导电原位微纤化聚合物复合材料及其形态、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以聚烯烃(PO)为主的通用塑料的功能化是当前以及今后高分子材料科学与工程领域领域研究的一项重要研究课题。其中,导电功能是通用塑料最重要的功能化目标之一,其主要实现手段为外加导电粒子。控制导电粒子在体系中的分布和排列方式是获得高性能、低成本的导电高分子复合材料的重要途径,也是导电高分子复合材料的发展趋势。本论文提出利用聚合物共混物加工过程中形态控制方法,使分散相原位成纤,并控制导电粒子选择性分布于原位微纤中,从而简便高效的获得低成本、高性能的导电高分子复合材料。
     本论文对以PO为主体的炭黑(CB)/聚对苯二甲酸乙二醇酯(PET)/聚乙烯(PE)复合材料在加工过程中的成纤以及所得微纤化复合材料的形态、结构、逾渗行为、对热和有机液体的响应行为等进行了研究,取得了大量有价值的数据和结果。这对丰富和发展复合型导电高分子材料的导电理论和双逾渗理论具有较重要的学术价值,并为开发廉价且综合性能优异的导电高分子复合材料提供新的思路和方法。主要研究成果:
     (一)导电原位微纤化复合材料的制备、微观形态和性能研究
     本文采用“熔融预混合—高温挤出热拉伸—淬冷—低温成型”的新型加工方法制备导电原位微纤化CB/PET/PE复合材料,系统研究了复合材料的微纤的形成条件、导电粒子的分布及其电学性能。
     (1)CB粒子在整个“熔融预混合—高温挤出热拉伸—淬冷—低温成型”加工过程中,均选择性分布于PET分散相中。这可以基于热力学和动力学两方面进行考虑。从热力学角度看来,根据Young's方程和最低耗散能理论,CB与PET之间界面张力更低,且PET熔体黏度更低,CB更倾向于分布于PET中;而从动力学角度看来,CB与PET首先熔融混合,两者在与PE基体相混合物之前有充足的时间发生相互作用。
     (2)导电原位微纤化复合体系的成纤性能强烈依赖于CB/PET分散相与PE基体的黏度比。当黏度比小于1时,体系能形成高长径比的原位微纤;当黏度比略高于1时,体系仍然能形成原位微纤,但长径比较低;当黏度比远高于1时,体系无法成纤。在基体材料一定的情况下,黏度比决定于CB/PET分散相黏度。高的CB结构度以及高的CB粒子含量不利于三元复合体系成纤。
     (3)CB/PET原位微纤在整个体系中形成三维网络结构,而CB粒子选择性分布于PET微纤中,这种特殊的微观结构导致导电原位微纤化CB/PET/PE复合材料的导电逾渗值明显低于普通CB/PET/PE复合材料和普通CB/PE复合材料。
     (4)CB/PET原位微纤网络对基体的增强作用,使得导电原位微纤化复合材料在降低逾渗值,降低原料成本的前提下,力学强度得以保持。
     (二)原位微纤表面微结构对复合体系逾渗行为的影响
     (1)本文对导电原位微纤化CB/PET/PE复合材料的微观结构与逾渗行为的关系进行了深入研究,发现导电原位微纤化复合材料的逾渗行为无法用经典的双逾渗理论进行解释。
     (2)研究了原位微纤表面微结构对导电性能的影响,并发现原位CB/PET微纤的表面结构是影响三元体系逾渗行为的关键因素。当CB含量低于CB/PET最大堆积密度Φ_(max)时,微纤表面几乎无CB粒子,由于微纤之间的高接触电阻,三元体系体积电阻率较高;当CB粒子含量超过Φ_(max)时,微纤表面CB数量迅速增加,微纤之间导电接触点的数量也相应增加;当微纤表面CB浓度超过某值,以致微纤之间导电接触点的数量足以支持整个体系电子传导时,导电原位微纤体系发生逾渗现象。
     (三)导电原位微纤化复合材料的温度响应特性
     (1)研究了导电原位微纤化复合材料的温度—电阻效应,发现在升降温热循环初期,导电原位微纤化CB/PET/PE复合材料PTC强度较强,NTC效应很弱。相比于普通CB/PE体系,具有优异的PTC/NTC综合性能。导电原位CB/PET微纤大的尺寸效应是导致升降温循环初期弱的NTC效应的主要原因。
     (2)经多次升降温热循环或长时间热处理后,导电原位微纤化CB/PET/PE复合材料材料的PTC效应出现大幅度衰减,电阻表现出温度不敏感性,即电阻随温度的变化基本保持稳定。导电原位微纤特殊的表面微结构和微纤本身较大的尺寸是产生该反常现象的关键因素。由于微纤表面具有独特的导体—绝缘体交错分布结构,在升降温热循环或长时间高温热处理过程中,导电网络会因为CB聚集体之间的相互作用而逐渐完善。又由于原位微纤的大尺寸效应,结晶对原位导电微纤网络影响较小,使得高温下形成的更完善的网络在降温过程中能被部分保留下来,从而使PTC效应发生衰减。
     (3)这种反常的PTC衰减现象对发展一种制备可回收的电性能稳定的热塑性半晶聚合物(SCTP)基导电复合材料的有效方法具有重要意义。
     (四)导电原位微纤化复合体系的有机液体响应特性
     (1)对比普通CB/PE复合材料,本论文考察了导电原位微纤化CB/PET/PE复合材料的有机液体响应特性。发现当试样厚度为140 um,测试温度为常温时,导电原位微纤化复合材料的液敏响应强度大大高于普通导电复合材料。这为发展一种高敏感度液敏高分子材料提供了新的思路。
     (2)研究了复合材料试样厚度对导电原位微纤化CB/PET/PE复合材料液敏响应速率的影响。相比于普通CB/PE复合材料,导电原位微纤化复合材料液敏响应速率对厚度更加敏感。实验发现,有机液体优先浸入PET/PE相界面是导致以上现象的主要原因。
     (3)导电原位微纤化复合材料的液敏响应速率相比于普通CB/PE复合材料对温度更不敏感。较大尺寸的原位微纤网络对PE分子链的限制作用被认为是导致这种现象的主要原因。
     (4)研究了导电原位微纤化CB/PET/PE复合材料的液敏PTC现象。发现导电原位微纤化复合材料和普通CB/PE复合材料均表现出显著的液敏PTC现象。经过升降温测试后,两复合材料试样表面均受到溶剂侵蚀。前者由于具有导电微纤网络结构,相比于后者表面受损程度更低,因而电阻率表现出更好的可回复性。
     (5)导电原位微纤化CB/PET/PE复合材料在液敏性能测试中体现出一种独特的电压诱导电阻率突变现象,这种反常现象为深入研究原位微纤化复合材料在有机液体环境下的导电机理提供了契机。
     基于本论文的研究内容,可获得如下三种材料的制备技术:(a)含有导电原位微纤网络的聚合物复合材料;(b)电性能稳定的可回收热塑性半晶聚合物基导电复合材料;(c)具有高液敏强度的导电聚合物复合材料。主要原材料可由本论文的导电CB、PET和PE拓展为普通CB、普通聚烯烃以及通用工程塑料,材料品种多、来源广泛、价格较低;制备工艺易于控制;不需添加多的新设备,易于实现工业化。
Functionalization of general-purpose plastics (mainly polyolefin (PO)) is one of the most important research subjects in the field of polymer materials science and engineering at the present and in the future. Electrical conductivity is one of the most important functions of the general-purpose plastics. Filling conductive particles is the main route to fabricate this function. Controlling the distribution and arrayment of the conductive fillers in the polymer matrices is an important method to obtain the conductive polymer composites with high performance and low price. It is also the development tendency of the conductive polymer composites. Based on the technologies of controlling morphology during the processing, this dissertation has put forward a simple and effective method to obtain low price and high performance conductive polymer composites.
     The fibrillation during the processing, morphology, microstructure, percolation behavior, and temperature and chemical liquid response properties of the PO based carbon black (CB)/ poly (ethylene terephthalate) (PET)/ polyethylene (PE) composite were investigated in this thesis. A large quantity of valuable data and results were obtained, which is of importance to develop the conductive theory and double percolation theory of the conductive polymer composites. These results also provide new ideas and methods to prepare conductive polymer composites with low price and excellent balanceable property. The main results are:
     (Ⅰ) Preparation, microstructure and percolation behavior for the eleetrieaUy conductive in-situ microfibrillar composites
     The melt mixing -extrusion at high temperature-quenching-cold moulding process was used to prepare the conductive microfibrillar CB/PET/PE composites in this thesis. The formation of microfibrils, the distribution of conductive fillers and electrical properties were systemically studied.
     (1) CB aggregates are selectively located in the PET microfibfils during the whole melt mixing -extrusion at high temperature-quenching-cold moulding process. This phenomenon can be explained by thermodynamics and dynamics. By the view of thermodynamics, based on Young's equation and the minimization of the dissipative energy, CB aggregates prefer to locate in PET owing to the two points: (1) the interfacial tension between CB and PET is lower than that between CB and PE, and (2) the apparent viscosity of PET is lower than that of PE at the extrusion temperature. On the other hand, CB was first compounded with PET prior to extrusion and hot stretching. Hence there was sufficient time for CB particles to mix with PET by the view of dynamics.
     (2) The droplet-fiber transition in the electrically conductive in-situ microfibrillar CB/PET/PE composite strongly depends on the viscosity ratio of CB/PET dispersed phase and PE matrix. When the viscosity ratio is lower than 1, well defined in-situ micro fibrils with high length/diameter ratio can be formed in the system. As the viscosity ratio is slightly higher than 1, micro fibrils can also be formed, but the length/diameter ratio is relatively low. With the further increase of length/diameter ratio, the microfibrils can not be formed when the length/diameter ratio is far higher than 1. The viscosity ratio depends on the CB/PET dispersed phase as the matrix is fixed at PE. High structure CB and high loading of CB go against the formation of in-situ micro fibrils.
     (3) A special microstructure is formed in the microfibrillar composite, in which a 3D network is formed by in-situ CB/PET microfibrils, and CB is selectively located in the PET dispersed phase. As a result, the percolation threshold of electrically conductive in-situ microfibrillar CB/PET/PE composite is obviously lower than that of common CB/PET/PE and common CB/PE composite.
     (4) Owing to the reinforcement of the CB/PET microfibrils, the in-situ microfibrillar composites can keep their mechanical strength while reducing the percolation threshold and the cost.
     (Ⅱ) The role of the surface microstructure of the microfibrils on the percolation behavior of the in-situ microfibrillar composite
     (1) The relationship between the microstructure and the percolation behavior of the in-situ microfibrillar CB/PET/PE composite was studied in this thesis. It was found that the percolation behavior of the composite can not be explained by the classical double percolation theory.
     (2) The influences of the surface microstructure of the fibrils on the conductive properties were studied. The surface microstructure of the microfibrils was found to be the key factor affecting the percolation behavior of the ternary composite. When the CB loading is lower than the maximum packing fraction, there are no CB particles on the surface of the microfibrils, resulting in the high contact resistance among the microfibrils, and thus, the volume resistivity of the ternary composite remains high. As the content of CB is beyond the maximum packing fraction, the number of the CB particles dispersed on the fibrils' surface increases quickly, and the conductive contacts among the microfibrils increase accordingly. When the concentration of CB particles on the CB/PET microfibrils is higher than a critical value, the microfibrils network connected by electrically conductive contact points is able to sustain the electron transmission in the whole system and as a result, the volume resistivity of in-situ microfibrillar CB/PET/PE composite drops sharply and the percolation happens.
     (Ⅲ) The temperature response properties of the electrically conductive in-situ microfibrillar composite
     (1) The resistance-temperature effect of the electrically conductive CB/PET/PE composite was studied in this thesis. The composite exhibits a strong PTC effect and a weak NTC effect during the first few heating-cooling cycles. Compared with common CB/PE composite, in-situ microfibrillar composite has excellent PTC/NTC property. The large size effect of CB/PET microfibrils is the origin of weak NTC effect during the early heating-cooling recycles.
     (2) After ten heating-cooling cycles or after high-temperature thermal treatment for a long time, the PTC effect of the composite exhibits an anomalous strong attenuation. The resistance becomes insensitive to the temperature. That is, the resistant can keep stabilization as the surrounding temperature change. The unique microstructure and the relatively large size of the microfibrils is the key factor of this anomalous phenomenon. Based on the inhomogeneous microstructure of the surface of microfibrils consisting of conductive and insulative areas, during the heating-cooling recycles or the thermal treatment for a long time, the electrically conductive network becomes more stable and more perfect owing to the interacting among the CB aggregates. During the cooling process, the large size of CB/PET microfibrils can effectively protect the conductive network from being destroyed by crystallization. The more stable and perfect conductive microfibrillar network generated in PE melt can, thus, at least partially survive during crystallization, and consequently, the PTC effect attenuates.
     (3) This anomalous phenomenon is of great importance to develop an effective way is developed to fabricate recyclable semicrystalline thermoplastic (SCTP) based conductive composite with stable conductive properties.
     (Ⅳ) Chemical liquid response properties of the electrically conductive in-situ microfibrillar composite
     (1) The chemical liquid response properties of the electrically conductive in-situ microfibrillar CB/PET/PE composite were studied in this thesis, compared with the common CB/PE composite. The intensity of the chemical liquid response for the microfibrillar composite was found to be much higher than that for the common CB/PE composite. A new idea to develop high sensitive chemical response polymer materials can be provided according to this phenomenon.
     (2) The influence of the sample's thickness of the composites on the rate of response was studied. Compared with that for common CB/PE, the rate of chemical liquid response for in-situ microfibrillar composite is more sensitive to the sample's thickness. Preferentially occupying the interface of PET/PE for the chemical liquid was found to be the origin of this phenomenon.
     (3) The rate of chemical liquid response for in-situ microfibrillar composite is more sensitive to the liquid temperature compared with that for common CB/PE composite. The restriction effect of the microfibrillar network to the PE chains is regarded as the main reason of this phenomenon.
     (4) The chemical liquid responsible PTC effect of in-situ microfibrillar CB/PET/PE composite was studied. It was found that both the in-situ microfibrillar composite and the common CB/PE composite exhibit strong chemical liquid responsible PTC effect. The surface of these two composites was destroyed during the heating-cooling cycle. Owing to the microfibrils network, the damage of the surface of microfibrillar composite was weaker than that of common CB/PE, resulting in the better reversible properties of the resistivity for the microfibrillar composite.
     (5) A unique voltage induced saltation of resistivty in the liquid response measurement was found in the in-situ microfibrillar CB/PET/PE composite. It provides a chance to thoroughly study the conductive mechanism of in-situ microfibrillar composite with the chemical liquid surrounding according to this unusual phenomenon.
     Base on the content of this thesis, three techniques of the preparation of the following blend materials were obtained: (a) conductive polymer composites with electrically conductive in-situ microfibril network; (b) recyclable SCTP based conductive composites with stable conductive properties; (c) high sensitive chemical response polymer composites. The main raw materials in this thesis including conductive CB, PET and PE can be exchanged by common CB, common PO and common general engineering plastics (GEP). For these raw materials, many grades can be chosen, the resource is wide and the price is low. In addition, the processing operation of these materials can be controlled easily, and it does not have excessive requirements for the processing apparatus. Therefore, the industrial manufacturing of these three materials can be successfully carried out.
引文
[1] Heeger A J. Semiconducting and Metallic Polymers: the Fourth Generation of Polymeric Materials (Nobel Lecture)[J]. Angewandte Chemie-international Edition. 2001, 40(14): 2591-2611.
    [2] Hide F, Diazgarcia M A, Schwartz B J, et al. New Developments in the Photonic Applications of Conjugated Polymers[J]. Accounts of Chemical Research. 1997, 30(10): 430-436.
    [3] Lonergan M C, Severin E J, Doleman B J, et al. Array-Based Vapor Sensing Using Chemically Sensitive, Carbon Black-Polymer Resistors[J]. Chemistry of Materials. 1996, 8(9): 2298-2312.
    [4] Severin E J, Doleman B J, Lewis N S. An investigation of the Concentration Dependence and Response to Analyte Mixtures of Carbon Black/insulating Organic Polymer Composite Vapor Detectors[J]. Analytical Chemistry. 2000,72(4): 658-668.
    [5] Hopkins A R, Lewis N S. Detection and Classification Characteristics of Arrays of Carbon Black/Organic Polymer Composite Chemiresistive Vapor Detectors for the Nerve Agent Simulants Dimethylmethylphosphonate and Diisopropylmethylphosponate[J]. Analytical Chemistry. 2001, 73(5): 884-892.
    [6] Vaid T P, Burl M C, Lewis N S. Comparison of the Performance of Different Discriminant Algorithms in Analyte Discrimination Tasks Using an Array of Carbon Black-Polymer Composite Vapor Detectors[J]. Analytical Chemistry. 2001, 73(2): 321-331.
    [7] Koscho M E, Grubbs R H, Lewis N S. Properties of Vapor Detector Arrays formed Through Plasticization of Carbon Black-Organic Polymer Composites[J]. Analytical Chemistry. 2002, 74(6): 1307-1315.
    [8] Azulay D, Eylon M, Eshkenazi O, et al. Electrical-thermal Switching in Carbon-Black-Polymer Composites as a Local Effect[J]. Physical Review Letters. 2003, 90(23660123).
    [9] Briglin S M, Lewis N S. Characterization of the Temporal Response Profile of Carbon Black-Polymer Composite Detectors to Volatile Organic Vapors[J]. Journal of Physical Chemistry B. 2003, 107(40): 11031-11042.
    [10] toker D, Azulay D, Shimoni N, et al. Tunneling and Percolation in Metal-insulator Composite Materials[J]. Physical Review B. 2003,68(0414034).
    [11] Zheng Q, Song Y H, Wu G, et al. Relationship Between the Positive Temperature Coefficient of Resistivity and Dynamic Rheological Behavior for Carbon Black-Filled High-Density Polyethylene[J]. Journal of Polymer Science Part B-Polymer Physics. 2003, 41(9): 983-992.
    [12] Balberg I, Azulay D, toker D, et al. Percolation and Tunneling in Composite Materials[J]. international Journal of Modern Physics B. 2004, 18(15): 2091-2121.
    [13] Lewis N S. Comparisons Between Mammalian and Artificial Olfaction Based on Arrays of Carbon Black-Polymer Composite Vapor Detectors[J]. Accounts of Chemical Research. 2004, 37(9): 663-672.
    [14] Song Y H, Zheng Q, Yi X S. Reversible Nonlinear Conduction in High-Density Polyethylene/Acetylene Carbon Black Composites at Various Ambient Temperatures[J]. Journal of Polymer Science Part B-Polymer Physics. 2004, 42(7): 1212-1217.
    [15] Xu W W, Song Y H, Zhou J F, et al. Piezoresistance Behavior of Polyvinyl Chloride/Carbon Black Conductive Composites[J]. Chemical Journal of Chinese Universities-Chinese. 2005, 26(6): 1170-1173.
    [16] Chen Y L, Song Y H, Zheng Q, et al. Effect of Crosslinking Agent Amount on Uniaxial Piezoresistivity of Carbon Black Filled Poly(Methyl Vinyl Siloxane) Conductive Composites[J]. Chemical Journal of Chinese Universities-Chinese. 2006, 27(5): 988-990.
    [17] Gao T, Woodka M D, Brunschwig B S, et al. Chemiresistors for Array-Based Vapor Sensing Using Composites of Carbon Black With Low Volatility Organic Molecules[J]. Chemistry of Materials. 2006, 18(22): 5193-5202.
    [18] Song Y H, Zheng Q. Nonlinear Conduction of Irradiation-Crosslinked High-Density Polyethylene/Acetylene Carbon Black Composites at the Electric-thermal Equilibrium State[J]. Journal of Polymer Science Part B-Polymer Physics. 2006, 44(14): 1979-1984.
    [19] 谢长琼,李忠明,黄锐,et al.炭黑填充复合导电高分子材料研究和应用[J].中国塑料.2002,16(7):7-11.
    [20] 张雄伟.聚丙烯/炭黑复合导电材料的结构与性能及相关的物理和化学问题的研究[D].成都:四川大学,2000.
    [21] Oakey J, Marr D W, Schwartz K B, et al. Influence of Polyethylene and Carbon Black Morphology on Void formation in Conductive Composite Materials: a Sans Study[J]. Macromolecules. 1999, 32(16): 5399-5404.
    [22] Gangopadhyay R, De A. Conducting Polymer Nanocomposites: a Brief Overview[J]. Chemistry of Materials. 2000, 12(3): 608-622.
    [23] Huang J C. Carbon Black Filled Conducting Polymers and Polymer Blends[J]. Advances in Polymer Technology. 2002, 21(4): 299-313.
    [24] Chung D D. Electrical Applications of Carbon Materials[J]. Journal of Materials Science. 2004, 39(8): 2645-2661.
    [25] Katada A, Buys Y F, tominaga Y, et al. Relationship Between Electrical Resistivity and Particle Dispersion State for Carbon Black Filled Poly (Ethylene-Co-Vinyl Acetate)/Poly (L-Lactic Acid) Blend[J]. Colloid and Polymer Science. 2005, 284(2): 134-141.
    [26] Elimat Z M. Ac Electrical Conductivity of Poly(Methyl Methacrylate)/Carbon Black Composite[J]. Journal of Physics D-Applied Physics. 2006, 39(13): 2824-2828.
    [27] Shui X P, Chung D D. Nickel Filament Polymer-Matrix Composites With Low Surface Impedance and High Electromagnetic interference Shielding Effectiveness[J]. Journal of Electronic Materials. 1997, 26(8): 928-934.
    [28] Huang C Y, Wu C C. the Emi Shielding Effectiveness of PC/ABS/Nickel-Coated-Carbon-Fibre Composites[J]. European Polymer Journal. 2000, 36(12): 2729-2737.
    [29] Das N C, Chald T K, Khastgir D, et al. Electromagnetic interference Shielding Effectiveness of Conductive Carbon Black and Carbon Fiber-Filled Composites Based on Rubber and Rubber Blends[J]. Advances in Polymer Technology. 2001, 20(3): 226-236.
    [30] Wu J H, Chung D D. increasing the Electromagnetic interference Shielding Effectiveness of Carbon Fiber Polymer-Matrix Composite By Using Activated Carbon Fibers[J]. Carbon. 2002, 40(3): 445-447.
    [31] Yang Y L, Gupta M C, Dudley K L, et al. the Fabrication and Electrical Properties of Carbon Nanofibre-Polystyrene Composites[J]. Nanotechnology. 2004, 15(11): 1545-1548.
    [32] Yang Y L, Gupta M C. Novel Carbon Nanotube-Polystyrene Foam Composites for Electromagnetic interference Shielding[J]. Nano Letters. 2005, 5 (11): 2131-2134.
    [33] Yang Y L, Gupta M C, Dudley K L, et al. Conductive Carbon Nanoriber-Polymer Foam Structures[J]. Advanced Materials. 2005, 17(16): 1999.
    [34] Yang Y L, Gupta M C, Dudley K L, et al. A Comparative Study of Emi Shielding Properties of Carbon Nanofiber and Multi-Walled Carbon Nanotube Filled Polymer Composites[J]. Journal of Nanoscience and Nanotechnology. 2005, 5(6): 927-931.
    [35] Xu X B, Li Z M, Shi L, et al. Ultralight Conductive Carbon-Nanotube-Polymer Composite[J]. Small. 2007, 3(3): 408-411.
    [36] Yang Y L, Gupta M C, Dudley K L, et al. Electromagnetic interference Shielding Characteristics of Carbons Nanofiber-Polymer Composites[J]. Journal of Nanoscience and Nanotechnology. 2007, 7(2): 549-554.
    [37] Mather P J, Thomas K M. Carbon Black High Density Polyethylene Conducting Composite Materials .2. the Relationship Between the Positive Temperature Coefficient and the Volume Resistivity[J]. Journal of Materials Science. 1997, 32(7): 1711-1715.
    [38] Chekanov Y, Ohnogi R, asai S, et al. Positive Temperature Coefficient Effect of Epoxy Resin Filled With Short Carbon Fibers[J]. Polymer Journal. 1998, 30(5): 381-387.
    [39] Yu G, Zhang M Q, Zeng H M. Carbon-Black-Filled Polyolefine as a Positive Temperature Coefficient Material: Effect of Composition, Processing, and Filler Treatment[J]. Journal of Applied Polymer Science. 1998, 70(3): 559-566.
    [40] Feng J Y, Chan C M. Carbon Black-Filled Immiscible Blends of Poly(Vinylidene Fluoride) and High Density Polyethylene: the Relationship Between Morphology and Positive and Negative Temperature Coefficient Effects[J]. Polymer Engineering and Science. 1999, 39(7): 1207-1215.
    [41] Feng J Y, Chan C M. Double Positive Temperature Coefficient Effects of Carbon Black-Filled Polymer Blends Containing Two Semicrystalline Polymers[J]. Polymer. 2000, 41(12): 4559-4565.
    [42] Feng J Y, Chan C M. Positive and Negative Temperature Coefficient Effects of an Alternating Copolymer of Tetrafluoroethylene-Ethylene Containing Carbon Black-Filled HDPE Particles[J]. Polymer. 2000,41(19): 7279-7282.
    [43] Kim J, Kang P H, Nho Y C. the Positive Temperature Coefficient Behavior of Conductive Nylon/Carbon Black Composite[J]. Journal of industrial and Engineering Chemistry. 2002, 8(4): 380-385.
    [44] Hou Y H, Zhang M Q, Rong M Z. Carbon Black-Filled Polyolefins as Positive Temperature Coefficient Materials: the Effect of in Situ Grafting During Melt Compounding[J]. Journal of Polymer Science Part B-Polymer Physics. 2003, 41(1): 127-134.
    
    [45] He X J, Du J H, Ying Z, et al. Positive Temperature Coefficient Effect in Multiwalled Carbon Nanotube/High-Density Polyethylene Composites [J]. Applied Physics Letters. 2005, 86(0621126).
    [46] Xiong C X, Zhou Z Y, Xu W, et al. Polyurethane/Carbon Black Composites With High Positive Temperature Coefficient and Low Critical Transformation Temperature[J]. Carbon. 2005,43(8): 1788-1792.
    [47] Song Y H, Zheng Q, Pan Y, et al. Effect of Uniaxial Pressures on the Resistance of High Density Polyethylene/Carbon Black Composites[J]. Chemical Journal of Chinese Universities-Chinese. 2000,21(3): 475-479.
    [48] Chen Y L, Song Y H, Zhou J F, et al. Effect of Uniaxial Pressure on Conduction Behavior of Carbon Black Filled Poly(Methyl Vinyl Siloxane) Composites [J]. Chinese Science Bulletin. 2005, 50(2): 101-107.
    [49] Lu J R, Weng W G, Chen X F, et al. Piezoresistive Materials from Directed Shear-induced assembly of Graphite Nanosheets in Polyethylene[J]. Advanced Functional Materials. 2005, 15(8): 1358-1363.
    [50] Xu W W, Song Y H, Zhou J F, et al. Piezoresistance Behavior of Polyvinyl Chloride/Carbon Black Conductive Composites [J]. Chemical Journal of Chinese Universities-Chinese. 2005,26(6): 1170-1173.
    [51] Zhu S, Zheng Q, Zhou J F, et al. Relationship Between Uniaxial Deformation and Piezoresistance for HDPE/CB Composites[J]. Acta Polymerica Sinica. 2006(1): 82-86.
    [52] Severin E J, Lewis N S. Relationships Among Resonant Frequency Changes on a Coated Quartz Crystal Microbalance, Thickness Changes, and Resistance Responses of Polymer-Carbon Black Composite Chemiresistors[J]. Analytical Chemistry. 2000, 72(9): 2008-2015.
    [53] Chen J H, Yoshida M, Maekawa Y, et al. Temperature-Switchable Vapor Sensor Materials Based on N-Isopropylacrylamide and Calcium Chloride[J]. Polymer. 2001, 42(23): 9361-9365.
    [54] Chen J H, Iwata H, Tsubokawa N, et al. Novel Vapor Sensor from Polymer-Grafted Carbon Black: Effects of Heat-Treatment and Gamma-Ray Radiation-Treatment on the Response of Sensor Material in Cyclohexane Vapor[J]. Polymer. 2002,43(8): 2201-2206.
    [55] Chen J H, Tsubokawa N, Maekawa Y, et al. Vapor Response Properties of Conducting Composites Prepared from Crystalline Oligomer-Grafted Carbon Black[J]. Carbon. 2002, 40(9): 1602-1605.
    [56] Dong X M, Fu R W, Zhang M Q, et al. Electrical Resistance Response of Carbon Black Filled Amorphous Polymer Composite Sensors to Organic Vapors at Low Vapor Concentrations[J]. Carbon. 2004,42(12-13): 2551-2559.
    [57] Gao T, Tillman E S, Lewis N S. Detection and Classification of Volatile Organic Amines and Carboxylic Acids Using Arrays of Carbon Black-Dendrimer Composite Vapor Detectors.[J]. Abstracts of Papers of the American Chemical Society. 2004, 227(Part 2): 504-504.
    [58] Sisk B C, Lewis N S. Estimation of Chemical and Physical Characteristics of Analyte Vapors Through Analysis of the Response Data of Arrays of Polymer-Carbon Black Composite Vapor Detectors.[J]. Abstracts of Papers of the American Chemical Society. 2004, 227(Part 2): 503-504.
    
    [59] Gao T, Tillman E S, Lewis N S. Detection and Classification of Volatile Organic Amines and Carboxylic Acids Using Arrays of Carbon Black-Dendrimer Composite Vapor Detectors[J]. Chemistry of Materials. 2005, 17(11): 2904-2911.
    [60] Sisk B C, Lewis N S. Comparison of Analytical Methods and Calibration Methods for Correction of Detector Response Drift in Arrays of Carbon Black-Polymer Composite Vapor Detectors [J]. Sensors and Actuators B-Chemical. 2005, 104(2): 249-268.
    [61] Sisk B C, Lewis N S. Vapor Sensing Using Polymer/Carbon Black Composites in the Percolative Conduction Regime[J]. Langmuir. 2006, 22(18): 7928-7935.
    [62] Zhang B, Fu R W, Zhang M Q, et al. Studies of the Vapor-induced Sensitivity of Hybrid Composites Fabricated By Filling Polystyrene With Carbon Black and Carbon Nanofibers[J]. Composites Part A-Applied Science and Manufacturing. 2006, 37(11): 1884-1889.
    [63] Ji T Z. Preparation and Electrical Properties of Carbon Black/Ultra-High Molecular Weight Polyethylene Composites[M]. Verlag Dr. Koster (Berlin), 2004.
    [64] Stauffer D. Introduction to Percolation theory[M]. Taylor and Francis, 1985.
    [65] Zallen R. The Physics of Amorphous Solids[M]. Wiley (New York), 1983.
    [66] Kirkpatrick S. Percolation and Conduction[J]. Reviews of Modem Physics. 1973, 45: 574-588.
    [67] Sumita M, Abe H, Kayaki H, et al. Effect of Melt Viscosity and Surface Tension of Polymers on the PErcolation Thresholds of Conductive-Particle-Filled Polymeric Composites [J]. Journal of Macromolecular Science - Physics. 1986, B25(1-2): 171-184.
    [68] Sumita M, Sakata K, Hayakawa Y, et al. Double PErcolation Effect on the Electrical Conductivity of Conductive Particles Filled Polymer Blends[J]. Colloid and Polymer Science. 1992, 270(2): 134-139.
    [69] 贾向明,杨其,李光宪,et al.填充型导电高分子复合材料的逾渗理论进展[J].中国塑料.2003,17(6):9-14
    [70] Janzen J. On the Critical Conductive Filler Loading in Antistatic Composites.[J]. Journal of Applied Physics. 1975, 46(2): 966-969.
    [71] Bueche F. Coductive Polymer Composites[J]. Journal of Applied Physics. 1972, 43.
    [72] Mclachlan D S. Measurement and Analysis of a Model Dual Conductivity Medium Using A Generalized Effective Medium theory[J]. Physica A: Statistical and theoretical Physics. 1989, 157(1): 188.
    [73] Mclachlan D S,. Blaszkiewicz M, Newrtham R E. Electrical Resistivity of Composites[J]. Journal of the American Ceramic Society. 1990, 73(8): 2187-2203.
    [74] Mclachlan D S. A Quantitative Analysis of the Volume Fraction Dependence of the Resistivity of Cermets Using a General Effective Media Equation[J]. Journal of Applied Physics. 1990, 68(1): 195-199.
    [75] Landauer R. In Electrical Transport and Optical Properties of inhomolgenous Media[M]. Academic Press (New York), 1978.
    [76] Hu J W, Li M W, Zhang M Q, et al. Preparation of Binary Conductive Polymer Composites With Very Low PErcolation Threshold By Latex Blending[J]. Macromolecular Rapid Communications. 2003,24(15): 889-893.
    [77] Gubbels F, Jerome R, Teyssie P, et al. Selective Localization of Carbon Black in Immiscible Polymer Blends: a Useful tool to Design Electrical Conductive Composites[J]. Macromolecules. 1994,27(7): 1972-1974.
    [78] Gubbels F, Blacher S, Vanlathem E, et al. Design of Electrical Conductive Composites: Key Role of the Morphology on the Electrical Properties of Carbon Black Filled Polymer Blends[J]. Macromolecules. 1995,28(5): 1559-1566.
    [79] Voet A. Temperature Effect of Electrical Resistivity of Carbon Black Filled Polymers.[J]. Rubber Chemistry and Technology. 1981, 54(1): 42-50.
    [80] Levine L E, Long G G, Ilavsky J, et al. Self-assembly of Carbon Black into Nanowires That form a Conductive Three Dimensional Micronetwork[J]. Applied Physics Letters. 2007,90(0141011).
    [81] Rajagopal C, Satyam M. Studies on Electrical Conductivity of insulator-Conductor Composites[J]. Journal of Applied Physics. 1978,49(11): 5536-5542.
    [82] Al-Allak H M, Brinkman A W, Woods J. I-V Characteristics of Carbon Black-Loaded Crystalline Polyethylene[J]. Journal of Materials Science. 1993,28: 117-120.
    [83] Sichel E K, Gittleman J I, Sheng P. Transport Properties of the Composite Material Carbon-Poly(Vinyl Chloride)[J]. Physical Review Letters. 1978, 18(10): 5712-5716.
    [84] Sheng P, Sichel E K, Gittleman J I. Fluctuation-induced Tunneling Conduction in Carbon-Polyvinylchloride CompositesfJ]. Physical Review Letters. 1978, 40(18): 1197-1200.
    [85] Sheng P. Fluctuation-induced Tunneling Conduction in Disordered Materials[J]. Physical Review B. 1980,21(6): 2180-2195.
    [86] Rubin Z, Sunshine S A, Heaney M B, et al. Critical Behavior of the Electrical Transport Properties in a Tunneling-PErcolation System[J]. Physical Review B. 1999, 59(19): 12196-12199.
    [87] Grimaldi C, Balberg I. Tunneling and Nonuniversality in Continuum PErcolation Systems[J]. Physical Review Letters. 2006, 96(0666026).
    [88] Simmons J G. Generalized formula for the Electric Tunnel Effect Between Similar Electrodes Separated By A Thin insulating Film[J]. Journal of Applied Physics. 1963, 34(6).
    [89] Lee G J, Suh K D, Im S S. Study of Electrical Phenomena in Carbon Black-Filled HDPE Composite[J]. Polymer Engineering and Science. 1998, 38(3).
    [90] Mamunya Y P, Muzychenko Y V, Pissis P, et al. Percolation Phenomena in Polymers Containing Dispersed Iron[J]. Polymer Engineering and Science. 2002,42(1): 90-100.
    [91] Hong J I, Schadler L S, Siegel R W, et al. Rescaled Electrical Properties of Zno/Low Density Polyethylene Nanocomposites[J]. Applied Physics Letters. 2003, 82(12): 1956-1958.
    [92] Tchoudakov R, Breuer 0, Narkis M, et al. Conductive Polymer Blends With Low Carbon Black Loading: Polypropylene/Polyamide[J]. Polymer Engineering and Science. 1996, 36(10): 1336-1346.
    [93] Narkis M, Lidor G, Vaxman A, et al. New injection Moldable Electrostatic Dissipative (Esd) Composites Based on Very Low Carbon Black Loadings[J]. Journal of Electrostatics. 1999, 47(4): 201-214.
    [94] Wu G Z, asai S, Sumita M. A Self-assembled Electric Conductive Network in Short Carbon Fiber Filled Poly(Methyl Methacrylate) Composites With Selective Adsorption of Polyethylene[J]. Macromolecules. 1999, 32(10): 3534-3536.
    [95] Dong X M, Fu R W, Zhang M Q, et al. Vapor-induced Variation in Electrical Performance of Carbon Black/Poly (Methyl Methacrylate) Composites Prepared By Polymerization Filling[J]. Carbon. 2003,41(2): 371-374.
    [96] Balberg I. Excluded Volume and Its Relation to the onset of Percolation[J]. Physical Review B. 1984, 30(7): 3933-3943.
    [97] Dalmas F, Dendievel R, Chazeau L, et al. Carbon Nanotube-Filled Polymer Composites. Numerical Simulation of Electrical Conductivity in Three-Dimensional Entangled Fibrous Networks[J]. Acta Materialia. 2006, 54: 2923-2931.
    [98] Levon K, Margolina A, Patashinsky A Z. Multiple Percolation in Conduction Polymer Blends[J]. Macromolecules. 1993, 26(15): 4061-4063.
    [99] Zhang C, Yi X S, Yui H, et al. Selective Location and Double Percolation of Short Carbon Fiber Filled Polymer Blends: High-Density Polyethylene/Isotactic Polypropylene[J]. Materials Letters. 1998,36(1-4): 186-190.
    [100] Zhang M Q, Yu G, Zeng H M, et al. Two-Step Percolation in Polymer Blends Filled With Carbon Black[J]. Macromolecules. 1998, 31(19): 6724-6726.
    [101] Wu S. Polymer interface and Adhesion[M]. New York: Marcel Dekker, 1982.
    [102] Sumita M, Sakata K, asai S, et al. Dispersion of Fillers and the Electrical Conductivity of Polymer Blends Filled With Carbon Black[J]. Polymer Bulletin (Berlin). 1991, 25(2): 265-271.
    [103] Wu G Z, asai S, Sumita M, et al. Entropy Penalty-induced Self-assembly in Carbon Black Or Carbon Fiber Filled Polymer Blends[J]. Macromolecules. 2002, 35(3): 945-951.
    [104] PErsson A L, Bertilsson H. Viscosity Difference as Distributing Factor in Selective Absorption of Aluminium Borate Whiskers in Immiscible Polymer Blends[J]. Polymer. 1998, 39(23): 5633-5642.
    [105] Feng J Y, Chan C M, Li J X. A Method to Control the Dispersion of Carbon Black in an Immiscible Polymer Blend[J]. Polymer Engineering and Science. 2003, 43(5): 1058-1063.
    [106] Zhang C, Ma C A, Wang P, et al. Temperature Dependence of Electrical Resistivity for Carbon Black Filled Ultra-High Molecular Weight Polyethylene Composites Prepared By Hot Compaction[J]. Carbon. 2005, 43(12): 2544-2553.
    [107] Chan C M, Cheng C L, Yuen M M. Electrical Properties of Polymer Composites Prepared By Sintering A Mixture of Carbon Black and Ultra-High Molecular Weight Polyethylene Powder[J]. Polymer Engineering and Science. 1997, 37(7): 1127-1136.
    [108] Ou R Q, Gupta S, Parker C A, et al. Fabrication and Electrical Conductivity of Poly(Methyl Methacrylate) (PMMA)/Carbon Black (CB) Composites: Comparison Between An Ordered Carbon Black Nanowire-Like Segregated Structure and a Randomly Dispersed Carbon Black Nanostmcture[J]. Journal of Physical Chemistry B. 2006, 110(45): 22365-22373.
    [109] Gupta S, Ou R Q, Gerhardt R A. Effect of the Fabrication Method on the Electrical Properties of Poly(Acrylonitrile-Co-Butadiene-Co-Styrene)/Carbon Black Composites[J]. Journal of Electronic Materials. 2006, 35(2): 224-229.
    [110] Gnmlan J C, Kim Y S, Ziaee S, et al. thermal and Mechanical Behavior of Carbon-Nanotube-Filled Latex[J]. Macromolecular Materials and Engineering. 2006, 291(9): 1035-1043.
    [111] Gnmlan J C, Mehrabi A R, Bannon M V, et al. Water-Based Single-Walled-Nanotube-Filled Polymer Composite With an Exceptionally Low Percolation Threshold[J]. Advanced Materials. 2004, 16(2): 150-+.
    [112] Grunlan J C, Gerberich W W, Francis L F. Electrical and Mechanical Behavior of Carbon Black-Filled Poly(Vinyl Acetate) Latex-Based Composites[J]. Polymer Engineering and Science. 2001, 41(11): 1947-1962.
    [113] Grtmlan J C, Gerberich W W, Francis L F. Lowering the Percolation Threshold of Conductive Composites Using Particulate Polymer Microstructure[J]. Journal of Applied Polymer Science. 2001, 80(4): 692-705.
    [114] Allan P S, Bevis M J. Multiple Live-Feed injection Moulding.[J]. Plastics and Rubber Processing and Applications. 1987, 7(1): 3-10.
    [115] Chert L M, Shen K Z. Biaxial Self-Reinforcement of Isotactic Polypropylene Prepared in Uniaxial Oscillating Stress Field By injection Molding. I. Processing Conditions and Mechanical Properties[J]. Journal of Applied Polymer Science. 2000, 78(11): 1906-1910.
    [116] Wang Y, Zou H, Fu Q, et al. Shear-induced Morphological Change in PP/LLDPE Blend[J]. Macromolecular Rapid Communications. 2002, 23(13): 749-752.
    [117] Wang Y, Zhang Q, Fu Q. Compatibilization of Immiscible Poly(Propylene)/Polystyrene Blends Using Clay[J]. Macromolecular Rapid Communications. 2003, 24(3): 231-235.
    [118] Lei J, Jiang C D, Shen K Z. Biaxially Self-Reinforced High-Density Polyethylene Prepared By Dynamic Packing injection Molding. I. Processing Parameters and Mechanical Properties[J]. Journal of Applied Polymer Science. 2004, 93(4): 1584-1590.
    [119] Li Z M, Li S N, Yang M B, et al. A Novel Approach to Preparing Carbon Nanotube Reinforced thermoplastic Polymer Composites[J]. Carbon. 2005, 43(11): 2413-2416.
    [120] Xu X B, Li Z M, Yang M B, et al. the Role of the Surface Microstructure of the Microfibrils in An Electrically Conductive Microfibrillar Carbon Black/Poly(Ethylene Terephthalate)/Polyethylene Composite[J]. Carbon. 2005, 43(7): 1479-1487.
    [121] Na B, Zhang Q, Fu Q, et al. Viscous-force-Dominated Tensile Deformation Behavior of Oriented Polyethylene[J]. Macromolecules. 2006, 39(7): 2584-2591.
    [122] Xu X B, Li Z M, Dai K, et al. Anomalous attenuation of the Positive Temperature Coefficient of Resistivity in A Carbon-Black-Filled Polymer Composite With Electrically Conductive in Situ Microfibrils[J]. Applied Physics Letters. 2006, 89(0321053).
    [123] Zhong G J, Li L B, Mendes E, et al. Suppression of Skin-Core Structure in injection-Molded Polymer Parts By in Situ incorporation of A Microfibrillar Network[J]. Macromolecules. 2006, 39(19): 6771-6775.
    [124] 李忠明,钟淦基.加工过程中高分子材料形态控制的研究进展[M].高分子科学前沿与进展,董建华,北京:科学出版社,2006.
    [125] Sousa R A, Reis R L, Cunha A M, et al. Processing and Properties of Bone-Analogue Biodegradable and Bioinert Polymeric Composites[J]. Composites Science and Technology. 2003, 63(3-4): 389-402.
    [126] Allan P S, Bevis M J. Shear Controlled Orientation in Extrusion[J]. Plastics, Rubber and Composites Processing and Applications. 1991, 16(2): 132-137.
    [127] Grijpma D W, Altpeter H, Bevis M J, et al. Improvement of the Mechanical Properties of Poly(D,L-Lactide) By Orientation[J]. Polymer international. 2002, 51(10): 845-851.
    [128] Sousa R A, Mano J F, Reis R L, et al. Mechanical Performance of Starch Based Bioactive Composite Biomaterials Molded With Preferred Orientation[J]. Polymer Engineering and Science. 2002, 42(5): 1032-1045.
    [129] Sousa R A, Mano J F, Reis R L, et al. Mechanical Behaviour of Polyethylene/Hydroxyapatite Bone-Analogue Composites Moulded With an induced Anisotropy[J]. Key Engineering Materials. 2002, 218-2: 469-472.
    [130] Sousa R A, Reis R L, Cunha A M, et al. Structure Development and interfacial interactions in High-Density Polyethylene/Hydroxyapatite (HDPE/HA) Composites Molded With Preferred Orientation[J]. Journal of Applied Polymer Science. 2002, 86(11): 2873-2886.
    [131] Zhang A Y, Jisheng E, Allan P S, et al. Enhancement in Micro-Fatigue Resistance of UHMWPE and HDPE Processed By Scorim[J]. Journal of Materials Science. 2002, 37(15): 3189-3198.
    [132] Altpeter H, Bevis M J, Gomes M E, et al. Shear Controlled Orientation in injection Moulding of Starch Based Blends intended for Medical Applications[J]. Plastics Rubber and Composites. 2003, 32(4): 173-181.
    [133] Altpeter H, Bevis M J, Gomes M E, et al. Shear Controlled Orientation in injection Moulding of Starch Based Blends intended for Medical Applications[J]. Plastics Rubber and Composites. 2003, 32(4): 173-181.
    [134] Sousa R A, Oliveira A L, Reis R L, et al. Bi-Composite Sandwich Moldings: Processing, Mechanical Performance and Bioactive Behavior[J]. Journal of Materials Science-Materials in Medicine. 2003, 14(5): 385-397.
    [135] Sousa R A, Reis R L, Cunha A M, et al. Coupling of HDPE/Hydroxyapatite Composites By Silane-Based Methodologies [J]. Journal of Materials Science-Materials in Medicine. 2003,14(6): 475-487.
    [136] Altpeter H, Bevis M J, Grijpma D W, et al. Non-Conventional injection Molding of Poly(Lactide) and Poly(epsilon-Caprolactone) intended for Orthopedic Applications[J]. Journal of Materials Science-Materials in Medicine. 2004, 15(2): 175-184.
    [137] Altpeter H, Bevis M J, Grijpma D W, et al. Non-Conventional injection Molding of Poly(Lactide) and Poly(epsilon-Caprolactone) intended for Orthopedic ApplicationsfJ]. Journal of Materials Science-Materials in Medicine. 2004,15(2): 175-184.
    [138] Chen L M, Shen K. Z. Biaxial Self-Reinforcement of Isotactic Polypropylene Prepared in Uniaxial Oscillating Stress Field By injection Molding. Ii. Morphology[J]. Journal of Applied Polymer Science. 2000, 78(11): 1911-1917.
    [139] Lei J, Jiang C D, Shen K Z. Biaxially Self-Reinforced High-Density Polyethylene Prepared By Dynamic Packing injection Molding. Ii. Microstructure investigation[J]. Journal of Applied Polymer Science. 2004,93(4): 1591-1596.
    [140] Li Y B, Liao Y H, Gao X Q, et al. Mechanical Property and Morphology Control of injection-Molded HDPE in Low Frequency Vibration Field[J]. Acta Polymerica Sinica. 2004(6): 839-843.
    [141] Li Y B, Gao X Q, Yuan S Y, et al. The Relationship Between Mechanical Properties and Morphology of Vibration-injection-Molded Polyethylene[J]. Polymer international. 2005, 54(1): 240-245.
    [142] Zhang J, Shen K Z, Gao Y G, et al. Mechanical Properties and Structure of High-Density Polyethylene Samples Prepared By injection Molding With Low-Frequency Vibration[J]. Journal of Applied Polymer Science. 2005, 96(3): 818-823.
    [143] Lei J, Zhang Z J, Jiang C D, et al. Bi-Axial Self-Reinforcement of High-Density Polyethylene induced By High-Molecular Weight Polyethylene Through Dynamic Packing injection Molding[J]. Polymer international. 2006, 55(9): 1021-1026.
    [144] Li S N, Li B, Li Z M, et al. Morphological Manipulation of Carbon Nanotube/Polycarbonate/Polyethylene Composites By Dynamic injection Packing Molding[J]. Polymer. 2006, 47(13): 4497-4500.
    [145] Zhang J, Shen K Z, Wen Y F, et al. Vibration-induced Self-Reinforcement of injection Molding Samples of High-Density Polyethylene[J]. Polymer-Plastics Technology and Engineering. 2006, 45(5): 601-606.
    [146] Na B, Zhang Q, Fu Q, et al. Super Polyolefin Blends Achieved Via Dynamic Packing injection Molding: the Morphology and Mechanical Properties of HDPE/EVA Blends[J]. Polymer. 2002, 43(26): 7367-7376.
    [147] Wang Y, Fu Q, Li Q J, et al. Ductile-Brittle-Transition Phenomenon in Polypropylene/Ethylene-Propylene-Diene Rubber Blends Obtained By Dynamic Packing injection Molding: a New Understanding of the Rubber-toughening Mechanism[J]. Journal of Polymer Science Part B-Polymer Physics. 2002, 40(18): 2086-2097.
    [148] Wang Y, Xiao Y, Zhang Q, et al. the Morphology and Mechanical Properties of Dynamic Packing injection Molded PP/PS Blends[J]. Polymer. 2003, 44(5): 1469-1480.
    [149] Wang Y, Zhang Q, Na B, et al. Dependence of Impact Strength on the Fracture Propagation Direction in Dynamic Packing injection Molded PP/EPDM Blends[J]. Polymer. 2003, 44(15): 4261-4271.
    [150] Na B, Wang Y, Zhang Q, et al. Shish and Its Relaxation Dependence of Re-Crystallization of Isotactic Polypropylene from an Oriented Melt in the Blends With High-Density Polyethylene[J]. Polymer. 2004, 45(18): 6245-6260.
    [151] Na B, Wang K, Zhang Q, et al. Tensile Properties in the Oriented Blends of High-Density Polyethylene and Isotactic Polypropylene Obtained By Dynamic Packing injection Molding[J]. Polymer. 2005, 46(9): 3190-3198.
    [152] Na B, Zhang Q, Wang K, et al. Origin of Various Lamellar Orientations in High-Density Polyethylene/Isotactic Polypropylene Blends Achieved Via Dynamic Packing injection Molding: Bulk Crystallization Vs. Epitaxy[J]. Polymer. 2005, 46(3): 819-825.
    [153] 吴世见,陈利民,申开智.单向拉伸流场中挤出双向自增强透明HDPE管材[J].工程塑料应用.2002,30(8):23-26.
    [154] 郭建明,欧阳初,吴世见,et al.聚乙烯在复合应力场中临界状态挤出成型的研究[J].中国塑料.2003,17(9):65-67.
    [155] 吴世见,郭建明,申开智.制备高性能注塑和挤出制品的形态控制技术[J].高分子材料科学与工程.2003,19(3):58-62.
    [156] Qu J P. Study on the Pulsating Extrusion Characteristics of Polymer Melt Through Round-Sectioned Die[J]. Polymer-Plastics Technology and Engineering. 2002, 41(1): 115-132.
    [157] Qu J P, Xu B P, Jin G, et al. PErformance of Filled Polymer Systems Under Novel Dynamic Extrusion Processing Conditions[J]. Plastics Rubber and Composites. 2002, 31(10): 432-435.
    [158] Feng Y H, Qu J P, He H Z, et al. Simulation of Nonisothermal Flow of Melt During Melting Process of Vibration-induced Polymer Extruder[J]. Journal of Applied Polymer Science. 2006, 102(6): 5825-5840.
    [159] Qu J P, Feng Y H, He H Z, et al. Effect of the Axial Vibration of Screw on Residence Time Distribution in Single-Screw Extruders[J]. Polymer Engineering and Science. 2006, 46(2): 198-204.
    [160] Qu J P, Shi B S, Feng Y H, et al. Dependence of Solids Conveying on Screw Axial Vibration in Single Screw Extruders[J]. Journal of Applied Polymer Science. 2006, 102(3): 2998-3007.
    [161] Li Y T, Chen G S, Guo S Y, et al. Effect of Ultrasonic Oscillations on the Rheological Behavior and Morphology of Illite-Filled High-Density Polyethylene Composites[J]. Journal of Applied Polymer Science. 2005, 96(2): 379-384.
    [162] Wu H, Guo S Y, Chert G S, et al. Effects of Ultrasonic Oscillations on Processing Behavior and Mechanical Properties of Metallocene-Catalyzed Linear Low-Density Polyethylene/Low-Density Polyethylene Blends[J]. Journal of Applied Polymer Science. 2004, 94(6): 2522-2527.
    [163] Chen G S, Guo S Y, Li Y T. Dynamic Rheological Properties of High-Density Polyethylene/Polystyrene Blends Extruded in the Presence of Ultrasonic Oscillations[J]. Journal of Applied Polymer Science. 2004, 92(5): 3153-3158.
    [164] Guo S Y, Li Y T, Chen G S, et al. Ultrasonic Improvement of Rheological and Processing Behaviour of Lldpe During Extrusion[J]. Polymer international. 2003, 52(1): 68-73.
    [165] Chert G S, Guo S Y, Li H L. Ultrasonic Improvement of the Compatibility and Rheological Behavior of High-Density Polyethylene/Polystyrene Blends[J]. Journal of Applied Polymer Science. 2002, 86(1): 23-32.
    [166] Chen G S, Guo S Y, Li H L. Ultrasonic Improvement of Rheological Behavior of Polystyrene[J]. Journal of Applied Polymer Science. 2002, 84(13): 2451-2460.
    [167] Cao Y R, Li H L. influence of Ultrasound on the Processing and Structure of Polypropylene During Extrusion[J]. Polymer Engineering and Science. 2002, 42(7): 1534-1540.
    [168] Cao Y R, Xiang M, Li H L. the Effects of Ultrasonic Irradiation on the Crystalline Structures of Nucleated Polypropylene[J]. Journal of Applied Polymer Science. 2002, 84(10): 1956-1961.
    [169] Isayev A I, Hong C K. Novel Ultrasonic Process for in-Situ Copolymer formation and Compatibilization of Immiscible Polymers [J]. Polymer Engineering and Science. 2003, 43(1): 91-101.
    [170] Feng W L, Isayev A I. in-Situ Ultrasonic Compatibilization of Unvulcanized and Dynamically Vulcanized PP/EPDM Blends[J]. Polymer Engineering and Science. 2004, 44(11): 2019-2028.
    [171] Zumbrunnen D A, Miles K C, Liu Y H. Auto-Processing of Very Fine-Scale Composite Materials By Chaotic Mixing of Melts [J]. Composites Part A-Applied Science and Manufacturing. 1996,27(1): 37-47.
    [172] Jana S C, San M. Effects of Viscosity Ratio and Composition on Development of Morphology in Chaotic Mixing of Polymers[J]. Polymer. 2004,45(5): 1665-1678.
    [173] Sau M, Jana S C. A Study on the Effects of Chaotic Mixer Design and Operating Conditions on Morphology Development in Immiscible Polymer Systems[J]. Polymer Engineering and Science. 2004,44(3): 407-422.
    [174] Sau M, Jana S C. Effect of Waveforms on Morphology Development in Chaotic Mixing of Polymers[J]. Aiche Journal. 2004, 50(10): 2346-2358.
    [175] Kim S J, Kwon T H. Enhancement of Mixing Performance of Single-Screw Extrusion Processes Via Chaotic Flows .1. Basic Concepts and Experimental Study[J]. Advances in Polymer Technology. 1996, 15(1): 41-54.
    [176] Kim S J, Kwon T H. Enhancement of Mixing Performance of Single-Screw Extrusion Processes Via Chaotic Flows .2. Numerical Study[J]. Advances in Polymer Technology. 1996, 15(1): 55-69.
    [177] Lee T H, Kwon T H. A New Representative Measure of Chaotic Mixing in A Chaos Single-Screw Extruder[J]. Advances in Polymer Technology. 1999,18(1): 53-68.
    [178] Hwang W R, Jun H S, Kwon T H. Experiments on Chaotic Mixing in A Screw Channel Flow[J]. Aiche Journal. 2002,48(8): 1621-1630.
    [179] Hwang W R, Kwon T H. Chaotic Volumetric Transports in A Single-Screw Extrusion Process[J]. Polymer Engineering and Science. 2003,43(4): 783-797.
    [180] Dhoble A, Kulshreshtha B, Ramaswami S, et al. Mechanical Properties of PP-LDPE Blends With Novel Morphologies Produced With a Continuous Chaotic Advection Blender[J]. Polymer. 2005,46(7): 2244-2256.
    [181] Zumbrunnen D A, Chhibber C. Morphology Development in Polymer Blends Produced By Chaotic Mixing at Various Compositions[J]. Polymer. 2002,43(11): 3267-3277.
    [182] Zumbrunnen D A, inamdar S. Novel Sub-Micron Highly Multi-Layered Polymer Films formed By Continuous Row Chaotic Mixing[J]. Chemical Engineering Science. 2001, 56(12): 3893-3897.
    [183] Liu Y H, Zumbrunnen D A. toughness Enhancement in Polymer Blends Due to the in-Situ formation By Chaotic Mixing of Fine-Scale Extended Structures[J]. Journal of Materials Science. 1999,34(8): 1921-1931.
    [184] Kwon O, Zumbrunnen D A. Production of Barrier Films By Chaotic Mixing of Plastics[J]. Polymer Engineering and Science. 2003,43(8): 1443-1459.
    [185] Danescu R I, Zumbrunnen D A. Production of Electrically Conducting Plastic Composites By Three-Dimensional Chaotic Mixing of Melts and Powder Additives[J]. Journal of Vinyl & Additive Technology. 2000, 6(1): 26-33.
    [186] Chougule V A, Zumbrunnen D A. In Situ assembly Using a Continuous Chaotic Advection Blending Process of Electrically Conducting Networks in Carbon Black-thermoplastic Extrusions[J]. Chemical Engineering Science. 2005, 60(8-9): 2459-2467.
    [187] Kiss G. In Situ Composites: Blends of Isotropic Polymers and thermotropic Liquid Crystalline Polymers[J]. Polymer Engineering and Science. 1987,27:410-423.
    [188] Friedrich K, Evstatiev M, Fakirov S, et al. Microfibrillar Reinforced Composites from PET/PP Blends: Processing, Morphology and Mechanical Properties [J]. Composites Science and Technology. 2005,65(1): 107-116.
    [189] Fakirov S, Kamo H, Evstatiev M, et al. Microfibrillar Reinforced Composites from PET/LDPE Blends: Morphology and Mechanical Properties [J]. Journal of Macromolecular Science-Physics. 2004, B43(4): 775-789.
    [190] Friedrich K, Ueda E, Kamo H, et al. Direct Electron Microscopic Observation of Transcrystalline Layers in Microfibrillar Reinforced Polymer-Polymer Composites [J]. Journal of Materials Science. 2002, 37(20): 4299-4305.
    [191] Li Z M, Li L B, Shen K Z, et al. In-Situ Microfibrillar PET/iPP Blend Via Slit Die Extrusion, Hot Stretching, and Quenching: influence of Hot Stretch Ratio on Morphology, Crystallization, and Crystal Structure of Ipp at A Fixed PET Concentratior[J]. Journal of Polymer Science Part B-Polymer Physics. 2004, 42(22): 4095-4106.
    [192] Li Z M, Li L B, Shen K Z, et al. Transcrystalline Morphology of an in situ Microfibrillar Poly(Ethylene Terephthalate)/Poly(Propylene) Blend Fabricated Through a Slit Extrusion Hot Stretching-Quenching Process[J]. Macromolecular Rapid Communications. 2004, 25(4): 553-558.
    [193] Li Z M, Lu A, Lu Z Y, et al. In-Situ Microfibrillar PET/iPP Blend Via A Slit Die Extrusion, Hot Stretching and Quenching Process: influences of PET Concentration on Morphology and Crystallization of iPP at A Fixed Hot Stretching RatiofJ]. Journal of Macromolecular Science-Physics. 2005, B44(2): 203-216.
    [194] Li Z M, Xie B H, Huang R, et al. influences of Hot Stretch Ratio on Essential Work of Fracture of in-situ Microfibrillar Poly(Ethylene Terephthalate)/Polyethylene Blends [J]. Polymer Engineering and Science. 2004,44(12): 2165-2173.
    [195] Li Z M, Yang M B, Feng J M, et al. Morphology of in Situ Poly(Ethylene Terephthalate) Polyethylene Microfiber Reinforced Composite formed Via Slit-Die Extrusion and Hot-Stretching[J]. Materials Research Bulletin. 2002, 37(13): 2185-2197.
    [196] Li Z M, Yang M B, Huang R, et al. Poly(Ethylene Terephthalate)/Polyethylene Composite Based on in-situ Microfiber formation[J]. Polymer-Plastics Technology and Engineering. 2002,41(1): 19-32.
    [197] Li Z M, Yang M B, Lu A, et al. Tensile Properties of Poly(Ethylene Terephthalate) and Polyethylene in-situ Microfiber Reinforced Composite formed Via Slit Die Extrusion and Hot-Stretching[J]. Materials Letters. 2002, 56(5): 756-762.
    [198] Li Z M, Yang M B, Xie B H, et al. in-Situ Microfiber Reinforced Composite Based on PET and PE Via Slit Die Extrusion and Hot Stretching: influences of Hot Stretching Ratio on Morphology and Tensile Properties at a Fixed Composition[J]. Polymer Engineering and Science. 2003,43(3): 615-628.
    [199] Li Z M, Yang W, Huang R, et al. Essential Work of Fracture Parameters of in-Situ Microfibrillar Poly(Ethylene Terephthalate)/Polyethylene Blend: influences of Blend Composition[J]. Macromolecular Materials and Engineering. 2004, 289(5): 426-433.
    [200] Li Z M, Yang W, Li L B, et al. Morphology and Nonisothermal Crystallization of in situ Microfibrillar Poly(Ethylene Terephthalate)/Polypropylene Blend Fabricated Through Slit-Extrusion, Hot-Stretch Quenching[J]. Journal of Polymer Science Part B-Polymer Physics. 2004, 42(3): 374-385.
    [201] Li Z M, Yang W, Xie B H, et al. Morphology and Tensile Strength Prediction of in situ Microfibrillar Poly(Ethylene Terephthalate)/Polyethylene Blends Fabricated Via Slit-Die Extrusion-Hot Stretching-Quenching[J]. Macromolecular Materials and Engineering. 2004, 289(4):.349-354.
    [202] Li Z M, Yang W, Xie B H, et al. Effects of Compatibilization on the Essential Work of Fracture Parameters of in Situ Microfiber Reinforced Poly(Ethylene Terephtahalate)/Polyethylene Blend[J]. Materials Research Bulletin. 2003, 38(14): 1867-1878.
    [203] Zhong G J, Li L B, Mendes E, et al. Suppression of Skin-Core Structure in injection-Molded Polymer Parts By in situ incorporation of A Microfibrillar Network[J]. Macromolecules. 2006, 39(19): 6771-6775.
    [204] Quan H, Zhong G J, Li Z M, et al. Morphology and Mechanical Properties of Poly (Phenylene Sulfide)/Isotactic Polypropylene in situ Microfibrillar Blends[J]. Polymer Engineering and Science. 2005, 45(9): 1303-1311.
    [205] 李忠明.Gep/Po共混物的原位成纤及其形态、结构与性能[D].成都:四川大学,2003
    [206] 许向彬,李忠明,芦艾,et al.通过挤出—热拉伸制备CB/PET/PE导电复合材料[J].高分子材料科学与工程.2004,20(4):146-148.
    [207] 许向彬,李忠明,芦艾,et al.具有原位导电微纤网络的CB/PET/PE复合材料的力学性能[J].塑料工业.200432(1):35-37.
    [208] Xu X B, Li Z M, Yu R Z, et al. formation of in Situ CB/PET Microfibers in CB/PET/PE Composites By Slit Die Extrusion and Hot Stretching[J]. Macromolecular Materials and Engineering. 2004, 289(6): 568-575.
    [209] Li Z M, Xu X B, Lu A, et al. Carbon Black/Poly(Ethylene Terephthalate)/Polyethylene Composite With Electrically Conductive in situ Microfiber Network[J]. Carbon. 2004, 42(2): 428-432.
    [210] Xu X B, Li Z M, Dai K, et al. Anomalous attenuation of the Positive Temperature Coefficient of Resistivity in a Carbon-Black-Filled Polymer Composite With Electrically Conductive in situ Microfibrils[J]. Applied Physics Letters. 2006, 89(0321053).
    [211] Dai K, Xu X B, Li Z M. Electrically Conductive Carbon Black (CB) Filled in situ Microfibrillar Poly(Ethylene Terephthalate) (PET)/Polyethylene (PE) Composite With a Selective CB Distribution[J]. Polymer. 2007, 48(3): 849-859.
    [212] Narkis M, Srivastava S, Tchoudakov R, et al. Sensors for Liquids Based on Conductive Immiscible Polymer Blends[J]. Synthetic Metals. 2000, 113(1-2): 29-34.
    [213] Segal E, Tchoudakov R, Narkis M, et al. Sensing of Liquids By Electrically Conductive Immiscible Polypropylene/thermoplastic Polyurethane Blends Containing Carbon Black[J]. Journal of Polymer Science Part B-Polymer Physics. 2003, 41(12): 1428-1440.
    [214] Segal E, Tchoudakov R, Narkis M, et al. Sensors for Chemicals Based on Electrically Conductive Immiscible HIPS/TPU Blends Containing Carbon Black[J]. Journal of Materials Science. 2004, 39(18): 5673-5682.
    [215] Segal E, Tchoudakov R, Mironi-Harpaz I, et al. Chemical Sensing Materials Based on Electrically-Conductive Immiscible Polymer Blends[J]. Polymer international. 2005, 54(7): 1065-1075.
    [1] Li Z M, Xie B H, Huang R, et al. influences of Hot Stretch Ratio on Essential Work of Fracture of in-situ Microfibrillar Poly(Ethylene Terephthalate)/Polyethylene Blends[J]. Polymer Engineering and Science. 2004, 44(12): 2165-2173.
    [2] Li Z M, Yang W, Huang R, et al. Essential Work of Fracture Parameters of in-situ Microfibrillar Poly(Ethylene Terephthalate)/Polyethylene Blend: influences of Blend Composition[J]. Macromolecular Materials and Engineering. 2004, 289(5): 426-433.
    [3] Li Z M, Yang W, Xie B H, et al. Effects of Compatibilization on the Essential Work of Fracture Parameters of in situ Microfiber Reinforced Poly(Ethylene Terephtahalate)/Polyethylene Blend[J]. Materials Research Bulletin. 2003, 38(14): 1867-1878.
    [4] Li Z M, Yang M B, Xie B H, et al. in-Situ Microfiber Reinforced Composite Based on PET and PE Via Slit Die Extrusion and Hot Stretching: influences of Hot Stretching Ratio on Morphology and Tensile Properties at a Fixed Composition[J]. Polymer Engineering and Science. 2003, 43(3): 615-628.
    [5] Li Z M, Yang M B, Feng J M, et al. Morphology of in Situ Poly(Ethylene Terephthalate) Polyethylene Microfiber Reinforced Composite formed Via Slit-Die Extrusion and Hot-Stretching[J]. Materials Research Bulletin. 2002, 37(13): 2185-2197.
    [6] Li Z M, Yang M B, Lu A, et al. Tensile Properties of Poly(Ethylene Terephthalate) and Polyethylene in-situ Microfiber Reinforced Composite formed Via Slit Die Extrusion and Hot-Stretching[J]. Materials Letters. 2002, 56(5): 756-762.
    [7] Li Z M, Yang M B, Huang R, et al. Poly(Ethylene Terephthalate)/Polyethylene Composite Based on in-Situ Microfiber formation[J]. Polymer-Plastics Technology and Engineering. 2002, 41(1): 19-32.
    [8] Li Z M, Li L B, Shen K Z, et al. in-Situ Microfibrillar PET/iPP Blend Via Slit Die Extrusion, Hot Stretching, and Quenching: influence of Hot Stretch Ratio on Morphology, Crystallization, and Crystal Structure of iPP at a Fixed PET Concentratior[J]. Journal of Polymer Science Part B-Polymer Physics. 2004, 42(22): 4095-4106.
    [9] Li Z M, Li L B, Shen K Z, et al. Transcrystalline Morphology of an in situ Microfibrillar Poly(Ethylene Terephthalate)/Poly(Propylene) Blend Fabricated Through a Slit Extrusion Hot Stretching-Quenching Process[J]. Macromolecular Rapid Communications. 2004, 25(4): 553-558.
    [10] Li Z M, Yang W, Li L B, et al. Morphology and Nonisothermal Crystallization of in situ Microfibrillar Poly(Ethylene Terephthalate)/Polypropylene Blend Fabricated Through Slit-Extrusion, Hot-Stretch Quenching[J]. Journal of Polymer Science Part B-Polymer Physics. 2004,42(3): 374-385.
    [11] Taylor G I. the formation of Emulsions in Definable Fields of FlowfJ]. Proceedings of the Royal Society of London. 1934, A146: 501-523.
    [12] Cox R G. Deformation of a Drop in a General Time-Dependent Fluid FlowfJ]. Journal of Fluid Mechanics. 1969,37: 601-623.
    [13] Taylor G I. The Viscosity of a Fluid Containing Small Dropsof Another Fluid[J]. Proceedings of the Royal Society of London. 1932, A138:41-48.
    [14] Utracki L A, Shi Z H. Development of Polymer Blend Morphology During Compounding in A Twin Screw Extruder, Part I : Droplet Dispersion and Coalescence-a Review[J]. Polymer Engineering and Science. 1992,32(24): 1824-1833.
    [15] Favis B D. Polymer Blends and Alloys, Shonaik G O, Simon G P, New York:Marcel Dekker, 1999, 502.
    [16] Chin H B, Han C D. Studies on Droplet Deformation and Breakup. I. Droplet Deformation in Extensional FlowfJ]. Journal of Rheology. 1979,23: 557-590.
    [17] Meijer H E H, Jansen J M H. Mixing and Compounding-theory and Practical Progress, Manas-Zloczower I, Tadmor Z, Munich:Hanser, 1994.
    
    [18] Taylor G I. Conical Free Surfaces and Fluid interfaces[C]. Munich: Springer, 1964.
    [19] Huneault M A, Shi Z H, Utracki L A. Development of Polymer Blend Morphology During Compounding in a Twin-Screw Extruder .4. a New Computational Model With Coalescence[J]. Polymer Engineering and Science. 1995,35(1): 115-127.
    [20] Dreval V, Vinogradov G, Plomikova E, et al. Deformation of Melts of Mixtures of incompatible Polymers in a Uniform Shear Field and the Process of their Fibrillation[J]. RheologicaActa. 1983,22(1): 102-107.
    [21] Delaby I, Ernst B, Froelich D, et al. Droplet Deformation in Immiscible Polymer Blends During Transient Uniaxial Elongational FlowfJ]. Polymer Engineering and Science. 1996, 36(12): 1627-1635.
    [22] Elmendorp J J, Maalcke R J. A Study on Polymer Blending Microrheology : Part I[J]. Polymer Engineering and Science. 1985, 25(16): 1041-1047.
    [23] Gonzaleznunez R, Dekee D, Favis B D. the influence of Coalescence on the Morphology of the Minor Phase in Melt-Drawn Polyamide-6/HDPE Blends[J]. Polymer. 1996, 37(21): 4689-4693.
    [24] Xu H S, Li Z M, Yang S Y, et al. Rheological Behavior Comparison Between PET/HDPE and PC/HDPE Microfibrillar Blends[J]. Polymer Engineering and Science. 2005, 45(9): 1231-1238.
    [25] Xu H S, Li Z M, Pan J L, et al. Morphology and Rheological Behaviors of Polycarbonate/High Density Polyethylene in situ MicrofibriIlar Blends[J]. Macromolecular Materials and Engineering. 2004, 289(12): 1087-1095.
    [26] Li Z M, Yang W, Xie B H, et al. Morphology and Tensile Strength Prediction of in situ Microfibrillar Poly(Ethylene Terephthalate)/Polyethylene Blends Fabricated Via Slit-Die Extrusion-Hot Stretching-Quenching[J]. Macromolecular Materials and Engineering. 2004, 289(4): 349-354.
    [27] Adhikari B, Ghosh A K, Maiti S. Developments in Carbon Black for Rubber Reinforcement[J]. Journal of Polymer Materials. 2000, 17(2): 101-125.
    [28] Donet J B, Voet A. Carbon Black[M]. New York: Marcel Dekker, 1976.
    [29] Huang J C. Carbon Black Filled Conducting Polymers and Polymer Blends[J]. Advances in Polymer Technology. 2002, 21(4): 299-313.
    [30] Ji T Z. Preparation and Electrical Properties of Carbon Black/Ultra-High Molecular Weight Polyethylene Composites[M]. Verlag Dr. Koster (Berlin), 2004.
    [31] Lewis N S. Comparisons Between Mammalian and Artificial Olfaction Based on Arrays of Carbon Black-Polymer Composite Vapor Detectors[J]. Accounts of Chemical Research. 2004, 37(9): 663-672.
    [32] You J G, Xu S P, Liu S Q, et al. Applications of Plasma for the Preparation of Carbon Black[J]. New Carbon Materials. 2003, 18(2): 144-150.
    [33] 张雄伟.聚丙烯/炭黑复合导电材料的结构与性能及相关的物理和化学问题的研究[D].成都:四川大学,2000.
    [34] 黄锐.塑料工程手册[M].北京:机械工业出版社,2000.
    [35] Hsu T C, Lichkrus A M, Harrison I R. Liquid Crystal Polymer/Polyethylene Blends for Thin Film Applications[J]. Polymer Engineering and Science. 1993, 33: 860.
    [1] Sumita M, Sakata K, Asai S, et al. Dispersion of Fillers and the Electrical Conductivity of Polymer Blends Filled With Carbon Black[J]. Polymer Bulletin (Berlin). 1991, 25(2): 265-271.
    [2] Wu S. Polymer interface and Adhesion[M]. New York: Marcel Dekker, 1982.
    [3] Zhang M Q, Yu G, Zeng H M, et al. Two-Step Percolation in Polymer Blends Filled With Carbon Black[J]. Macromolecules. 1998, 31(19): 6724-6726.
    [4] Wu G Z, Asai S, Sumita M. A Self-Assembled Electric Conductive Network in Short Carbon Fiber Filled Poly(Methyl Methacrylate) Composites With Selective Adsorption of Polyethylene[J]. Macromolecules. 1999, 32(10): 3534-3536.
    [5] Wu G Z, Asai S, Sumita M, et al. Entropy Penalty-induced Self-Assembly in Carbon Black or Carbon Fiber Filled Polymer Blends[J]. Macromolecules. 2002, 35(3): 945-951.
    [6] Feng J Y, Chart C M, Li J X. A Method To Control the Dispersion of Carbon Black in an Immiscible Polymer Blend[j]. Polymer Engineering and Science. 2003, 43(5): 1058-1063.
    [7] PErsson A L, Bertilsson H. Viscosity Difference as Distributing Factor in Selective Absorption of Aluminium Borate Whiskers in Immiscible Polymer Blends[J]. Polymer. 1998, 39(23): 5633-5642.
    [8] Dreval V, Vinogradov G, Plotnikova E, et al. Deformation of Melts of Mixtures of incompatible Polymers in a Uniform Shear Field and the Process of their Fibrillation[J]. Rheologica Acta. 1983, 22(1): 102-107.
    [9] Gonzaleznunez R, Dekee D, Favis B D. the influence of Coalescence on the Morphology of the Minor Phase in Melt-Drawn Polyamide-6/HDPE Blends[J]. Polymer. 1996, 37(21): 4689-4693.
    [10] Favis B D. Polymer Blends and Alloys, Shonaik G O, Simon G P, New York:Marcel Dekker, 1999, 502.
    [11] 李忠明.Gep/Po共混物的原位成纤及其形态、结构与性能[D].成都:四川大学,2003
    [12] Xu H S, Li Z M, Pan J L, et al. Morphology and Rheological Behaviors of Polycarbonate/High Density Polyethylene in situ Microfibrillar Blends[J]. Macromolecular Materials and Engineering. 2004, 289(12): 1087-1095.
    [13] Xu H S, Li Z M, Yang S Y, et al. Rheological Behavior Comparison Between PET/HDPE and PC/HDPE Microfibrillar Blends[J]. Polymer Engineering and Science. 2005, 45(9): 1231-1238.
    [14] Gubbels F, Jerome R, Teyssie P, et al. Selective Localization of Carbon Black in Immiscible Polymer Blends: a Useful Tool to Design Electrical Conductive Composites[J]. Macromolecules. 1994, 27(7): 1972-1974.
    [15] Gubbels F, Blacher S, Vanlathem E, et al. Design of Electrical Conductive Composites: Key Role of the Morphology on the Electrical Properties of Carbon Black Filled Polymer Blends[J]. Macromolecules. 1995, 28(5): 1559-1566.
    [16] Bin Y, Xu C, Zhu D, et al. Electrical Properties of Polyethylene and Carbon Black Particle Blends Prepared By Gelation/Crystallization From Solution[J]. Carbon. 2002, 40(2): 195-199.
    [17] Hu J W, Li M W, Zhang M Q, et al. Preparation of Binary Conductive Polymer Composites With Very Low Percolation Threshold By Latex Blending[J]. Macromolecular Rapid Communications. 2003, 24(15): 889-893.
    [1] Xu X B, Li Z M, Yu R Z, et al. Formation of in situ CB/PET Microfibers in CB/PET/PE Composites by Slit Die Extrusion and Hot Stretching[J]. Macromolecular Materials and Engineering. 2004,289(6): 568-575.
    [2] Li Z M, Xu X B, Lu A, et al. Carbon Black/Poly(Ethylene Terephthalate)/Polyethylene Composite With Electrically Conductive in situ Microfiber Network[J]. Carbon. 2004, 42(2): 428-432.
    [3] Gubbels F, Jerome R, Teyssie P, et al. Selective Localization of Carbon Black in Immiscible Polymer Blends: a Useful tool to Design Electrical Conductive Composites[J]. Macromolecules. 1994,27(7): 1972-1974.
    [4] Gubbels F, Blacher S, Vanlathem E, et al. Design of Electrical Conductive Composites :Key Role of the Morphology on the Electrical Properties of Carbon Black Filled Polymer Blends[J]. Macromolecules. 1995,28(5): 1559-1566.
    [5] Yacubowicz J, Narkis M, Benguigui L. Electrical and Dielectric Properties of Segregated Carbon Black-Polyethylene Systems[J]. Polymer Engineering and Science. 1990, 30: 459-468.
    [6] Chan C M, Cheng C L, Yuen M M. Electrical Properties of Polymer Composites Prepared by Sintering a Mixture of Carbon Black and Ultra-High Molecular Weight Polyethylene Powder[J]. Polymer Engineering and Science. 1997,37(7): 1127-1136.
    [7] Hu J W, Li M W, Zhang M Q, et al. Preparation of Binary Conductive Polymer Composites With Very Low Percolation Threshold by Latex Blending[J]. Macromolecular Rapid Communications. 2003, 24(15): 889-893.
    
    [8] Wu S. Polymer interface and Adhesion[M]. New York: Marcel Dekker, 1982.
    [9] Sumita M, Sakata K, asai S, et al. Dispersion of Fillers and the Electrical Conductivity of Polymer Blends Filled With Carbon Black[J]. Polymer Bulletin (Berlin). 1991, 25(2): 265-271.
    [10] Zhang M Q, Yu G, Zeng H M, et al. Two-Step Percolation in Polymer Blends Filled With Carbon Black[J]. Macromolecules. 1998,31(19): 6724-6726.
    [11] Wu G Z, asai S, Sumita M. A Self-assembled Electric Conductive Network in Short Carbon Fiber Filled Poly(Methyl Methacrylate) Composites With Selective Adsorption of Polyethylene[J]. Macromolecules. 1999, 32(10): 3534-3536.
    [12] Wu G Z, asai S, Sumita M, et al. Entropy Penalty-induced Self-assembly in Carbon Black Or Carbon Fiber Filled Polymer Blends[J]. Macromolecules. 2002, 35(3): 945-951.
    [13] PErsson A L, Bertilsson H. Viscosity Difference as Distributing Factor in Selective Absorption of Aluminium Borate Whiskers in Immiscible Polymer Blends[J]. Polymer. 1998, 39(23): 5633-5642.
    [14] Feng J Y, Chart C M, Li J X. A Method to Control the Dispersion of Carbon Black in an Immiscible Polymer Blend[J]. Polymer Engineering and Science. 2003, 43(5): 1058-1063.
    [15] Sumita M, Sakata K, Hayakawa Y, et al. Double Percolation Effect on the Electrical Conductivity of Conductive Particles Filled Polymer Blends[J]. Colloid and Polymer Science. 1992, 270(2): 134-139.
    [16] Levon K, Margolina A, Patashinsky A Z. Multiple Percolation in Conduction Polymer Blends[J]. Macromolecules. 1993, 26(15): 4061-4063.
    [17] Knackstedt M A, Roberts A P. Morphology and Macroscopic Properties of Conducting Polymer Blends[J]. Macromolecules. 1996, 29(4): 1369-1371.
    [18] Zhang C, Yi X S, Yui H, et al. Selective Location and Double Percolation of Short Carbon Fiber Filled Polymer Blends: High-Density Polyethylene Isotactic Polypropylene[J]. Materials Letters. 1998, 36(1-4): 186-190.
    [19] 徐鸿升,李忠明,王松杰,et al. PE-Hd/PET原位微纤化共混物的动态流变性能研究—微纤含量的影响[J].中国塑料.2006,20(6):18-21.
    [20] Janzen J. on the Critical Conductive Filler Loading in Antistatic Composites. [J] . Journal of Applied Physics. 1975, 46(2): 966-969.
    [21] Fiske T J, Railkar S B, Kalyon D M. Effects of Segregation on the Packing of Spherical and Nonspherical Particles[J]. Powder Technology. 1994, 81: 57-64.
    [22] Mallette J G, Quej L M, Marquez A, et al. Carbon Black-Filled PET/HDPE Blends: Effect of the CB Structure on Rheological and Electric Properties[J]. Journal of Applied Polymer Science. 2001, 81(3): 562-569.
    [23] Mamunya Y P, Muzychenko Y V, Pissis P, et al. Percolation Phenomena in Polymers Containing Dispersed Iron[J]. Polymer Engineering and Science. 2002, 42(1): 90-100.
    [24] Rajagopal C. Studies on Electrical Conductivity of insulator-Conductor Composites[J]. Journal of Applied Physics. 1978, 49: 5536-5542.
    [25] Sheng P, Sichel E K, Gittleman J I. Fluctuation-induced Tunneling Conduction in Carbon-Polyvinylchloride Composites[J]. Physical Review Letters. 1978, 40(18): 1197-1200.
    [26] Sheng P. Fluctuation-induced Tunneling Conduction in Disordered Materials[J]. Physical Review B. 1980, 21(6): 2180-2195.
    [27] Cashell E M, Coey J M D, Wardell G E, et al. Dc Electrical Conduction in Carbon Black Filled Cis-Polybutadiene[J]. Journal of Applied Physics. 1981, 52: 1542-1547.
    [28] Balberg I, Azulay D, toker D, et al. Percolation and Tunneling in Composite Materials[J], international Journal of Modern Physics B. 2004, 18(15): 2091-2121.
    [1] Frydman E. England, UK Patent Spec. 604 195 1718 14s.
    [2] Mather P J, Thomas K M. Carbon Black High Density Polyethylene Conducting Composite Materials .2. the Relationship Between the Positive Temperature Coefficient and the Volume Resistivity[J]. Journal of Materials Science. 1997, 32(7): 1711-1715.
    [3] Chekanov Y, Ohnogi R, asai S, et al. Positive Temperature Coefficient Effect of Epoxy Resin Filled With Short Carbon Fibers[J]. Polymer Journal. 1998, 30(5): 381-387.
    [4] Yu G, Zhang M Q, Zeng H M. Carbon-Black-Filled Polyolefme as a Positive Temperature Coefficient Material: Effect of Composition, Processing, and Filler Treatment[J]. Journal of Applied Polymer Science. 1998, 70(3): 559-566.
    [5] Feng J Y, Chan C M. Carbon Black-Filled Immiscible Blends of Poly(Vinylidene Fluoride) and High Density Polyethylene: the Relationship Between Morphology and Positive and Negative Temperature Coefficient Effects[J]. Polymer Engineering and Science. 1999, 39(7): 1207-1215.
    [6] Feng J Y, Chan C M. Double Positive Temperature Coefficient Effects of Carbon Black-Filled Polymer Blends Containing Two Semicrystalline Polymers[J]. Polymer. 2000, 41(12): 4559-4565.
    [7] Feng J Y, Chan C M. Positive and Negative Temperature Coefficient Effects of an Alternating Copolymer of Tetrafluoroethylene-Ethylene Containing Carbon Black-Filled HDPE Particles[J]. Polymer. 2000, 41(19): 7279-7282.
    [8] Kim J, Kang P H, Nho Y C. the Positive Temperature Coefficient Behavior of Conductive Nylon/Carbon Black Composite[J]. Journal of industrial and Engineering Chemistry. 2002, 8(4): 380-385.
    [9] Hou Y H, Zhang M Q, Rong M Z. Carbon Black-Filled Polyolefins as Positive Temperature Coefficient Materials: the Effect of in situ Grafting During Melt Compounding[J]. Journal of Polymer Science Part B-Polymer Physics. 2003, 41(1): 127-134.
    [10] Zheng Q, Song Y H, Wu G, et al. Relationship Between the Positive Temperature Coefficient of Resistivity and Dynamic Rheological Behavior for Carbon Black-Filled High-Density Polyethylene[J]. Journal of Polymer Science Part B-Polymer Physics. 2003, 41(9): 983-992.
    [11] He X J, Du J H, Ying Z, et al. Positive Temperature Coefficient Effect in Multiwalled Carbon Nanotube/High-Density Polyethylene Composites[J]. Applied Physics Letters. 2005, 86(0621126).
    [12] Xiong C X, Zhou Z Y, Xu W, et al. Polyurethane/Carbon Black Composites With High Positive Temperature Coefficient and Low Critical Transformation Temperature[J]. Carbon. 2005,43(8): 1788-1792.
    [13] Kohler F. Usa, Us Patent 3,243,753.
    [14] Voet A. Temperature Effect of Electrical Resistivity of Carbon Black Filled Polymers.[J]. Rubber Chemistry and Technology. 1981, 54(1): 42-50.
    [15] Meyer J. Stability of Polymer Compoistes as Positive-Temperature-Coefficient Resistors[J]. Polymer Engineering and Science. 1974,14(10): 706-716.
    [16] Klason C, Kubat J. Anomalous Behavior of Electrical Conductivity and thermal Noise in Carbon Black-Containing Polymers at Tg and Tm[J]. Journal of Applied Polymer Science. 1975, 19: 831-845.
    [17] Al-Allak H M, Brinkman A W, Woods J. I-V Characteristics of Carbon Black-Loaded Crystalline Polyethylene[J]. Journal of Materials Science. 1993,28: 117-120.
    [18] Huang J C. Carbon Black Filled Conducting Polymers and Polymer Blends[J]. Advances in Polymer Technology. 2002,21(4): 299-313.
    [19] Tan S T, Zhang M Q, Rong M Z, et al. Properties of Metal Fibre Filled thermoplastics as Candidates for Electromagnetic interference Shielding[J]. Polymers & Polymer Composites. 2001, 9(4): 257-262.
    [20] Yang Y L, Gupta M C. Novel Carbon Nanotube-Polystyrene Foam Composites for Electromagnetic interference Shielding[J]. Nano Letters. 2005, 5(11): 2131-2134.
    [21] Yang Y L, Gupta M C, Dudley K L, et al. Conductive Carbon Nanoriber-Polymer Foam Structures[J]. Advanced Materials. 2005,17(16): 1999-+.
    [22] Yang Y L, Gupta M C, Dudley K L, et al. Electromagnetic interference Shielding Characteristics of Carbons Nanofiber-Polymer Composites[J]. Journal of Nanoscience and Nanotechnology. 2007,7(2): 549-554.
    [23] Narkis M, Lidor G, Vaxman A, et al. New injection Moldable Electrostatic Dissipative (ESD) Composites Based on Very Low Carbon Black Loadings[J]. Journal of Electrostatics. 1999,47(4): 201-214.
    [24] Narkis M, Ram A, Flashner F. Electrical Properties of Carbon Black Filled PolyethylenefJ]. Polymer Engineering and Science. 1978,18(8): 649-653.
    [25] Gubbels F, Jerome R, Teyssie P, et al. Selective Localization of Carbon Black in Immiscible Polymer Blends: a Useful Tool to Design Electrical Conductive Composites[J]. Macromolecules. 1994, 27(7): 1972-1974.
    [26] Gubbels F, Blacher S, Vanlathem E, et al. Design of Electrical Conductive Composites: Key Role of the Morphology on the Electrical Properties of Carbon Black Filled Polymer Blends[J]. Macromolecules. 1995, 28(5): 1559-1566.
    [27] Wu G Z, asai S, Sumita M. A Self-assembled Electric Conductive Network in Short Carbon Fiber Filled Poly(Methyl Methacrylate) Composites With Selective Adsorption of Polyethylene[J]. Macromolecules. 1999, 32(10): 3534-3536.
    [28] Wu G Z, asai S, Sumita M, et al. Entropy PEnalty-induced Self-assembly in Carbon Black or Carbon Fiber Filled Polymer Blends[J]. Macromolecules. 2002, 35(3): 945-951.
    [29] Wu G Z, asai S, Zhang C, et al. A Delay of PErcolation Time in Carbon-Black-Filled Conductive Polymer Composites[J]. Journal of Applied Physics. 2000, 88(3): 1480-1487.
    [30] Wu G Z, asai S, Sumita M. Carbon Black as a Self-Diagnosing Probe to Trace Polymer Dynamics in Highly Filled Compositions[J]. Macromolecules. 2002, 35(5): 1708-1713.
    [31] Li Z M, Xu X B, Lu A, et al. Carbon Black/Poly(Ethylene Terephthalate)/Polyethylene Composite With Electrically Conductive in situ Microfiber Network[J]. Carbon. 2004, 42(2): 428-432.
    [32] Xu X B, Li Z M, Yu R Z, et al. formation of in Situ CB/PET Microfibers in CB/PET/PE Composites By Slit Die Extrusion and Hot Stretching[J]. Macromolecular Materials and Engineering. 2004, 289(6): 568-575.
    [33] Xu X B, Li Z M, Yang M B, et al. the Role of the Surface Microstructure of the Microfibrils in An Electrically Conductive Microfibrillar Carbon Black/Poly(Ethylene Terephthalate)/Polyethylene Composite[J]. Carbon. 2005, 43(7): 1479-1487.
    [34] Narkis M, Ram A, Stein, et al. Effect of Crosslinking on Carbon Black/Polyethylene Switching Materials[J]. Journal of Applied Polymer Science. 1980, 25:1515-1518.
    [35] Narkis M, Ram A, Stein Z. Electrical Properties of Carbon Black Filled Crosslinked Polyethylene[J]. Polymer Engineering and Science. 1981, 21(16): 1049-1054.
    [36] Chan C M, Cheng C L, Yuen M M. Electrical Properties of Polymer Composites Prepared By Sintering a Mixture of Carbon Black and Ultra-High Molecular Weight Polyethylene Powder[J]. Polymer Engineering and Science. 1997, 37(7): 1127-1136.
    [37] 罗延龄,王庚超,张炳玉,et al.新型有机Ptc非线性导电材料及其器件的热电稳定性[J].高分子材料科学与工程.1997,13(2):98.
    [38] Lagreve C, Feller J F, Linossier I, et al. Poly(Butylene Terephthalate)/Poly(Ethylene-Co-Alkyl Acrylate)/Carbon Black Conductive Composites: influence of Composition and Morphology on Electrical Properties[J]. Polymer Engitteering and Science. 2001,41(7): 1124-1132.
    [39] Lee G J, Han M G, Chung S C, et al. Effect of Crosslinking on the Positive Temperature Coefficient Stability of Carbon Black-Filled Hdpe/Ethylene-Ethylacrylate Copolymer Blend System[J]. Polymer Engineering and Science. 2002,42(8): 1740-1747.
    [40] Tai X Y, Wu G Z, Yui H, et al. Dynamics of Electric Field induced Particle Alignment in Nonpolar Polymer Matrix[J]. Applied Physics Letters. 2003, 83(18): 3791-3793.
    [41] Tai X Y, Wu G Z, Tominaga Y, et al. An Approach to one-Dimensional Conductive Polymer Composites[J]. Journal of Polymer Science Part B-Polymer Physics. 2005, 43(2): 184-189.
    [42] Prasse T, Flandin L, Schulte K, et al. in Situ Observation of Electric Field induced Agglomeration of Carbon Black in Epoxy Resin[J]. Applied Physics Letters. 1998, 72(22): 2903-2905.
    [43] Schwarz M K, Bauhofer W, Schulte K. Alternating Electric Field induced Agglomeration of Carbon Black Filled Resins[J]. Polymer. 2002,43(10): 3079-3082.
    [44] Donnet J B, Voet A. Carbon Black[M]. New York: Marcel Dekker, 1976.
    [1] Dong X M, Fu R W, Zhang M Q, et al. Vapor-induced Variation in Electrical Performance of Carbon Black/Poly (Methyl Methacrylate) Composites Prepared by Polymerization Filling[J]. Carbon. 2003, 41(2): 371-374.
    [2] Li J R, Xu J R, Zhang M Q, et al. Carbon Black/Polystyrene Composites as Candidates for Gas Sensing Materials[J]. Carbon. 2003, 41(12): 2353-2360.
    [3] Lewis N S. Comparisons Between Mammalian and Artificial Olfaction Based on Arrays of Carbon Black-Polymer Composite Vapor Detectors[J]. Accounts of Chemical Research. 2004, 37(9): 663-672.
    [4] Chert S G, Hu J W, Zhang M Q, et al. Effects of Temperature and Vapor Pressure on The Gas Sensing Behavior of Carbon Black Filled Polyurethane Composites[J]. Sensors and Actuators B-Chemical. 2005, 105(2): 187-193.
    [5] Zhang B, Fu R W, Zhang M Q, et al. Preparation and Characterization of Gas-Sensitive Composites From Multi-Walled Carbon Nanotubes/Polystyrene[J]. Sensors and Actuators B-Chemical. 2005, 109(2): 323-328.
    [6] Iwata H, Nakanoya T, Morohashi H, et al. Novel Gas and Contamination Sensor Materials From Polyamide-Block-Poly(Ethylene Oxide)-Grafted Carbon Black[J]. Sensors and Actuators B-Chemical. 2006, 113(2): 875-882.
    [7] Severin E J, Sanner R D, Doleman B J, et al. Differential Detection of Enantiomeric Gaseous Analytes Using Carbon Black-Chiral Polymer Composite, Chemically Sensitive Resistors[J]. Analytical Chemistry. 1998, 70(7): 1440-1443.
    [8] Severin E J, Lewis N S. Relationships Among Resonant Frequency Changes on a Coated Quartz Crystal. Microbalance, Thickness Changes, and Resistance Responses of Polymer-Carbon Black Composite Chemiresistors[J]. Analytical Chemistry. 2000, 72(9): 2008-2015.
    [9] Tillman E S, Koscho M E, Grubbs R H, et al. Enhanced Sensitivity to and Classification of Volatile Carboxylic Acids Using Arrays of Linear Poly(Ethylenimine)-Carbon Black Composite Vapor Detectors[J]. Analytical Chemistry. 2003, 75(7): 1748-1753.
    [10] 董先明,符若文,章明秋,et al.炭黑/聚合物气敏导电复合材料研究进展[J].高分子材料科学与工程.2004,20(2):14-18.
    [11] Lundberg B, Sundqvist B. Resistivity of A Composite Conducting Polymer as a Function of Temperature,Pressure,and Environment:Applications as A Pressure and Gas Concentration Transducer[J]. Journal of Applied Physics. 1986, 60(3): 1074-1079.
    [12] Chen S G, Hu J W, Zhang M Q, et al. Gas Sensitivity of Carbon Black/Waterborne Polyurethane Composites[J]. Carbon. 2004, 42(3): 645-651.
    [13] Chert S G, Hu X L, Hu J, et al. Relationships Between Organic Vapor Adsorption Behaviors and Gas Sensitivity of Carbon Black Filled Waterborne Polyurethane Composites[J]. Sensors and Actuators B-Chemical. 2006, 119(1): 110-117.
    [14] 李军荣,许家瑞,章明秋,et al.填充型聚合物基气敏导电复合材料[J].材料导报.2002,16(11):48-51.
    [15] Okazaki M, Maruyama K, Tsuchida M, et al. A Novel Gas Sensor From Poly(Ethylene Glycol)-Grafted Carbon Black. Responsibility of Electric Resistance of Poly(Ethylene Glycol)-Grafted Carbon Black Against Humidity and Solvent Vapor[J]. Polymer Journal. 1999, 31(8): 672-676.
    [16] Tsubokawa N, Ogasawara T, inaba J, et al. Carbon Black/Alumina Gel Composite: Preparation by Sol-Gel Process in The Presence of Polymer-Grafted Carbon Black and Its Electric Properties[J]. Journal of Polymer Science Part A-Polymer Chemistry. 1999, 37(18): 3591-3597.
    [17] Tsubokawa N, Shirai Y, Okazaki M, et al. A Novel Gas Sensor From Crystalline Polymer-Grafted Carbon Black: Responsibility of Electric Resistance of Composite From Crystalline Polymer-Grafted Carbon Black Against Solvent Vapor[J]. Polymer Bulletin. 1999, 42(4): 425-431.
    [18] Chen J H, Tsubokawa N. A Novel Gas Sensor From Polymer-Grafted Carbon Black: Responsiveness of Electric Resistance of Conducting Composite From Ldpe and PE-B-PEo-Grafted Carbon Black in Various Vapors[J]. Polymers for Advanced Technologies. 2000, 11(3): 101-107.
    [19] Chen J H, Tsubokawa N. Electric Properties of Conducting Composite From Poly(Ethylene Oxide) and Poly(Ethylene Oxide)-Grafted Carbon Black in Solvent Vapor[J]. Polymer Journal. 2000, 32(9): 729-736.
    [20] Chen J H, Iwata H, Tsubokawa N, et al. Novel Vapor Sensor From Polymer-Grafted Carbon Black: Effects of Heat-Treatment and Gamma-Ray Radiation-Treatment on The Response of Sensor Material in Cyclohexane Vapor[J]. Polymer. 2002, 43(8): 2201-2206.
    [21] Morohashi H, Nakanoya T, Iwata H, et al. Novel Contamination and Gas Sensor Materials From Amphiphilic Polymer-Grafted Carbon Black[J]. Polymer Journal. 2006, 38(6): 548-553.
    [22] Doleman B J, Severin E J, Lewis N S. Trends in Odor intensity for Human and Electronic Noses: Relative Roles of Odorant Vapor Pressure Vs Molecularly Specific Odorant Binding[J]. Proceedings of The National Academy of Sciences of The United States of America. 1998, 95(10): 5442-5447.
    [23] Zee F, Judy J W. Micromachined Polymer-Based Chemical Gas Sensor Array[J]. Sensors and Actuators B-Chemical. 2001, 72(2): 120-128.
    [24] Sotzing G A, Phend J N, Grubbs R H, et al. Highly Sensitive Detection and Discrimination of Biogenic Amines Utilizing Arrays of Polyaniline/Carbon Black Composite Vapor Detectors[J]. Chemistry of Materials. 2000, 12(3): 593-+.
    [25] Severin E J, Doleman B J, Lewis N S. An investigation of The Concentration Dependence and Response to Analyte Mixtures of Carbon Black/insulating Organic Polymer Composite Vapor Detectors[J]. Analytical Chemistry. 2000, 72(4): 658-668.
    [26] Doleman B J, Lonergaa M C, Severin E J, et al. Quantitative Study of The Resolving Power of Arrays of Carbon Black-Polymer Composites in Various Vapor-Sensing Tasks[J]. Analytical Chemistry. 1998, 70(19): 4177-4190.
    [27] Doleman B J, Sarmer R D, Severin E J, et al. Use of Compatible Polymer Blends to Fabricate Arrays of Carbon Black-Polymer Composite Vapor Deteetors[J]. Analytical Chemistry. 1998, 70(13): 2560-2564.
    [28] Lonergan M C, Severin E J, Doleman B J, et al. Array-Based Vapor Sensing Using Chemically Sensitive, Carbon Black-Polymer Resistors[J]. Chemistry of Materials. 1996, 8(9): 2298-2312.
    [29] Narkis M, Srivastava S, Tchoudakov R, et al. Sensors for Liquids Based on Conductive Immiscible Polymer Blends[J]. Synthetic Metals. 2000, 113(1-2): 29-34.
    [30] Srivastava S, Tchoudakov R, Narlds M. A Preliminary investigation of Conductive Immiscible Polymer Blends as Sensor Materials[J]. Polymer Engineering and Science. 2000, 40(7): 1522-1528.
    [31] Segal E, Tchoudakov R, Narkis M, et al. Sensing of Liquids by Electrically Conductive Immiscible Polypropylene/Thermoplastic Polyurethane Blends Containing Carbon Black[J]. Journal of Polymer Science Part B-Polymer Physics. 2003, 41(12): 1428-1440.
    [32] Segal E, Tchoudakov R, Narkis M, et al. Sensors for Chemicals Based on Electrically Conductive Immiscible HIPS/TPU Blends Containing Carbon Black[J]. Journal of Materials Science. 2004, 39(18): 5673-5682.
    [33] Segal E, Tchoudakov R, Mironi-Harpaz I, et al. Chemical Sensing Materials Based on Electrically-Conductive Immiscible Polymer Blends[J]. Polymer international. 2005, 54(7): 1065-1075.
    [34] Xu X B, Li Z M, Yang M B, et al. The Role of The Surface Microstructure of The Microfibrils in An Electrically Conductive Microfibrillar Carbon Blaek/Poly(Ethylene Terephthalate)/Polyethylene Composite[J]. Carbon. 2005, 43(7): 1479-1487.
    [35] Xu X B, Li Z M, Yu R Z, et al. formation of in Situ CB/PET Microfibers in CB/PET/PE Composites by Slit Die Extrusion and Hot Stretching[J]. Macromolecular Materials and Engineering. 2004, 289(6): 568-575.
    [36] Li Z M, Xu X B, Lu A, et al. Carbon Black/Poly(Ethylene Terephthalate)/Polyethylene Composite With Electrically Conductive in situ Microfiber Network[J]. Carbon. 2004, 42(2): 428-432.
    [37] Xu X B, Li Z M, Dai K, et al. Anomalous Attenuation of The Positive Temperature Coefficient of Resistivity in a Carbon-Black-Filled Polymer Composite With Electrically Conductive in Situ Microfibrils[J]. Applied Physics Letters. 2006, 89(0321053).
    [38] Chen J H, Tsubokawa N, Maekawa Y, et al. Vapor Response Properties of Conducting Composites Prepared From Crystalline Oligomer-Grafted Carbon Black[J]. Carbon. 2002, 40(9): 1602-1605.
    [39] Chen J H, Tsubokawa N. Novel Gas Sensor From Polymer-Grafted Carbon Black: Vapor Response of Electric Resistance of Conducting Composites Prepared From Poly(Ethylene-Block-Ethylene Oxide)-Grafted Carbon Black[J]. Journal of Applied Polymer Science. 2000,77(11): 2437-2447.
    [40] Voet A. Temperature Effect of Electrical Resistivity of Carbon Black Filled Polymers.[J]. Rubber Chemistry and Technology. 1981, 54(1): 42-50.
    [41] Huang J C. Carbon Black Filled Conducting Polymers and Polymer Blends[J]. Advances in Polymer Technology. 2002,21(4): 299-313.
    [42] Chen J H, Yoshida M, Maekawa Y, et al. Temperature-Switchable Vapor Sensor Materials Based on N-Isopropylacrylamide and Calcium Chloride[J]. Polymer. 2001, 42(23): 9361-9365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700