屏,刘鲁生,张恒主编 《21世纪有机化学发展战略》化工出版社:北京 2002,135-148,156-170.
    2. Diels O., Alder K. Syntheses in the hydroaromatic series. Ⅰ. Addition of "diene" hydrocarbons Liebigs.Ann. Chem. 1928, 460, 98-122.
    3. (a) Vedejs E. Sulfur-mediated ring expansions in total synthesisAcc. Chem. Res. 1984, 17(10), 358-364.
    (b) Vedejs E., Eberlein T. H., Varie D. L. Dienophilic Thioaldehydes. Dienophilic Thioaldehydes J. Am. Chem. Soc. 1982, 104(5), 1445-1447.
    (C) Baldwin J. E., Lopez R. C. G. The generation and trapping of thiobenzaldehyde and thioacetaldehyde. J. Chem. Soc. Chem. Commun. 1982,1029-1030.
    4. Weinceb S. M., Staib R. R. Total Synthesis and Revision of Stereochemistry of Cyclodidemnamide, a novel Cyclopeptide from the Marine Ascidian Didemnum molle Tetrahedron 1982. 39. 3087-3090.
    5. Evans D. A., Scott W. L., Truesdale L. K. Evaluation of ketene equivalents in the synthesis of bicyclo[2.2.2]octene derivatives. Tetrahedron Lett. 1972, 13(2), 121-124.
    6. Khatri N. A., Schmitthenner H. F. Synthesis of Indolizidine Alkaloids via the Intramolecular Imino Diels-Alder Reaction J. Am. Chem. Soc. 1981, 103(21), 6387-6393.
    7. (a) Foote C. S. Photosensitized oxygenations and the role of singlet oxygen. Acc. Chem. Res. 1968, 1(4), 104-110.
    (b) Wassennan H. H., Ives J. L. Singlet Oxygen in Organic Synthesis. Tetrahedron 1981, 37(10), 1825-1828.
    8. (a) Danishefsky S. J., De Ninno M. P. Total synthesis of the higher monosaccharides Angew Chem. Int. Ed. Engl. 1987, 26, 15-23.
    (b) Jφrgensen K. A. Catalytic Asymmetric Hetero-Diels-Alder Reactions of Carbonyl Compounds and Imines Angew Chem. Int, Ed. 2000, 39, 3558-3588
    9. Vedejs E., Ebeflein T. H., Varie D. L. Dienophilic Thioaldehydes. J. Am. Chem. Soc. 1982, 104, 1445-1447.
    10.(a) 林国强,陈耀全,陈新兹,李月明《手性生成-不对称合成反应及其应用》科学出版社,北京,2000,3-41.
    (b) 殷元骇,蒋耀忠,不对称催化反应进展 科学出版社,2000.
    11. Maruoka K., itoh T., Shirasaka T., Yamamoto H. Asymmetric Hetero-Diels-Alder Reaction Catalyzed by a Chiral Organoaluminum Reagent J. Am. Chem. Soc. 1988, 110(1), 310-312.
    12. Maruoka K., Yamamoto H. Generation of Chiral Organoaluminum Reagent by Discrimination of the Racemates with Chiral Ketone J. Am. Chem. Soc. 1989,111(2), 789-790.
    13. Graven A., Johannsen M., Jergensen K. A. A Highly Chemo-and Enantio-selective Hetero-Diels-Alder Reaction Catalyzed by chiral Aluminum Complexes Chem. Commun. 1996, 2373-2374.
    14. Johannsen M., Jorgensen K. A., Lin Z.-M., Hu Q.-S., Pu L. A Highly Enantioselective Hetero-Diels-Alder Reaction Catalyzed by Chiral Polybinaphthyl-Aluminum Complexes J. Org. Chem. 1999, 64, 299-301.
    15. Simonsen K. B., Svenstrup N., Roberson M., Jφrgensen K. A. Development of an Unusually Highly Enantioselective Hetero-Diels-Alder Reaction of Benzaldehyde with Activated Dienes Catalyzed by Hypercoordinating Chiral Aluminum Complexes Chem. Eur. J. 2000, 6, 123-128.
    16. (a) Yamashita Y., Saito S., Ishitani H., Kobayashi S. Catalytic, Asymmetric trans-Selective Hetero Diels-Alder Reactions Using a Chiral Zirconium Complex Org. Lett. 2002, 4, 1221-1223.
    (b) Yamashita Y., Saito S., Ishitani H., Kobayashi S. Chiral Hetero Diels-Alder Products by Enantioselective and Diastereoselective Zirconium Catalysis. Scope, Limitation, Mechanism, and Application to the Concise Synthesis of (+)-Prelactone C and (+)-9-Deoxygoniopypyrone. J. Am. Chem. Soc. 2003,125, 3793-3798.
    17. (a) Hanamoto T., Furuno H., Sugimoto Y., Inanaga Y. Asymmetric Hetero Diels-Alder Reaction Catalyzed by chiral Ytterbium(Ⅲ) Phosphate {Yb[(R)-(-)-BNP]_3}. Remarkable ligand effect on the enantioselectivity. Synlett 1997, 79-80.
    (b) Furuno H., Hanamoto T., Sugimoto Y., Inanaga Y. Remarkably High Asymmetric Amplification in the Chiral Lanthanide Complex-Catalyzed Hetero-Diels-Alder Reaction: First Example of the Nonlinear Effect in ML_3 System. Org. Lett. 2000, 2(1), 49-52
    18. Furuno H., Kambara T., Tanaka Y., Hanamoto T., Kagawa T., Inanaga Y. Highly enantioselective homogeneous catalysis of chiral rare earth phosphates in the hetero-Diels-Alder reaction. Tetrahedron Lett 2003, 44(32), 6129-6132.
    19. (a) Terada M., Mikami K., Nakai T. Enantioselective Hetero-Diels-Alder reaction with glyoxylate catalyzed by chiral titanium complex: asymmetric synthesis of the lactone portion of mevinolin and compactin. Tetrahedron Lett. 1991, 32(7), 935-938.
    (b) Motoyama Y., Terada M., Mikami K. Asymmetric catalysis of (hetero) Diels-Alder cycloadditions by a modified binaphthol-dedved titanium complex. Synlett 1995, 967-968.
    20. Yang W., Shang D., Liu Y., Du Y., Feng X. Highly Enantioselective Synthesis of 2,6-Disubstituted and 2,2,6-Trisubstituted Dihydropyrones: A One-Step Synthesis of (R)-(+)-Hepialone and Its Analogues. J. Org. Chem. 2005, 70, 8533- 8537.
    21. Keck G. E., Li X. Y., Kishnamurthy D. Catalytic Enantioselective Synthesis of Dihydropyrones via Formal Hetero Diels-Alder Reactions of "Danishefsky's Diene" with Aldehydes. J. Org. Chem. 1995, 60, 5998-5999.
    22. Wang B., Feng X.-M.; Cui X., Liu H., Jiang Y. Z. Highly efficient enantioselective synthesis of optically active dihydropyrones by chiral titanium(Ⅳ)(5,5',6,6',7,7',8,8'-octahydro-1,1'-bi-2-naphthol) complexes. Chem. Commun. 2000, 1605-1606.
    23. (a) Fu Z. Y., Gao B., Yu Z. P., Yu L., Huang Y., Feng X. M., Zhang G. L. An efficient and enantioselective approach to 2,5-disubstituted dihydropyrones. Synlett. 2004, 1772-1775.
    (b) Gao B., Fu Z. Y, Yu Z. P, Huang Y. Z., Feng X. M. Highly enantioselective hetero-Diels-Alder reaction between trans-1-methoxy-2-methyl-3-trimethylsiloxybuta-1,3-diene and aldehydes catalyzed by (R)-BINOL-Ti(Ⅳ) complex. Tetrahedron 2005, 61(24), 5822-5830.
    24. (a) Bednarski M. D., Danishefsky S. J. On the interactivity of chiral auxiliaries with chiral catalysts in the hetero Diels-Alder reaction: a new route to L-glycolipids. J. Am. Chem. Soc. 1983,105(23), 6968-6969.
    (b) Bednarski M. D., Maring C. J., Danishefsky S. J. Chiral induction in the cyclocondensation of aldehydes with siloxydienes. Tetrahedron Lett. 1983, 24(33), 3451-3454
    25. (a) Furuta K., Shimizu S., Miwa Y., Yamamoto H. Chiral (Acyloxy) borane (CAB): A Powerful and Practical Catalyst for Asymmetric Diels-Alder Reactions. J. Org. Chem. 1989, 54(7), 1481-1483.
    (b) Gao Q., Maruyama T., Mouri M., Yamamoto H. Asymmetric Hetero Diels-Alder Reaction Catalyzed by Stable and Easily Prepared CAB Catalysts. J. Org. Chem. 1992, 57(7), 1951-1952.
    (c) Corey E. J., Lob T. P. First Application of Attractive Intramolecular Interactions to the Design of Chiral Catalysts for Highly Enantioselective Diels-Alder Reactions J. Am. Chem. Soc. 1991, 113(23), 8966-8967.
    (d) Corey E.J., Lob T. P., Roper T. D., Azimioara M. D., Noe M. C. The Origin of Greater Than 200:1 Enantioselectivity in a Catalytic Diels-Alder Reaction As Revealed by Physical and Chemical Studies. J. Am. Chem. Soc. 1992, 114(21), 8290-8292.
    (e) Corey E. J., Perez A. G., Loh T. P. Demonstration of the Synthetic Power of Oxazaborolidine-Catalyzed Enantioseleetive Diels-Alder Reactions by Very Efficient Routes to Cassiol and Gibberellie Acid. J. Am. Chem. Soc. 1994,116(8), 3611-3612.
    (f) Corey E. J., Cywin C. L., Roper T. D. Enantioselective Mukaiyama-aldol and Aldol-dihydropyrone Annulation Reactions Catalyzed by a Tryptophan-derived Oxazaborolidine. Tetrahedron Lett. 1992, 33(46), 6907-6910.
    26. (a) Schaus S. E., Brdnalt J., Jacobsen E. N. Asymmetric Hetero-Diels-Alder Reactions Catalyzed by Chiral (Salen)Chromium(Ⅲ) Complexes. J. Org. Chem. 1998, 63(2), 403-405.
    (b) Katsuki T., Irie R., Aikawa K. Asymmetric hetero Diels-Alder reaction using chiral cationic metallosalen complexes as catalysts. Tetrahedron 2001, 57(5), 845-851.
    27. Togni A. Asymmetric hetero Diels-Alder reactions catalyzed by novel chiral vanadium(Ⅳ) bis(1,3-diketonato) complexes. Organometallics 1990, 9(12), 3106-3113.
    28. (a) Johannsen M., Jφrgensen K. A. Asymmetric hetero Diels-Alder reactions and ene reactions catalyzed by chiral copper(Ⅱ) complexes. J. Org. Chem. 1995, 60(18), 5757-5762.
    (b) Johannsen M., Jφrgensen K. A. Solvent effects in asymmetric hetero Diels-Alder and ene reactions. Tetrahedron 1996, 52(21), 7321-7328.
    (c) Evans D. A., Olhava E. J., Johnson J. S., Janey J. M. Chiral C2-Symmetric. Cull Complexes as Catalysts for Enantioselective Hetero-Diels-Alder Reactions. Angew. Ghem, Int. Ed. 1998, 37(24), 3372-3375.
    29. (a) Doyle M. P., Phillips I. M. Hu W. H. A New Class of Chiral Lewis Acid Catalysts for Highly Enantioselective Hetero-Diels-Alder Reactions: Exceptionally High Turnover Numbers from Dirhodium(II) Carboxamidates. J. Am. Chem. Soc. 2001,123(22), 5366-5367. (b) Motoyama Y., Koga Y, Nishiyama H. Importance of chiral activators in the asymmetric catalysis of Diels-Alder reactions by chiral titanium(IV) complexes. Tetrahedron 2001, 57(5), 853-860.
    30. (a) Du H. E, Long J., Hu J. Y, Lin X., Ding K. L. 3,3'-Br_2-BINOL-Zn Complex: A Highly Efficient Catalyst for the Enantioselective Hetero-Diels-Alder Reaction Org. Lett. 2002, 4(24), 4349-4352. (b) Du H. F, Ding K. L. Enantioselective Catalysis of Hetero Diels-Alder Reaction and Diethylzinc Addition Using a Single Catalyst. Org. Lett. 2003, 5(7), 1091-1093.
    31. Makino K., Henmi Y, Terasawa M., Hara O., Hamada Y. Remarkable effects of titanium tetrachloride in diastereoselective aza Diels-Alder cycloaddition:synthesis of (S)-piperazic acid. Tetrahedron Lett. 2005, 46, 555-558.
    32. Scetri A., Acocella M. R., Palombi L., Scalera C, Villano R., Massa A. Dianstereo- and Enantioselective Synthesis of trans-2,3-Disubstituted 2,3-Dihydropyrone-4-one Derivatives. Adv. Synth. Catal. 2006,348,2229-2236.
    33. Tosoni M., Laschat S., Baro A. Synthesis of novel chiral ionic liquids and their phase behavior in mixtures with smectic and nematic liquid crystals. Helv. Chim. Acta, 2004, 87, 2742 - 2749.
    34. Gadenne B., Hesemann R, Moreau J. J. E. Ionic liquids incorporating camphorsulfonamide units for the Ti-promoted asymmetric diethylzinc addition to benzaldehyde. Tetrahedron Lett. 2004,45: 8157-8160.
    35. Lee S. G, Zhang Y J., Piao J. Y, Yoon H., Song C. E., Choi J. H., Hong J. Catalytic asymmetric hydrogenation in a room temperature ionic liquid using chiral Rh-complex of ionic liquid grafted 1,4-bisphosphine ligand. Chem. Commun. 2003, 2624-2625.
    36. Earle M. J., McCormac P. B., Seddon K .R. Diels-Alder reactions in ionic liquids . A safe recyclable alternative to lithium perchlorate-diethyl ether mixtures. Green Chem. 1999, 1, 23 -25.
    37. Pernak J., Goc I., Mirska I. Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem. 2004, 6, 323-329.
    38. Fukumoto K., Yoshizawa M., Ohno H. Room Temperature Ionic Liquids from 20 Natural Amino Acids. J. Am. Chem. Soc. 2005, 127(8), 2398-2399.
    39. Bao W., Wang Z., Li Y. Synthesis of Chiral Ionic Liquids from Natural Amino Acids. J. Org. Chem. 2003, 68, 591-593.
    40. (a) Bandequin C., Bandoux J., Levillain J., Cahard D., Gaumont A. C., Plaqucventa J. C. Ionic liquids and chirality: opportunities and challenges. Tetrahedron: Asymmetry 2003, 14(20), 3081-3093.
    (b) Ding J., Armstrong D. W. Chiral ionic liquids: Synthesis and applications, Chirality 2005, 17(5), 281-292.
    41. Howarth J., Hanlon K., Fayne D., McCormac P. Moisture Stable Dialkylimidazolium Salts as Heterogeneous and Homogeneous Lewis Acids in the Diels-Alder Reaction. Tetrahedron Lett. 1997, 38, 3097-3100.
    42. Burstein C., Glorius F. Organocatalyzed Conjugate Umpolung of a, β-Unsaturated Aldehydes for the Synthesis of γ-Butyrolactones. Angew. Chem, Int. Ed. 2004, 43, 6205-6208.
    43. (a) Huang Y., Rawal V. H. Hydrogen-Bond-Promoted Hetero-Diels-Alder Reactions of Unactivated Kctoncs. J. Am. Chem. Soc. 2002, 124(33), 9662-9663.
    (b) Huang Y, Iwama T., Rawal V. H. Highly Enantioselective Diels-Aldcr Reactions of 1-Amino-3-siloxy-dienes Catalyzed by Cr(Ⅲ)-Salen Complexes. J. Am. Chem. Soc. 2000, 122(32), 7843-7844.
    (c) Huang Y., Unni A. K., Thadani A. N., Rawal V. H. Hydrogen bonding: Single enantiomers from a chiral-alcohol catalyst. Nature 2003, 424(6945), 146-146.
    (d) Juht K., Jφrgenscn K. A. The First Organocatalytic Enantioselectivc Inverse-Electron-Demand Hetero-Diels-Alder Reaction. Angew. Chem. Int. Ed. 2003, 42(13), 1498-1501.
    (e) Unni A. K., Takenaka N., Yamamoto H., Rawal V. H. Axially Chiral Biaryl Diols Catalyze Highly Enantioselective Hetero-Diels-Alder Reactions through Hydrogen Bonding. J. Am. Chem. Soc. 2005, 127(5), 1336-1337.
    44. Selected references as follows: (a) Danishcfsky S., Larson E. R., Askin D. Stcrochemical Variations in the Cyclocondcnsation of Aldehydes with Siloxydienes. An Application to the Erythronolidc Series J. Am. Chem. Soc. 1982, 104(23), 6457-6458.
    (b) Danishefsky S., Bednarski M. On the acctoxylation of 2, 3-dihydro-4-pyroncs: a concise, fully synthetic route to the glucal stereochemical series Tetrahedron Lett. 1985, 26(29), 3411-3412.
    (c) Danishefsky S. J., Pearson W. H., Segmuller B. E. Formal Synthesis of 3-Deoxy-D-manno-2-Octulosonic Acid (KDO) via a Highly Double-Stereoselective Hetero Diels-Alder Reaction Directed by a (Salen) Coil Catalyst and Chiral Diene J. Am. Chem. Soc. 1985, 107(5), 1280-1285.
    (d) Danishefsky S. J., DeNinno M. P. Totally Synthetic Routes to the Higher Monosaccharides Angew. Chem. Int. Ed. Engl. 1987, 26(1), 15-23.
    (e) Tietze L. F., Schneider C., Montenbruck A. Asymmetric 1,6-Induction in Hetero-Diels-Alder Reactions of Chiral Oxabutadienes for a De Novo Synthesis of Enantiomedcally Pure Carbohydrates: Lewis Acid Dependent Reversal of Facial Selectivity Angew. Chem. Int. Ed. 1994, 33(9), 980-982.
    (f) Hu Y. J., Huang X. D., Yao Z. J., Wu Y. L. Formal Synthesis of 3-Deoxy-D-manno-2-Octulosonic Acid (KDO) via a Highly Double-Stereoselective Hetero Diels-Alder Reaction Directed by a (Salen)Coll Catalyst and Chiral Diene J. Org. Chem. 1998, 63(8), 2456-2461.
    (g) Bednarski M., Danishefsky S. Interactivity of Chiral Catalysts and Chiral Auxiliaries in the Cycloaddition of Activated Dienes with Aldehydes: A Synthesis of L-Glucose J. Am. Chem. Soc. 1986, 108(22), 7060-7067.
    (h) Zhuang W., Thorhauge J., Jφrgensen K. A. Chem. Commun. 2000, 459-460.
    (i) Audrain H., Thorhauge J., Hazell R. G., Jφrgensen K. A. A Novel Catalytic and Highly Enantioselective Approach for the Synthesis of Optically Active Carbohydrate Derivatives. J. Org. Chem. 2000, 65(15), 4487-4497.
    (j) Danishefsky S. J., Selnick H. Q, Zelle R. E., DeNinno M. P otal Synthesis of Zincophorin. J. Am. Chem. Soc. 1988, 110(13), 4368-4378;
    (k) Rainier J. D., Allwein S. P., Cox J. M. A Highly Efficient Synthesis of the Hemibrevetoxin B Ring System. Org. Lett. 2000, 2(2), 231-234.
    (l) Aikawa K., Irie R., Katsuki T. Asymmetric hetero Diels-Alder reaction using chiral cationic metallosalen complexes as catalysts. Tetrahedron 2001, 57(5), 845-851.
    45. Kraus G. A., Krolski M. E., Sy J. 4-Methoxy-3-Penten-2-One. Organic Synthesis 1989, 67, 202-203.
    46. Simonsen K. B., Gothelf K. V., Jorgensen K. A. A Simple Synthetic Approach to 3,3'-Diaryl BINOLs. J. Org. Chem. 1998, 63(21), 7536-7538.
    47.(a) 樊能廷编著 有机合成事典 华东理工大学出版社1995,p928.
    (b) 黄枢,谢如刚, 田宝芝,秦圣英 有机合成试剂制备手册(第二版) 科学出版社 2005,p237.
    48. (a) Sogani S., Singh A., Mehrotra R. C. Synthesis and characterization of mixed liagnd complexes of yttrium and lanthanide(Ⅲ)-bis(phenylsulphinyl)propane and bipyridyl. Polyhedron 1995, 14(5), 629-633.
    (b) Veith M., Mathur S., Huch V. Synthesis and characterisation of novel heterobimetallic halide isopropoxides based on M_2(OPr~i)_9~-(M = Sn, Zr or Ti) anions: crystal and molecular structures of [CdI{Sn_2(OPr~i)_9}] and [{SnI[Zr_2(OPr~i)_9]}_2]. J. Chem. Soc. Dalton trans. 1996, 2485-2490.
    49. 丁奎岭,林国强.催化不对称反应新进展-不对称活化.有机化学 2000, 20(1), 1-10.
    50. Pu L.1,1'-Binaphthyl Dimers, Oligomers, and Polymers: Molecular Recognition, Asymmetric Catalysis, and New Materials. Chem. Rev. 1998, 98(7), 2405-2494.
    51. Shan Z. X., Wang G. P., Duan B., Zhao D. J. Preparation of enantiomerically pure 1,1'-bi-2-naphthol via cyclic borate ester. Tetrahedron: Asymmetry 1996, 7(10), 2847-2850.
    52. List B. Proline-catalytic Asymmetic Reactions. Tetrahedron 2002, 58, 5573-5590.
    53. De Rosa M., Acocella M. R., Soriente A. Scettri A. Asymmetric auto-inductive aldol reaction by self-assembly of chiral ligands. Tetrahedron: Asymmetry 2001, 12, 1529-1531.
    54. Brunel J. M. BINOL:A Versatile Chiral Reagent. Chem. Rev. 2005, 105, 857-897.
    55. (a) Simpura I., Nevalainen V. Aluminum enolates via retroaldol reaction: catalytic tandem aldol-transfer—Tischtschenko reaction of aldehydes with aldol adducts of ketones to ketones Tetrahedron 2003, 59, 7535-7546.
    (b) Soriente A., De Rosa M., Stanzione M., Villano R., Scettri A. An efficient asymmetric aldol reaction of Chan's diene promoted by chiral Ti(Ⅳ)-BINOL complex Tetrahedron: Asymmetry 2001, 12, 959-963.
    56. Sakthivel K., Notz W., Bui T., Barbas Ⅲ C. F. Amino Acid Catalyzed Direct Asymmetric Aldol Reactions: A Bioorganic Approach to Catalytic Asymmetric Carbon-Carbon Bond-Forming Reactions. J. Amo Chem. Soc. 2001, 123, 5260-5267.
    57. (a) List B., Lerner R. A., Barbas Ⅲ C. F. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000, 122, 2395-2396.
    (b) List B., Pojarliev P., Castello C. Proline-Catalyzed Asymmetric Aldol Reactions between Ketones and a-Unsubstituted Aldehydes. Org. Lett. 2001, 3(4), 573-575.
    58. Mehnert C. P., Dispenziere N. C., Cook R. A. Preparation of C9-aldehyde via aldol condensation reactions in ionic liquid media. Chem. Commun. 2002, 1610-1611.
    59. Cheng K., Lin L., Chen S. Feng X. A mild and efficient aza-Diels-Alder reaction of N-benzhydryl imines with trans-1-methoxy-2-methyl-3-trimethylsiloxybuta-1,3-diene catalyzed by Yb(OTf)_3. Tetrahedron 2005, 61, 9594-9599.
    60. Jurcik V., Wilhelm R. Imidazolinium salts as catalyst for the aza-Diels-Alder reaction. Org. Biomol. Chem. 2005, 3, 239-244.
    61. Yuab-n Y., Li X., Ding K. L. Acid-free Aza Diels-Alder Reaction of Danishefsky's Diene wth Imines. Org. Lett. 2002, 4(9), 3309-3311.
    62. Chan A., Scheidt K. A. Hydroacylation of Activated Ketone Catalyzed by N-heterocyclic Carbenes. J. Am. Chem. Soc. 2006, 128, 4558-4559.
    63. (a) Lersch M., Tilset M. Mechanistic Aspects of C-H Activation by Pt Complexes. Chem. Rev. 2005, 105(6), 2471-2526.
    (b) Ritleng V., Sirlim C. Pfeffer M. Ru-, Rh-, and Pd-Catalyzed C-C Bond Formation Involving C-H Activation and Addition on Unsaturated Substrates: Reactions and Mechanistic Aspects. Chem. Rev. 2002, 102(5), 1731-1770.
    (c) Scholl M., Lim C. K., Fu G. C. Convenient and efficient conversion of aldehydes to acylated cyanohydrins using tributyltin cyanide as catalyst. J. Org. Chem. 1995, 60(19), 6229-6231.
    (d) Kundu K., McCullagh J. V., Morehead A. T. Hydroacylation of 2-Vinyl Benzaldehyde Systems: An Efficient Method for the Synthesis of Chiral 3-Substituted Indanones. J. Am. Chem. Soc. 2005, 127(46), 16042-16043.
    64. (a) Miyashita M., Yamasaki T., Shiratani T., Hatakeyama S., Miyazawa M., Irie H. The efficient and regioselective synthesis of the naphthoquinone core of streptovaricin U. Chem. Commun. 1997, 1787-1788.
    (b) Fu Z. Y., Gao B., Yu Z. P., Huang Y. Z., Feng X. M., Zhang G. L. An Efficient and Enantioselective Approach to 2,5-Disubstituted Dihydropyrones. Synlett 2004, 10, 1772-1775.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700